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Abstract

Currently, the gold standard for aesthetic and functional reconstruction of critical mandibular defects is an 
autologous fibular flap; however, this carries risk of donor site morbidity, and is not a promising option in patients 
with depleted donor sites due to previous surgeries. Tissue engineering presents a potential solution in the design 
of a biomimetic scaffold that must be osteoconductive, osteoinductive, and support osseointegration. These 
osteogenesis-inducing scaffolds are most successful when they mimic and interact with the surrounding native macro- 
and micro-environment of the mandible. This is accomplished via the regeneration triad: (1) a biomimetic, bioactive 
osteointegrative scaffold, most likely a resorbable composite of collagen or a synthetic polymer with collagen-like 
properties combined with beta-tri calcium phosphate that is 3D printed according to defect morphology; (2) growth 
factor, most frequently bone morphogenic protein 2 (BMP-2); and (3) stem cells, most commonly bone marrow 
mesenchymal stem cells. Novel techniques for scaffold modification include the use of nano-hydroxyapatite, or 
combining a vector with a biomaterial to create a gene activated matrix that produces proteins of interest (typically 
BMP-2) to support osteogenesis. Here, we review the current literature in tissue engineering in order to discuss the 
success of varying use and combinations of scaffolding materials (i.e., ceramics, biological polymers, and synthetic 
polymers) with stem cells and growth factors, and will examine their success in vitro and in vivo to induce and guide 
osteogenesis in mandibular defects.
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INTRODUCTION
A mandibular defect is the loss of a lower jaw bone segment that produces a gap within the bone of 2 cm 
or more, resulting in a continuity or non-continuity mandibular defect[1]. These defects primarily arise 
from tumor resection, infection, physical trauma, and osteomyelitis[2]. Such a critical defect will not heal 
on its own or regenerate more than 10% of the lost bone within the lifetime of the patient[3]. Not only is 
mandibular bone important for craniofacial aesthetics, but also for the support of muscles of mastication, 
facial expression and speech[4]. Therefore, the choice of scaffold to repair the defect must allow for sufficient 
muscle attachment to restore oral and maxillofacial function, which has been shown to have significant 
impact on the patient’s quality of life[5]. Thus, to achieve successful reconstruction, care must be taken to 
restore both aesthetics and functional capacity[6].

The autologous fibular free f lap is currently the workhorse for mandibular defect repair which, along 
with other autologous free vascularized tissue transfer, is considered the “gold standard” for mandibular 
reconstruction because of their osteogenic, osteoinductive, and osteoconductive properties, in combination 
with the avoidance of an immune reaction[7,8]. These grafts also contain live stem or osteoprogenitor 
cells that themselves migrate, proliferate, and potentiate bone healing[9]. The major concern with using 
a fibular free flap is donor site morbidity, which has been reported to occur in 31.2% of patients[10]. These 
complications include wound-healing disturbance, paresthesias, cold intolerance, motor weakness of the 
lower leg muscles, pain, edema, poor aesthetics, and gait disturbance, and has been reported to lead to long 
term morbidities in 17% of patients, and severe disability in 4% of patients[11]. To circumvent this problem, 
cadaver grafts may be an attractive option, however, osteoclastic resorption, risk of disease transmission 
(viral) and immune reaction make this a less than ideal alternative[12-14]. Additionally, synthetic grafts 
designed from metals or polymers are not bioactive and do not bond to bone or support bone cell function, 
and can also induce the formation of fibrous tissue at the interface between the implant and bone, 
which can interfere with bone healing and cause bone resorption, fracture, and eventual failure of the 
implant[15-17].

If advancement is to be made beyond these methods in an effort to prevent such suffering to the patient, 
the following factors seem to be important in the design of a biotechnology capable of adequately closing 
a critical osseous defect: (1) a scaffold to allow bone growth on its surface (osteoconduction); (2) growth 
factors that induce osteogenesis (osteoinduction); (3) cells that will support osteogenesis; and (4) vascular 
supply and integration for the delivery of oxygen and nutrients to developing and native tissue[14,18]. Of 
these, vascularization has been a limiting factor for the use of scaffolds in mandibular repair, since both 
in vitro and in vivo construct implantation lack pre-existing vasculature[19]. Because of these multifactorial 
considerations, tissue engineering might provide the solution to this problem[20].
 
The critical focus of first-generation biomaterial design was passive biocompatibility; it was not until 
second-generation biomaterials that biointeractivity for the stimulation of active tissue regeneration 
emerged[21]. Third-generation biomaterials are bioresponsive, e.g., they can activate genes to influence all 
aspects of proliferation and differentiation of cells[22,23]. This assembly of scaffold material, scaffold structure 
(i.e., pore size), cells and growth factors reveals the multidisciplinary nature of tissue engineering, which 
is the intersection of material science, mechanical engineering, clinical medicine, and genetics[21]. In 
mandibular reconstruction, the primary goals of tissue engineering include reducing donor site morbidity, 
operative time, and operative complexity[24]. If non-vascularized flaps can be used (i.e., patients who have 
not been and are not planned to undergo radiation), favorable results have been reported with the adjunct 
use of tissue engineering for mandibular reconstruction[25,26]. Furthermore, modern regenerative medicine 
builds on tissue engineering designs to direct the surrounding native cellular environment toward a 
healing process, thereby making use of foreign biological material to recreate cells and rebuild tissues.
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In order to accomplish this, an effective bone scaffold must satisfy the following requirements: 
osteoconductivity, osteoinductivity and osseointegration[27]. Osteoinductivity is the ability of a material to 
recruit multipotent cells and encourage their differentiation into an osteoblastic lineage[28]. This is typically 
accomplished adding both growth factors and stem cells, such that growth factors signal to surrounding 
mesenchymal stem cells to differentiate into chondroblasts and osteoblasts to form new bone[29,30]. In the 
context of mandibular reconstruction, stem cells have potential to regenerate oral and dental tissues, such 
as bone, dentin, cementum, periodontal ligaments, mucosa, and salivary glands[22]. Mesenchymal stem cells 
are the most common source of osteoprogenitor cell used, and may be derived from bone marrow, adipose 
tissue, and dental and periodontal tissue, and their differentiation is guided by growth factors [such as 
bone morphogenic protein (BMP)]. Such involvement and interaction between growth factors are essential 
to the process of native bone healing, including vascular endothelial growth factor (VEGF), fibroblastic 
growth factors, insulin-like growth factors, platelet-derived growth factor, and BMP, to name a few[31]. 
During osteogenesis, an osteoconductive material will allow the growth of bone not only on the scaffold 
surface, but also into pores and channels, such that both cortical and cancellous bone are formed around 
and within the framework[32]. Such materials may also be designed to be resorbed in order to encourage 
growth of native bone. Osseointegration is the degree to which the native bone and the implant favorably 
interact, and such incorporation of a graft is influenced by many factors, such as the type of bone scaffold 
used and the site of implantation[33]. Thus, the general principle underlying third generation biomaterials is 
the regeneration triad: (1) an extracellular matrix (ECM) scaffold, which can be made of varying material 
to create a porous 3D structure that may be seeded with; (2) growth factors; and (3) stem cells[34,35]. Ideally, 
scaffolds should be designed to provide regenerative signals to surrounding cells, while simultaneously 
improving cell adhesion, proliferation, and differentiation[36], and mechanical rigidity or flexibility[37].
 
Thus, there is extensive f lexibility in assembling a scaffold. The choice of scaffold material itself can be 
varied, and sometimes may be used successfully on its own or in combination with other materials. 
Furthermore, modification of the scaffold material by coating its surface with nanoparticles, an ECM 
molecule (such as collagen), or a growth factor (such as BMP-2) has been shown to improve tissue 
properties[38]. In this review, we will explore the success of varying combinations of the above scaffolding 
materials, and will examine their success in vivo and in vitro in inducing and guiding osteogenesis in 
mandibular defects.

SCAFFOLD MATERIALS AND STRUCTURE
Beyond the biocompatibility of a scaffold, as has been argued by Chocholata et al.[21], the most important 
aspect of scaffold design is its three dimensional structure, namely the degree of pore interconnectivity and 
pore size, both of which effect the degree of cell attachment and three dimensional regeneration of tissue, 
as well as cell growth, proliferation, and differentiation, diffusion of waste and the degradation products 
of scaffolds. The goal of these materials is to initiate or enhance bone formation - if pore size is too small, 
it can hinder cell migration, and if too large will result in suboptimal binding of cells to the scaffold[18,39]. 
For maximal osteoconductivity, the ideal pore size as described by Ghayor and Weber[40] based on in vivo 
data is 0.7-1.2 mm, and the size of connections between pores should be between 0.5-1.2 mm; sizes larger 
than this are detrimental to osteoconductivity. During osteointegration, these porous spaces are initially 
populated by capillaries, perivascular tissues, and osteoprogenitor cells, followed by incorporation of the 
porous structure within the newly formed bone[41]. Additionally, the scaffold must be designed to degrade 
at an appropriate rate so that there is enough time for bone regeneration[42]. This is especially relevant in 
pediatric patients, where the future growth of the mandible must be considered. In this case, fixation of 
the mandible using titanium locking reconstruction plates does not allow for mandibular growth over 
time, and might result in facial asymmetry and problems with occlusion as the patient grows[24]. Resorbable 
plates have been developed in order to address this, but their drawbacks include postoperative plate 
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fracture and the development of delayed foreign-body reactions, and this potential harm to the patient’s 
well-being might discourage their use; consequently, the focus on “resorbable” material has consequently 
shifted to “bioabsorbable” scaffolding, which combines biodegradation with osteoconduction[43,44]. Lastly, 
the mechanical properties of the material must sufficiently mimic the native tissue at the implantation site 
in order to support functionality[45]. These factors will vary with scaffolding material, and will be described 
below.

A key requirement of effective tissue engineering is constructing a cellular environment that mimics 
critical aspects of the in vivo setting through proper control of the materials and mechanical setting as well 
as the chemical environment. The macroscopic structure of bone consists of a cortical outer layer encasing 
porous trabecular bone[29]. However, it is the nanoscopic structure of bone that yields its mechanical, 
biological and chemical properties, and this heterogenous structure is importantly irregular and 
anisotropic[46,47]. The ECM of bone is comprised of 60% mineral [hydroxyapatite (HA)] and 30% organic 
matrix[48]. The organic components give bone tissue its flexibility, and mainly consist of collagen (type I 
collagen, type III and type IV collagen), and together with fibrin and over 200 types of noncollagenous 
matrix proteins (glycoproteins, proteoglycans, sialoproteins, etc.), collagen forms the native scaffold for 
mineral deposition[15,48]. These HA Ca3(PO4)2.(OH)2 nanocrystals, inlayed between individual collagen 
fibers, give bone its mechanical strength and rigidity[49]. Due to this structure, bone tissue can be treated as 
a ceramic-organic bio-nanocomposite complex[48].
 
In an effort to design biomimetic material, natural (some authors also called these biological) scaffolds use 
existing ECM materials, and may be protein-based (e.g., collagen, fibrin) and polysaccharide-based (e.g., 
chitosan, alginate, glycosaminoglycans, hyaluronic acid)[50-52]. Such material also contains cross-linking 
agents (e.g., glutaraldehyde, water-soluble carbodiimide), which can be adjusted to modify degradation 
rates[37]. One method to achieve both porosity and biocompatability is to mimic the collagen network of the 
ECM of bone using nanofibrous scaffolds[53]. This can be constructed using electrospun (PLLA) scaffolds, 
which when coated with HA has been shown to induce calcium deposition and mineralization and the 
formation of higher order bone structures such as trabeculi and bone marrow, when combined with stem 
cells[54]. It has also been shown that electrospun PLLA can be combined with a porous collagen membrane 
to guide bone regeneration[55].
 
Single material scaffolds have shown promise in reconstructing mandibular defects. These materials 
include: biological polymers (collagen, chitosan), ceramics [beta-tri calcium phosphate (β-TCP), calcium 
HA, biphosphate calcium phosphate (BCP)], and synthetic polymers [polycaprolactone (PCL), PLA, PGA, 
PLGA][56]. The advantages to ceramics are that they are osteoconductive and biocompatible. Herford et al.[57] 
generated a ceramic compression resistant osteoconductive matrix that was 15% HA and 85% β-TCP that 
showed a significantly higher bone density and space maintenance than BMP2 combined with resorbable 
collagen sponge. However, one of the main concerns in the application of HA bone grafts is poor 
resorption, and several studies have reported fibrous encapsulation around HA ceramic particles inside 
alveolar bone[58-60]. In a 12 mm full thickness mandibular defect in a rabbit model using β-TCP ceramic, 
Lopez et al.[61] found that new bone accounted for half of the defect site repair at 8 weeks post-scaffold 
implantation, although no stem cell seeding or BMP signaling was used to direct osteoblast differentiation, 
instead using the properties of the biomaterial itself to direct endogenous healing mechanisms. Such 
calcium phosphate ceramics (β-TCP and BCP) are promising because of their biocompatibility and drug 
delivery potential, and they have been shown to be osteoconductive with sufficient mechanical strength, 
and they can be reliably used in 3D printing methodology[62,63]. However, calcium phosphate is insufficiently 
osteoinductive and requires supplementation with growth factors to induce new bone formation[64]. These 
scaffolds do have lower mechanical strength compared to allografts because they are designed to be 
degradable such that it can be replaced by new bone; however, the extent of new bone formation, lack of 
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host-host bridging, and engraftment is similar[65]. In preclinical animal studies, autogenous bone precursor 
cells seeded onto calcium phosphate ceramic scaffolds, pyrolyzed bovine bone, or calcium carbonate has 
been comparable to autograft bone in mandibular reconstruction in terms of biomechanical testing, bone 
bridging, and bone ingrowth[64-66]. 

The second major category is the synthetic polymer (PCL, PLLA, PLA-PEG, PGA, PLGA, PLGA-PEG, etc.). 
This material is promising because it allows 3D printing of complex structures that are biodegradable, 
bioactive, and undergo controlled degradation[67]. However, PCL is not ideal for mandible tissue 
engineering due to inferior mechanical properties such as a low compressive strength[68].
 
The third category of material is the natural polymer (collagen, chitosan, silk fibroin, alginate, gelatin, etc.[69]. 
Although biocompatibility with natural scaffolds is obviously excellent, there remain issues with potential 
immunogenicity in some cases. Because they do not induce antigen-antibody reactions, decellularized 
tissue matrices obtained from processing discarded donor tissue is an attractive solution. When bone 
matrix is demineralized via removal of HA, the remaining bony matrix is comprised mainly of collagen - 
this biocompatible, bioactive biomaterial has the ability to induce bone morphogenesis via BMP signaling, 
particularly in stem cells, and can be used as a film, gel, or sponge[70,71]. Although they have similar 
osteoinductive and osteoconductive properties as autologous grafts, they lack the corresponding osteogenic 
properties[71]. Additional major downsides are sourcing, processing, immunogenicity, and disease 
transmission, as well as lack of mechanical strength to withstand the forces exerted by the muscles of 
mastication[72,32].

In order to address this, Kakabadze et al.[73] reports development of a novel biologically active bone graft 
using decellularized cancellous bovine femur seeded with human bone marrow mesenchymal stem cells 
(BMSCs) and growth factors, which was applied clinically to repair a large mandibular defect following 
primary tumor resection that successfully repaired the defect and showed maintained mandibular bone 
volume at 5 months post-op. Importantly, like the use of autologous bone, this graft construction requires 
use of a barrier membrane to prevent fibrous tissue invasion, and decellularized human amnion/chorion 
membrane was chosen by the authors due to its osseointegrative properties[73].

However, the shortcomings of using a single material in scaffold construction include: poor strength 
for biologically-derived materials, brittleness for inorganic materials, and poor cell compatibility and 
insufficient mechanical strength for synthetic polymers[56]. Because of this, combining two or more materials 
to create a composite scaffold has shown improvement in material properties and biocompatibility. Most 
often, the polymer of choice is type I collagen, which is most often coated on scaffolds made from PCL, 
HA, and TCP in order to aim to mimic the structure of native bone[38]. Additionally, biomimetic Mg-
MgHA/collagen-based scaffolds have been shown to greatly improve osteoblast differentiation[74]. When 
choosing between ceramics to add compressive strength, it should be noted that compared to β-TCP, HA 
has low absorption kinetics in vivo (1%-2% per year at 5 years postimplantation)[75]. An HA-collagen or 
β-TCP-collagen scaffold can be 3D printed, and the combination of biocompatibility, compressive strength, 
and resorption rate in vivo and in vitro allows for bone replacement over time, and the degradation rate of 
the material can be altered by increasing the macroscopic surface area by decreasing the strut diameter or 
altering micro/nano porosity[61].

The scaffold surface may also be modified by the addition of nanoparticles. Most commonly, nano-HA 
is combined with PCL and chitosan scaffolding[38]. Nano-HA is of interest because it has been shown to 
increase the mechanical properties and improve the protein adsorption capacity of the polymer, while 
also acting as a substrate for cell attachment and migration during bone regeneration[76]. Polyamide66 is 
a synthetic polymer chosen by Cai et al.[77] to combine with HA due to its biocompatibility, high tensile 
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strength, and its similarity to collagen in chemical structure and functional groups[78]. When combined 
with BMSCs in a mandibular defect, this scaffold showed greater biocompatibility and osteoconductivity 
with the surrounding host bone compared with commercial porous polyethylene (MEDPOR) constructs 
seeded with BMSCs[77].
 
One of the fundamental hurdles of bone-tissue engineering is vascularization of tissue. Zhu et al.[79] 
fabricated pre-vascularized tissues using a method derived from rapid 3D printing, termed microscale 
continuous optical bioprinting, in which two types of biocompatible and photopolymerizable hydrogels-
glycidal methacrylate-HAp and gelatin methacrylate scaffolds - were pre-designed with vascular channels 
into which endothelial cells and mesenchymal cells were printed, which resulted in the spontaneous 
formation of a functional endothelial network both in vitro and in vivo.

Graphene and its derivatives, such as graphene oxide and reduced graphene oxide, is also a promising 
scaffold material because it is not only biocompatible, but also has been shown to regulate cell behavior, 
help in differentiation, and improve adhesion, growth and proliferation of cells[21]. Graphene is built 
by layering SP2 bonded carbon atoms with atomic graphite in a honeycomb lattice structure[80]. When 
combined with natural and synthetic biomaterials, graphene has been shown to increase osteogenic 
potential and mechanical strength of the scaffold[80,81]. However, graphene has been shown to be toxic at 
higher concentrations and is not reliably biodegradable, warranting further investigation before clinical 
trials[80,81].

STEM CELLS AND GROWTH FACTORS
Most tissue engineering utilizes living cells, and supplying enough cells is obviously a critically important 
issue. Cells are typically derived from: (1) donor tissue, which is often in very limited supply; (2) stem or 
progenitor cells. Stem cells possess two major properties that make them attractive for deriving large cell 
quantities: (1) their high proliferative capacity; (2) their multipotency, or ability to differentiate into cells 
of multiple lineages[37]. Bone marrow stoma contains progenitor cells with osteogenic potential, which 
are referred to as bone marrow stromal cells, or BMSCs[82]. BMSCs are a major seed cell source for bone 
tissue engineering due to their well-known capability of self-renewal (which is an outcome of asymmetric 
division), and differentiation into the osteoblastic lineage in vitro and in vivo[83-85]. Scaffolding has been 
shown to be capable to support ectopic bone formation when seeded with BMSCs in a mouse model, and 
the repair of large segmental defects[86,87]. Moreover, many previous studies have succeeded in repairing 
bone defects by using BMSCs in animal models as well as in humans[88].

The procedure to extract autologous BMSCs is painful and associated with potential complications, so 
effort has been made to explore the use of adipose derived stem cells (ADSCs). Although ADSCs have a 
higher cell yield, the literature suggests they possess an inferior osteogenic capacity compared to BMSCs, 
so they are not as desirable in mandibular reconstruction[88]. Dental pulp stem cells are also of interest due 
to their ease of access, low donor site morbidity, and ability to differentiate into fibroblasts, nerve cells, 
endothelial cells, and odontoblasts in order to facilitate creation of new connective tissue[89]. Raspini et al.[90] 
showed that dental pulp stem cells combined with bioactive glass scaffold that was treated with osteogenic 
medium in vitro showed good biocompatibility and osteogenic induction, making it a promising 
combination for hard tissue regeneration in the cranio-maxillofacial skeleton. However, the comparative 
efficacy of these cells between laboratory study and patient intervention remains to be seen[91].

When bone is transplanted, it is degraded and replaced through a process termed “creeping substitution”, 
and this degradation process releases calcium phosphates and osteoinductive proteins that amplify bone 
regeneration[41]. BMPs are a member of the transforming growth factor-beta (TGF-β) superfamily that 
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induces the formation of bone and cartilage. In order to mimic this endogenous microenvironment, BMPs 
are often combined with MSCs in order to amplify their bone-forming potential. This use of MSCs with BMPs 
to repair mandibular bony defects has shown its effectiveness in animal models[72,92]. Jiang et al.[93] showed that 
transfection of BMSCs with hBMP-4 enhances their inherent osteogenic capacity in mandibular defect 
repair. Zhou et al.[94] showed rhBMP-2 combined with prefabricated tissue engineered vascularized bone 
f laps produced in vivo induced successful reconstruction of the mandibular defect. Chen et al.[95] found 
that loading a demineralized bone matrix with a formulated collagen-targeting BMP-2 induced better 
bone formation compared to rhBMP-2, and the authors note remarkable osteoinductive properties with 
homogenous bone formation. Additionally, BMPs may be combined with non-vascularized bone grafts, 
such as cadaveric fibula or other non-vascularized bone grafts, to stimulate osteogenesis[24]. Such a design 
has shown capability to reconstruct mandibular defects up to 12 cm[25]. It should be noted that BMP is 
contraindicated in cancer, because it is thought to stimulate cancer growth (shown in vivo)[96].

The importance of scaffold selection when using BMP-2 and BMP-7 has been well documented. The 
material must allow sustained diffusion of BMPs throughout the environment and provide matrix for 
in-growth of osteoprogenitor cells and blood vessels, and the properties of scaffolds constructed with 
BMP and ceramics, synthetic polymers, or biological polymers differ[69]. Currently, collagen is the gold 
standard delivery system for BMPs. Composite scaffolds are also promising for BMP use, such as PLA/
PEG/HAP which is oseoconductive, or a PLGA-collagen hybrid, which has osteoinductive activity and 
long stimulation effect[97,98]. In terms of novel carriers, nanoparticles and microparticles are becoming 
increasingly popular due to localized and sustained delivery of BMPs, which can be designed with 
natural polymers, synthetic polymers, or ceramics. Quinlan et al.[99] loaded alginate and PLGA MPs with 
rhBMP-2 in order to incorporate the polymer into porous HAp-collagen scaffold for bone regeneration, 
which showed new bone formation in a rat model in vivo. Dual-interacting polymeric nanoparticles were 
prepared by Seo et al.[100] to form nanocomplexes with BMP-2, which resulted in sustained BMP-2 release 
and significant bone generation.

BMPs combined with biomaterial appears equivalent to autogenous osteogenic tissue. In humans, native 
human BMPs, xenogeneic BMPs, rhBMP-2, or rhBMP-7 were reported to yield complete mandibular bony 
defect bridging without simultaneous use of autogenous osteogenic issue in 29 out of 34 patients[85]. It has 
long been thought that bone growth cytokines could be reliably used in lieu of traditional bone grafting[57]. 
While tissue-engineered autogenous osteogenic tissues without application of osteoinductive BMPs has 
been reported to restore mandibular continuity (n = 16 patients), osteoinductive rhBMP-2 loaded onto 
various scaffolding materials without concomitant transplantation of autogenous osteogenic tissue has also 
been shown to restore mandibular continuity[4,101-103].

Other growth factors that have been explored for promoting osteogenesis include recombinant human 
platelet-derived growth factor, TGF-b, fibroblast growth factor, recombinant human growth/differentiation 
factor-5, VEGF, and insulin-like growth factor[85]. However, BMPs remain the most frequently used 
compared to other growth factors[38]. Beside their ability to induce osteogenic differentiation in stem cells, 
BMPs can accelerate the healing process[104]. However, it should be noted that in a calvaria defect model, 
BMP-2 and VEGFA had similar bone healing capacities, with FGF-2 displaying a significantly higher bone 
regeneration capacity; however, the healing rate was lower than with BMP-2 and VEGFA[105]. BMP-2 and 
VEGFA also showed increased angiogenic response upon healing[105]. It should also be noted that undesirable 
clinical outcomes with BMPs have been shown, namely extreme bone proliferation (albeit in a calvarial 
model), ectopic bone formation, radiculitis, and potential stimulation of neoplasms[106-108]. Because of 
this, investigation into β-TCP ceramic scaffold coated with an adenosine A2 receptor indirect agonist 
augmented bone growth as effectively as rhBMP-2 in a 3 mm defect[109]. Adenosine A2A receptor signaling 
appears to be important for osteoclast differentiation both in vitro and in vivo, and has been shown to 
promote bone regeneration[110]. 
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GENE THERAPY
Gene therapy makes use of native nuclear machinery in order to synthesize a protein of interest via the 
process of transduction, in which a viral vector is typically used[111]. In this way, growth factor can be 
produced in the region of the defect, and has been reported to support mineralized tissue formation[112]. 
Therefore, expression in the host cell lasts longer (weeks to years) compared to pharmaceutical compounds 
or recombinant protein, which ranges from several hours to days. This allows continuous production 
of biologically active molecules, thereby mimicking the endogenous physiological healing response in 
the microenvironment of the defect[113,114]. Viral vectors remain preferred to non-viral vectors because 
they have been rendered replication-incompetent, and non-viral vectors have insufficient transfection 
efficiencies[115,116].

In order to induce de novo bone formation in the maxillofacial region in vivo, the genes of interest range 
from soluble growth factors (PDGF, FGFs), morphogens (BMPs), angiogenetic factors (VEGF), intracellular 
regulators (LIM mineralization protein-1), transcription factors (Runx2) associated with bone and 
cartilage-related gene expression[117,118]. Due to their ability to initiate and sustain the entirety of the bone 
formation process, BMPs are the preferred candidates for local gene therapy for bone regeneration[119].

Although gene therapy can be administered via systemic or local injection, gene therapy may be delivered 
with a biomaterial. This combination of a vector and biomaterial is referred to as a gene activated matrix 
that acts as a scaffold for delivery of the vector to the area of interest[120]. This method may be especially 
attractive in the repair of mandibular defects, in which cells may be removed from the donor site, be 
genetically modified and implanted onto the scaffold of choice, and re-implanted into the defect[121]. 
Interestingly, BMSCs have been successfully transfected by various vector systems in order to improve 
their proliferation and differentiation capacities[117]. A meta-analysis by Fliefel et al.[115] which considered 
majority animal-model studies found evidence that gene therapy improves bone formation in maxillofacial 
defects. These results have not yet been confirmed in human subjects; thus, it remains an exciting approach 
to mandibular defect repair that warrants future research and randomized clinical trials[115].

CONCLUSION
Tissue engineering for mandibular reconstruction is most successful when it can mimic and interact with 
the surrounding native macro- and micro-environment in order to induce and support osteogenesis. Based 
on the current literature, an optimal mandibular scaffold is comprised of three elements: (1) a biomimetic, 
bioactive osteointegrative scaffold, most likely a resorbable composite of collagen or a synthetic polymer 
with collagen-like properties with β-TCP that is 3D printed according to defect morphology; (2) growth 
factor, most frequently BMP; and (3) stem cells, most commonly BMSCs. Overall, the use of a tissue 
engineered scaffold may prevent common complications of mandibular defect repair with fibular free flap, 
such as donor site morbidity, and may provide an approach for patients with depleted donor sites due to 
previous surgeries. 
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