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Abstract
The ability of a matter to fall into a glassy state upon cooling differs greatly among metallic alloys. It is conventionally
measured by the critical cooling rate 𝑅𝑐 , below which crystallization inevitably happens. There are a lot of factors
involved in determining 𝑅𝑐 for an alloy, including both elemental features and alloy properties. However, the underlying
physical mechanism is still far from being well understood. Therefore, the design of newmetallic glasses is mainly by
time- and labor-consuming trial-and-error experiments. This considerably slows down the development process of
metallic glasses. Nowadays, large-scale computer simulations have been playing a significant role in understanding
glass formation. Although the atomic-scale features can bewell captured, the simulations themselves are constrained
to a limited timescale. To overcome these issues, we propose to explore the glass-forming ability of themodeled alloys
from computer simulations by supervisedmachine learning. We aim to gain insights into the key features determining
𝑅𝑐 and found that the non-linear couplings of the geometrical and energetic factors are of great importance. An
optimized machine learning model is then established to predict new glass formers with a timescale beyond the
current simulation capability. This study will shed new light on both unveiling the glass formation mechanism and
guiding new alloy design in practice.
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1. INTRODUCTION
Ever since the first discovery of an amorphous metal [1], also named metallic glass (MG) later, from Au-Si
system, developing new MGs with exceptional glass-forming ability (GFA), i.e., low critical cooling rate 𝑅𝑐 ,
has been one of the main goals in the field [2–5]. In turn, these new materials ensure the exploration of the
physics, chemistry, and mechanics of glasses in experiments [6–8]. In the past several decades, thousands of
new MGs with various GFAs have been synthesized successfully in labs all around the world. In addition, an
increasing amount of fascinating knowledge has been acquired. This greatly enriches the glass family.

Starting from the periodic table, the principal elements for MGs are transition metals, sometimes with metal-
loids as minor additions. Empirically, more components usually make a better glass former. There are usually
four to five elements in bulkMGs. Thismakes the glass formation problem rather complex to understand. First
of all, the parameter space is huge with enormous elemental features and alloy properties [9]. These include but
are not limited to composition, atom size ratio, cohesive energy, pairwise and many-body interactions, and
their couplings. It is even impossible to sample the full space for a binary system by traditional methods. Sec-
ondly, with multiple components, there are many (metastable) phases involved during nucleation and growth
of the equilibrium crystalline product [10]. These metastable phases can have very complex crystal structures
and are hard to be captured by experimental observations. Thirdly, supercooled metallic liquids overall show a
disordered state, but there are abundant types of local structures formed [11]. They are favored by either energy
or entropy. Understanding the roles of these locally favored structures in glass transition and crystallization
of supercooled melts has been becoming a hot topic [12]. Due to these complexities, we are still far from well
understanding the crucial factors that govern MG formation.

In recent years, it is quite encouraging that advanced high throughput sputtering experimental technique has
shown its capability of synthesizing a library of ∼ 1, 000 compositions at the same time [4,5]. By sputtering from
multiple targets, a thin film of a system with continuous gradient composition is generated. These libraries are
likely a good starting point formining the GFA data by big datamethods. However, because of the large species
and compositional space, the experimental datasets can be rather sparse. The intercorrelation between different
libraries is obscure to understand the data. This will make either building the physical model or predicting
new materials challenging. The sophisticated design of the datasets (hence the experiments) is important for
material prediction.

To create a large dataset of GFA with continuous controlled parameters change, we have carried out very
large-scale molecular dynamics simulations to study the glass formation and crystallization process of binary
alloys in recent years [13–17]. On the one hand, by carefully analyzing the crystallization kinetics of supercooled
metallic liquids, the thermodynamic factor, interfacial energy, has been identified as the key to controlling the
crystallization rate and thus the GFA [15]. At the microscopic scale, the competing ordering effect is crucial
to determine the interfacial energy. In principle, the stronger the crystal-like preorder is frustrated by some
locally favored structures with incompatible symmetries (such as icosahedra), the higher the interfacial energy
will be [15,17]. Hence, the better GFA can be expected. The topological and especially the chemical properties of
these local structures are very crucial in determining the interfacial energy. Furthermore, by tuning the local
structures so as to decrease the wettability of the preorder at the liquid-crystal interface, the crystallization
speed can be manipulated over several orders of magnitude [17]. It is more interesting to find that the preorder
is very crucial not only in crystal nucleation but also in the crystal growth process. Accordingly, a critical
modification has been proposed to the classical nucleation theory. On the other hand, by characterizing the
𝑅𝑐 (i.e., GFA) of binary alloys in a large parameter space, we have studied how different elemental features and
alloy properties affect 𝑅𝑐

[13,14,16]. These include the atomic size mismatch, cohesive energy, mixing energy,
and ”atomic symmetry”. It is surprisingly found that local chemical ordering plays a deterministic role in 𝑅𝑐 .
In most of the previous studies, such as Cheng et al. [18] and Laws et al. [19], the metallic glasses are usually
treated as hard-sphere-like systems where dense packing is critical. The local atomic packings, especially local
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icosahedral order, have been considered as the most important factors in glass formation. However, in recent
years, we performed systematical studies on the glass formation from model alloys [13–17] and found that the
local chemical ordering can be more important in glass formation than previously thought. It can outperform
local icosahedral orderings even when the size mismatch is considerable. Because of the multi-component na-
ture, the atomic interactions are more complex, and the local chemical ordering can be more significant. The
aging or cooling behavior is important in determining local chemical ordering by controlling atomic diffusion.
Generally, the atomic rearrangements during structural relaxation towards the local equilibrium control local
chemical ordering. Macroscopically, it will depend on the energetic parameters, atomic sizes, and composi-
tion. In addition, the competition among crystalline symmetry is much weaker than that between crystalline
symmetry and crystal-incompatible symmetry. This explains why icosahedral clusters are usually found in
metallic glass formers. These studies refresh the current understanding of the physical mechanisms of crystal-
lization and glass formation and provide guidelines for experimental glass design. Nevertheless, we have never
mined the data itself and built reliable models to predict new glasses. That falls into the efforts of the current
work.

In this paper, we are going to utilize the supervisedmachine learningmethod to dig into the simulation dataset
and try to build an optimized model to predict new binary glasses. Since the particle size ratio is helpful in
grouping our dataset, we use the “out-of-group” strategy to make predictions. That is, we leave out a subgroup
of samples with a specific particle size ratio and make predictions for them. Since these data are completely
independent of the others and have not been seen by the training model, we can treat them as “new”. More
importantly, we aim to unveil the key features (factors) that determine the GFA of binary alloys. We find
that non-linear coupling of the elemental features and alloy properties is critical in glass formation. In more
detail, the GFA does not depend on the basic elemental features individually and additively; instead, it depends
on the various non-linear couplings of them. The interactions of these basic elemental features to different
polynomial degrees are more important in making good predictions. These interaction terms have never been
identified previously and can serve as guidelines for future model development and experimental glass design.
Therefore, the results will provide new insights into unravelling the physical mechanism of glass formation and
help accelerate future material design.

2. METHODS
2.1. Molecular dynamics simulations
To generate a clean GFA dataset, we started from the simple binary models with Lennard-Jones potential:

𝑉𝛼𝛽 (𝑟𝑖 𝑗 ) = 4𝜖𝛼𝛽

[(
𝜎𝛼𝛽

𝑟𝑖 𝑗

)12
−
(
𝜎𝛼𝛽

𝑟𝑖 𝑗

)6
]
, (1)

where 𝛼, 𝛽 indicate which of the particles (A or B) are interacting and 𝑟𝑖 𝑗 is the separation between parti-
cles 𝑖 and 𝑗 . All the simulations were performed with periodic boundary conditions in all directions. The
cubic simulation box contains 𝑁 = 2000 particles of equal mass 𝑚. We studied both monodisperse system
(𝜎𝐴𝐴 = 𝜎𝐵𝐵 = 𝜎𝐴𝐵) and additive bidisperse system (𝜎𝐴𝐵 = (𝜎𝐴𝐴 + 𝜎𝐵𝐵)/2). Instead, we tuned the inter-
particle interaction strengths (𝜖𝐴𝐴, 𝜖𝐵𝐵 and 𝜖𝐴𝐵) widely. We keep 𝜖𝐵𝐵 ≤ 𝜖𝐴𝐴 = 1.0 to differentiate the species.
The sampling library is exemplified in Figure 1 as a two-dimensional function of (𝜖𝐵𝐵 − 𝜖𝐴𝐴)/(𝜖𝐵𝐵 + 𝜖𝐴𝐴) and
2𝜖𝐴𝐵/(𝜖𝐵𝐵 + 𝜖𝐴𝐴). These two variables take both the same species and inter-species interactions into consid-
eration. We then simulated the systems with size mismatch within 5% so that they can mostly crystallize in
the computational time scale. We also sample different compositions 𝑓𝐵 (the fraction of B particles in the
total number) from 0.1 to 0.9 in an interval of 0.1. Because of the broad energetic preferences, we employed
𝑁𝑃𝑇 (constant number, constant pressure, constant temperature) ensemble with 𝑃 = 10 to avoid cavitation in
any system. To map the experiments, we quenched the high-temperature liquid to very low temperatures at a
series of cooling rates 𝑅. In this way, the critical cooling rate can be quantified after characterizing the crystal
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Figure 1. Sampling library of the energetic parameters for the pairwise Lennard-Jones binary systems.

fraction at each 𝑅. 10 independent simulations are generally performed for better statistics. Note that crystal-
lizing a good glass former can take a very long time and even out the capability of the computational power.
The basic units for energy, length, and mass are 𝜖AA, 𝜎AA, and 𝑚, respectively. The pressure, temperature, and
time scale are reported in reduced units of 𝜖𝐴𝐴/𝜎3

𝐴𝐴, 𝜖𝐴𝐴/𝑘𝐵, and
√
𝑚𝜎2

𝐴𝐴/𝜖𝐴𝐴, where 𝑘B is the Boltzmann

constant. The derived units for 𝑅c, 𝜌, and Δ𝐻imix are
√
𝜖3

AA/𝑚𝜎2
𝐴𝐴𝑘

2
B, 𝑚/𝜎3

AA, and 𝜖AA/𝑘B, respectively. More
details about the technical details are available in our previous works [13,14,16].

In addition to the above grid search of binary systems, we also performed extensive simulations to simulate
many binary systems inspired by experiments [9]. The detailed information of these binary systems is provided
in Table 1. Based on the experimental values of the elemental features, including particle size, cohesive energy
and mass, we map them to the reduced units and ran the simulations. During the mapping, we also keep
𝜖𝐴𝐴 ≥ 𝜖𝐵𝐵. To capture the inter-species interactions, we follow the classical London’s rule that 𝜖𝐴𝐵 =

√
𝜖𝐴𝐴𝜖𝐵𝐵

and set 𝜎𝐴𝐵 = (𝜎𝐴𝐴 + 𝜎𝐵𝐵)/2 [13]. In this way, we can include more realistic models and explore a larger
parameter space. To better display the data, we plot the data in Figure 2 in two dimensions with respect to
(𝜖𝐵𝐵 − 𝜖𝐴𝐴)/(𝜖𝐵𝐵 + 𝜖𝐴𝐴) and 𝜎𝐵𝐵/𝜎𝐴𝐴. Obviously, the parameter ranges are quite broad for binary MGs and
those with different GFA can overlap in the two-dimensional space. This indicates that the GFA problem is not
single-parameter deterministic. The energetic parameters and geometrical one may couple in a higher order.
We should emphasize that this set of simulations is not aiming to compare directly to experiments to model
each specific system. Instead, we hope to explore a larger space with some sort of connection to experiments.
Furthermore, an alloy with an element having both larger cohesive energy and particle size than the other has
a higher probability of becoming glass. From Table 1, there are 40 samples out of the total (62) that fall into
this group. If we include the mass comparison, this number decreases to 31 out of 62. This demonstrates
the neutral effect of particle masses. Meanwhile, there is also a higher chance for glass formation when both
elements are metals (39/62). These insights are helpful for future experimental glass design, but are still subject
to the small number of binary MGs being developed.
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Table 1. Properties of binary systems explored by experiments

A B 𝜖𝐴 (eV/atom) 𝑟𝐴 (Å ) 𝑚𝐴 (amu, g/mol) 𝜖𝐵𝐵/𝜖𝐴𝐴 𝑟𝐵/𝑟𝐴 𝑚𝐵/𝑚𝐴 Glass type Condition1 Condition2 Condition3

Ag Ca 2.95 1.44 107.87 0.6237 1.3681 0.372 ribbon 0 0 1
Si Ag 4.63 1.1 28.085 0.6371 1.3091 3.841 ribbon 0 0 0
Al Ca 3.39 1.4 26.982 0.5428 1.4071 1.485 bulk 0 0 1
Cu Al 3.49 1.26 63.546 0.9713 1.1111 0.425 ribbon 0 0 1
Zr Al 6.25 1.58 91.224 0.5424 0.8861 0.296 film 1 1 1
Ge Au 3.85 1.14 72.63 0.9896 1.2544 2.712 ribbon 0 0 0
Hf Au 6.44 1.58 178.49 0.5916 0.9051 1.104 ribbon 1 0 1
Si Au 4.63 1.1 28.085 0.8229 1.3 7.013 ribbon 0 0 0
Au Sn 3.81 1.43 196.97 0.8241 1.0839 0.603 ribbon 0 0 1
Zr Au 6.25 1.58 91.224 0.6096 0.9051 2.159 ribbon 1 0 1
B Co 5.81 0.88 10.81 0.7556 1.4205 5.452 ribbon 0 0 0
B Fe 5.81 0.88 10.81 0.7367 1.4205 5.166 ribbon 0 0 0
B Ni 5.81 0.88 10.81 0.7642 1.4318 5.430 ribbon 0 0 0
Ti Be 4.85 1.42 47.867 0.6845 0.8169 0.188 ribbon 1 1 1
Zr Be 6.25 1.58 91.224 0.5312 0.7342 0.099 ribbon 1 1 1
Ca Mg 1.84 1.97 40.078 0.8207 0.8122 0.606 ribbon 1 1 1
Ca Zn 1.84 1.97 40.078 0.7337 0.7056 1.631 ribbon 1 0 1
Hf Co 6.44 1.58 178.49 0.6817 0.7911 0.330 ribbon 1 1 1
Co P 4.39 1.25 58.933 0.7813 0.848 0.526 ribbon 1 1 0
Ti Co 4.85 1.42 47.867 0.9052 0.8803 1.231 bulk 1 0 1
Zr Co 6.25 1.58 91.224 0.7024 0.7911 0.646 ribbon 1 1 1
Hf Cu 6.44 1.58 178.49 0.5419 0.7975 0.356 bulk 1 1 1
Cu Mg 3.49 1.26 63.546 0.4327 1.2698 0.382 ribbon 0 0 1
Ti Cu 4.85 1.42 47.867 0.7196 0.8873 1.328 ribbon 1 0 1
Y Cu 4.37 1.8 88.906 0.7986 0.7 0.715 ribbon 1 1 1
Zr Cu 6.25 1.58 91.224 0.5584 0.7975 0.697 bulk 1 1 1
Hf Fe 6.44 1.58 178.49 0.6646 0.7911 0.313 film 1 1 1
Fe P 4.28 1.25 55.845 0.8014 0.848 0.555 ribbon 1 1 0
Si Fe 4.63 1.1 28.085 0.9244 1.1364 1.988 film 0 0 0
Fe Sn 4.28 1.25 55.845 0.7336 1.24 2.126 film 0 0 1
Zr Fe 6.25 1.58 91.224 0.6848 0.7911 0.612 ribbon 1 1 1
Hf Ge 6.44 1.58 178.49 0.5978 0.7215 0.407 ribbon 1 1 0
Pd Ge 3.89 1.4 106.42 0.9897 0.8143 0.682 ribbon 1 1 0
Pt Ge 5.84 1.39 195.08 0.6592 0.8201 0.372 ribbon 1 1 0
Zr Ge 6.25 1.58 91.224 0.616 0.7215 0.796 ribbon 1 1 0
Hf Ni 6.44 1.58 178.49 0.6894 0.7975 0.329 ribbon 1 1 1
Hf Si 6.44 1.58 178.49 0.7189 0.6962 0.157 ribbon 1 1 0
Ni Mg 4.44 1.26 58.693 0.3401 1.2698 0.414 ribbon 0 0 1
Y Mg 4.37 1.8 88.906 0.3455 0.8889 0.273 ribbon 1 1 1
Mg Zn 1.51 1.6 24.305 0.894 0.8687 2.690 ribbon 1 0 1
Zr Mg 6.25 1.58 91.224 0.2416 1.0127 0.266 ribbon 0 0 1
Si Mn 4.63 1.1 28.085 0.6307 1.2 1.956 ribbon 0 0 0
Zr Mn 6.25 1.58 91.224 0.4672 0.8354 0.602 film 1 1 1
Mo Zr 6.82 1.39 95.95 0.9164 1.1367 0.951 ribbon 0 0 1
Nb Ni 7.57 1.5 92.906 0.5865 0.84 0.632 bulk 1 1 1
Nb Si 7.57 1.5 92.906 0.6116 0.7333 0.302 ribbon 1 1 0
Ni P 4.44 1.26 58.693 0.7725 0.8413 0.528 ribbon 1 1 0
Ni Pd 4.44 1.26 58.693 0.8761 1.1111 1.813 film 0 0 1
Ti Ni 4.85 1.42 47.867 0.9155 0.8873 1.226 film 1 0 1
Ta Ni 8.1 1.54 180.95 0.5481 0.8182 0.324 ribbon 1 1 1
Ni Y 4.44 1.26 58.693 0.9842 1.4286 1.515 film 0 0 1
Zr Ni 6.25 1.58 91.224 0.7104 0.7975 0.643 ribbon 1 1 1
Pd P 3.89 1.4 106.42 0.8817 0.7571 0.291 film 1 1 0
Pt P 5.84 1.39 195.08 0.5873 0.7626 0.159 ribbon 1 1 0
Si Pd 4.63 1.1 28.085 0.8402 1.2727 3.789 bulk 0 0 0
Zr Pd 6.25 1.58 91.224 0.6224 0.8861 1.167 ribbon 1 0 1
Pt Sb 5.84 1.39 195.08 0.4709 1.1151 0.624 ribbon 0 0 1
Pt Si 5.84 1.39 195.08 0.7928 0.7914 0.144 ribbon 1 1 0
Pt Ti 5.84 1.39 195.08 0.8305 1.0216 0.245 ribbon 0 0 1
Zr Pt 6.25 1.58 91.224 0.9344 0.8797 2.138 ribbon 1 0 1
Ti Si 4.85 1.42 47.867 0.9546 0.7746 0.587 ribbon 1 1 0
Zr Si 6.25 1.58 91.224 0.7408 0.6962 0.308 ribbon 1 1 0

Condition1: 𝜖𝐴𝐴 ≥ 𝜖𝐵𝐵 and 𝜎𝐴𝐴 ≥ 𝜎𝐵𝐵 ; Condition2: 𝜖𝐴𝐴 ≥ 𝜖𝐵𝐵 and 𝜎𝐴𝐴 ≥ 𝜎𝐵𝐵 and 𝑚𝐴 ≥ 𝑚𝐵 ; Condition3: both elements A and B are metals

2.2. Measuring glass-forming ability
After obtaining the quenched solids from the computer simulations, we employed bond orientational order
parameters to characterize the local structures [11,20]. Taking any particle in the simulation box, the nearest
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Figure 2. Data exploration of experimental binary alloys grouped by the glass type. The geometrical parameter and the energetic parameter
are considered for comparison.

neighbors of each particle are obtained by radical Voronoi tessellation [21]. We calculate the bond orientational
order parameter 𝑞6𝑚 (𝑖) for each particle 𝑖:

𝑞6𝑚 (𝑖) =
𝑁𝑖∑
𝑗=1

𝐴 𝑗

𝐴𝑖
tot
𝑌6𝑚 (𝜃 (r𝑖 𝑗 ), 𝜙(r𝑖 𝑗 )), (2)

where 𝑁𝑖 is the number of nearest Voronoi neighbors of particle 𝑖,𝑌6𝑚 (𝜃 (r𝑖 𝑗 , 𝜙(r𝑖 𝑗 )) is the spherical harmonic
function of degree 6 and order 𝑚, and 𝜃 and 𝜙 are the polar and azimuthal angles. The contribution from
the spherical harmonics of each neighbor 𝑗 of particle 𝑖 is weighted by the fraction 𝐴 𝑗/𝐴𝑖

tot of the area of the
Voronoi face separating the two particles to the total area of all faces 𝐴𝑖

tot of the polyhedron surrounding particle
𝑖. We determine the number of crystal-like atoms by calculating the correlations in the bond orientational order
parameter:

𝑠6(𝑖, 𝑗) =

6∑
𝑚=−6

𝑞6𝑚 (𝑖)𝑞∗6𝑚 ( 𝑗)√
6∑

𝑚=−6
|𝑞6𝑚 (𝑖) |2

6∑
𝑚=−6

|𝑞6𝑚 ( 𝑗) |2
, (3)

where 𝑞∗6𝑚 ( 𝑗) is the complex conjugate of 𝑞6𝑚 ( 𝑗). If 𝑠6(𝑖, 𝑗) > 0.7, we treat the bond as crystal-like [22]. If the
total number of crystal-like bonds for a given particle is larger than 10, the particle is considered to be in a
crystalline environment. The sensitivity of the thresholds for 𝑠6(𝑖, 𝑗) and the number of crystal-like bonds have
been studied previously [22,23]. For each set of size ratios and energetic parameters, we calculate the fraction of
crystalline particles 𝑓xtal as a function of the cooling rate 𝑅. Then we use the following function to model the
rate-dependent 𝑓xtal and estimate the critical cooling rate 𝑅𝑐 when 𝑓xtal = 0.5.

𝑓xtal =
1
2
(
1 − tanh

[
log10(𝑅/𝑅𝑐)−𝜅

] )
, (4)

where 0 < 𝜅 < 1 is the stretching exponent [13,14,16].
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Figure 3. The relationship between the critical cooling rate 𝑅𝑐 and the heat of mixing Δ𝐻𝑚𝑖𝑥 . The samples with 𝑅𝑐 = 10−6 do not crystallize
in the longest computational timescale. They are shown here for convenience.

3. RESULTS
We finish the above computer simulations by using several years’ computational time by hundreds of CPU
cores in parallel. By characterizing the local structures of each sample, we obtained a big dataset consisting of
7688 samples. Fortunately, there are only about 25% samples that have not crystallized with our lowest cooling
rate. The reason why they cannot crystallize is that the computational running time is still limited and they
are better glass formers than the others. They are not ultra-stable glasses but will crystallize at an extended
simulation timescale. Therefore, we shall create a controllable high-quality dataset.

To explore the GFA dataset, we first try to gain insights with some empirical rules. As is known to all, the heat
of mixing Δ𝐻𝑚𝑖𝑥 has long been considered as a major parameter in glass formation. Negative heat of mixing
becomes one of the central rules in glass formation criteria, including the famous Inoue’s rules [24]. This is
very important to make sure the multiple species will mix with each other. Otherwise, phase separation will
happen, whichwill strongly deteriorate theGFA. In this sense, a critical question arises: is there any quantitative
correlation between GFA and Δ𝐻𝑚𝑖𝑥 or negative Δ𝐻𝑚𝑖𝑥 is only a necessity for glass formation? To answer this
question, we hence calculate the Δ𝐻𝑚𝑖𝑥 for all the samples and show its relationship to the critical cooling rate
𝑅𝑐 in Figure 3. Interestingly, there is no quantitative correlation between them, even though a major of glass
formers have negative heats of mixing. This finding has been corroborated by experimental data previously [13].
The ones with Δ𝐻𝑚𝑖𝑥 > 0 generally are poor glass formers (𝑅𝑐 ≈ 10−2.5).

Another common factor for glass formation is the density 𝜌. It is expected that a higher-density solid should
have denser packing so that the atomic rearrangements are more difficult, which will impede crystallization.
This relationship was observed in typical Cu-Zr binary systems [25]. Here we also check this behavior in our
Lennard-Jones systems. To compare the results over all the studied systems, we take the density of the glassy
solid fabricated by 𝑅 = 10−2. Figure 4 shows the scatter plot of 𝑅𝑐 as a function of 𝜌. Obviously, no quantitative
relationship exists between them for the studied systems.
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Figure 4. The relationship between the critical cooling rate 𝑅𝑐 and the low temperature glass density 𝜌. The samples with 𝑅𝑐 = 10−6 do not
crystallize in the longest computational timescale. They are shown here for convenience.

These findings demonstrate that the GFA of an alloy is more complex than from some single parameters. We
need to figure out the high-order correlations between the GFA and the elemental and alloy properties. Nowa-
days, there is no explicit function that can be used for this purpose. To better define the function and get
the main factors, we should turn our attention to some advanced big data analysis techniques, for example,
supervised machine learning. This methodology will enable us to explore such a kind of relationship without
knowing the function in priori.

Machine learning has become an innovative tool to explore big datasets and make predictions based on the
known features [26–28]. It has been applied in enormous numbers of fields, including materials science [29–33].
Meanwhile, many advanced theoretical models have been developed for different application cases. In this
study, we are trying to explore the simulation GFA datasets and gain physical insights into glass formation.
Usually, machine learning is likely a black box for users with high-dimensional inputs. The designed model
with a specific algorithm will take care of the mathematical relationships from the input features to the labels.
The nonlinearity involved is hard to explain in a physical manner. Here, we start with a simple model with a
small number of features so as to capture all the details.

Considering our simple model systems, there are several independent variables. Namely, 𝜖𝐵𝐵/𝜖𝐴𝐴, 𝜖𝐴𝐵/𝜖𝐴𝐴,
𝜎𝐵𝐵/𝜎𝐴𝐴, 𝑓𝐵. Thus, we are trying to build a minimal number of basic features for the machine learning
model. Based on the previous understandings of the GFA, four fundamental features are thus considered:
𝜀1 = (𝜖𝐵𝐵−𝜖𝐴𝐴)/(𝜖𝐵𝐵 +𝜖𝐴𝐴) and 𝜀2 = 2𝜖𝐴𝐵/(𝜖𝐵𝐵 +𝜖𝐴𝐴), 𝜍 = (𝜎𝐵𝐵−𝜎𝐴𝐴)/𝜎𝐴𝐵, and 𝑓𝐵. These features mainly
consider how different the two components are. Under the well-mixed condition, the more different the two
species are, the stronger frustration towards crystallization will be. Hence, the GFA will be elevated.

With the critical cooling rates (in log scale, log10 𝑅c) as the label, ourmachine learning problem is intrinsically a
regression problem. We constructed themachine learningmethods by employing the open-source Scikit-learn
package [34]. Before building the model, the input features need cleaning and preprocessing. As a first step, we
recall that about 25% of the samples cannot be crystallized in the simulation timescale. Therefore, they are not

http://dx.doi.org/10.20517/jmi.2022.28


Hu et al. J Mater Inf 2023;3:1 I http://dx.doi.org/10.20517/jmi.2022.28 Page 9 of 15

A B

Figure 5. Machine learning model optimizations. (A) Cross-validation scores for various learning models with polynomial degrees up to 7.
(B) The learning curve of the Ridge model. The training score and cross-validation score are compared with different training sizes. Both of
them tend to saturate and merge at large training sizes.

good for the training, so they are removed from the dataset for the subsequent process. Then we standardize
the features by removing the mean and scaling to unit variance. In this way, all the input data behaves like
standard normal distribution. This data processing step is key to reducing the bias for many machine learning
models, including the ones we will use below.

Since we already figure out from the above discussion that GFA is not a simple linear single parameter problem,
we are trying to build higher-order correlations of these basic features. To this end, we build high-dimensional
features from polynomial extrapolation. In detail, we generate polynomial and interaction features from the
four basic features. The new featurematrix will thus consist of all polynomial combinations of the basic features
with a degree less than or equal to the specified degree. In this way, we can capture not only the nonlinearity
but also the feature interactions. The higher order is, the more input features will be. Meanwhile, the risk
of overfitting will also increase. Starting from these polynomial features, we hope to train a linear model to
map the features to the labels. We thus compare several linear models, including basic linear regression, and
their derivatives with different regularizations. For example, Ridge regression includes the L2 regularization
on the size of the coefficients, while Lasso regression imposes L1 regularization. By adding both L1 and L2-
norm regularization, an ElasticNet model can be trained. To create a workflow, we build a pipeline from
feature engineering, model construction and cross validation, covering different degrees of polynomials and
linear algorithms. During the training, 10-fold cross validation is chosen for optimization. The root mean
squared error (RMSE) between the real values and the predicted values is minimized. Figure 5A shows the
comparison of the performance of different training models. For Lasso and ElasticNet, where feature selection
is automatically involved by L1 regularization, the models always under-fit the training data and thus their
RMSE is much higher. In addition, with an increasingly large number of features (from degree 1 to 7) fed
to the training model, their performance is not much improved. These models are very aggressive in feature
reduction and cannot pick up important high-degree features. This demonstrates their improbability in solving
the current issue.

We then turn to the basic linear regression and Ridge regression models. They are behaving similarly, except
that Ridge did a better job when the polynomial degree was 6. We first emphasize that the RMSE in Figure 5A
is from the 10-fold cross-validations for the training model on the test sub-dataset. For machine learning
models, with increasing model complexity, the bias will decrease while variance can greatly increase. There

http://dx.doi.org/10.20517/jmi.2022.28


Page 10 of 15 Hu et al. J Mater Inf 2023;3:1 I http://dx.doi.org/10.20517/jmi.2022.28

5 4 3 2
Measured

7

6

5

4

3

2

Pr
ed

ict
io

n

RMSE= 0.212
R2 = 0.892

Figure 6. Comparison of the machine learning predicted 𝑅𝑐 with the simulation measurements. A linear fit (red dashed line) is included for
illustration.

will be a variance-bias trade-off. With small polynomial degrees, the bias can be rather high, but the variance
can be small. The model under-fits the training data and thus cannot capture the test data trends well. The
performance can be improved by increasing the model complexity. The minimum at polynomial degree 6
indicates the best performance with a reasonable variance-bias trade-off. With a further increasing degree
(> 6), the bias can be small, but the variance can be rather high. The model will be too complex so as to over-
fit the training data but cannot well generalize to the test data. That is why RMSE shows a V-shape. Further
increasing to degree 8 will greatly increase RMSE, especially for the linear regression model. Given the size of
the dataset and consideration of the degree of freedom, any degree that is higher than 8 is not practical. Thus,
we believe a model with polynomials at degree 6 is the global optimum.Therefore, we would expect that the
optimizedmodel is Ridge regressionwith a six-degree polynomial. There are hence around 210 features derived
from the four basic features. Specifically, this algorithm is to estimate the coefficient set {𝛽0, 𝛽1, 𝛽2, ..., 𝛽𝑝} that
minimizes the loss function

𝑛∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝∑
𝑗=1

𝛽 𝑗𝑥𝑖 𝑗 )2 + 𝜆

𝑝∑
𝑗=1

𝛽2
𝑗 , (5)

where the dataset has 𝑛 observations with 𝑝 predictors (features), 𝑥𝑖 𝑗 is the 𝑗 th predictor of the 𝑖th feature, 𝑦𝑖
is the corresponding label, and 𝜆 is the non-negative regularization strength. To account for the overfitting
probability, we characterize the learning curve of the optimized model. Basically, a subset of the original data
will be generated internally for training and the rest for testing. With 10-fold cross-validations, the model is
trained with different training sizes, and its performance is plotted in Figure 5B. Remarkably, with increasing
training size, the training score is only slightly worse, but the testing performance is dramatically improved.
Both scores tend to saturate and merge at ∼ 3000 training data. This excludes the overfitting risk in our
machine-learning model.

Now we come to the most important step of machine learning, namely making predictions on unseen data.
For our purpose, we leave out a subgroup of data with a specific 𝜎𝐵𝐵/𝜎𝐴𝐴 before training (e.g., out-of-group
prediction). This aims to avoid interpolation in the machine learning model and make sure the independent
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Figure 7. Feature importance analysis of the optimized machine learning model. (A) Positive correlations. (B) Negative correlations.

testing data has never been known by the training model. In this way, we show the predicted 𝑅𝑐 against
the measured 𝑅𝑐 in Figure 6. It is quite encouraging that the RMSE is only around 0.212 and a direct linear
fitting gives 𝑅2 ≈ 0.9. These demonstrate the reliability of our training model to predict new glass formers
in the world of computer simulations. The larger fluctuation for better glass formers (lower 𝑅𝑐) is because of
the greater difficulty in measuring the accurate 𝑅𝑐 . Some of these binary alloys can require a longer time to
crystallize beyond the current computational power. Themachine learning model will be helpful in predicting
new materials with enhanced GFA for the study of glass physics. For instance, the Kob-Andersen model has
been the most popular model for glass study in the past three decades [35]. It was assumed as a very good
glass former. However, recent studies show that with a larger simulation box and GPU acceleration, the Kob-
Andersen model is vulnerable to crystallization [36,37]. It is actually a poor glass former. The non-additivity
and non-classical energy mixing make the model difficult to understand. A simpler yet better model is of great
interest for glass studies.

We note that there are a variety of machine learning algorithms available and many of them have been applied
in materials development [33,38,39], such as linear models with regularization, tree-based models, and neural
networks. For instance, the iterative random forestmodel has been studiedwidely in classifying glass formation
and regressing glass properties [33,39]. These complex models already showed prediction power, but suffered
from a higher risk of over-fitting. In addition, the interpretability will drastically decrease with increasing
model complexity. Therefore, in this study, we choose to start from the simple linear model with non-linear
combinations of basic features instead of complex, non-linear fancy models, such as artificial neural networks.
We hope to better extract the important couplings of these basic features in glass formation. Interestingly, we
found that the couplings of 𝜀1, 𝜀2, 𝜍 and 𝑓𝐵 are rather crucial in determining the GFA. In Figure 7, we plot the
most important features in the linear model. We split them into two graphs based on whether it is positively or
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negatively correlated with 𝑅𝑐 . It is surprising to see that the energetic parameter (𝜀1𝜀2 𝑓𝐵) is the most critical
one, without the particle size information. This may provide a plausible explanation for why local chemical
ordering is so important in glass formation [13,15,16]. This top feature is then followed by the couplings of the
particle size and the energetics. These results clarified the critical features in glass formation, at least for binary
systems. They may provide further insights for future experimental glass design. Note that having a binary
alloy with exceptional GFA will be ideal for glass study and applications.

We note that bridging the important model features in the current study to those determined in experiments
is interesting and important. From the work by Liu et al. [40], it was surprisingly found that the ‘random’ fea-
ture generation from elemental features without enough physical insights is insufficient in machine learning.
Overfitting is readily there by feeding those high-dimensional features to a non-linear random forest algorithm.
Instead, a model with only three features sophisticatedly derived from both elemental and alloy features pro-
vides some predictability. Similarly, in the work by You et al. [41], an artificial neural networkmodel can classify
crystalline versus amorphous phases in high-throughput fabrications by using a small number of elemental
and alloy features, especially from excess electrical resistivity. The significance of these alloy properties un-
ambiguously demonstrates the non-trivial couplings of elemental properties in metallic alloys. These studies
convey critical messages. On the one hand, physics-driven features from elemental and alloy properties are sig-
nificant. On the other hand, how the coupling of elemental properties to determine the alloy property is crucial
in feature engineering. The current study is in line with these spirits: we first identified the four fundamental
physics-driven features. They consider the energetic interactions, atomic sizes, and compositions, which are
consistent with the experimental inputs. Furthermore, we identified their critical couplings [Figure 7] that may
correlate with some alloy properties. How to directly map these fundamental model parameters in Figure 7 to
experimentally measurable quantities, such as electrical resistivity and liquidus temperature, is interesting for
future study.

4. SUMMARY
The glass-forming ability has been one of the central mysteries for MGs, unlike other families of glass. The
critical cooling rates ofMGs can differ bymore than 10 orders of magnitude. This huge time gap has fascinated
glass researchers to explore the underlying physics and to design new materials with desired properties. To
accelerateMGdevelopment, we need to understand the physicalmechanisms of glass formation and learn from
the existing big data accumulated so far. In this study, without relying on collecting experimental data from
the literature sea, we performed large-scale computer simulations over several years to generate a high-quality
dataset. Based on the current understanding of these data, we build an optimized physics-based machine
learning model with only four basic features. Themodel is able to make reliable predictions on new substances
and provides insights into the most critical features. It is found that the non-linear couplings of the energetic
parameters and geometric parameters are key for glass formation. This further demonstrates the complexity
of the long-standing GFA issue. More interestingly, the most important factor for glass formation is found to
be the coupling of energetic parameters and composition. This rationalizes the crucial role of local chemical
ordering in glass formation and crystallization of metallic alloys, which has been overlooked in the past. A
deeper understanding of the physics of GFA is desired in the future. Practically, generating and maintaining
a high-quality data warehouse for the GFA with extended variables are important for future study. This may
require the collaboration of the whole field.

Although here we focus on binary alloys for simulation convenience, the current study can be effectively ex-
tended to multi-component materials based on the acquired knowledge. With more components, there will
be more independent variables. For example, there will be 12 independent variables for a ternary system.
Even though this will greatly increase the sampling difficulty in molecular dynamics simulations, some opti-
mized high-throughput computational strategies may be developed. It would be interesting to see whether
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such a model persists or not. Extending the physical mechanism and model prediction of glass formation in
single-component and binary systems to multi-component systems is an intrinsically important and intrigu-
ing direction for future work. Another interesting related topic would be machine learning study of the phase
selection of high-entropy alloys. With mainly five elements of similar size, which is close to one set of our
current simulations, high-entropy alloys usually form a finite number of simple crystals. This is an ideal case
as a classification problem. The driver of the phase selection and local chemical ordering is the energetic com-
petition. By using a similar simulation protocol or with an advanced patchy particle model, these issues can
be well tackled by combining computer simulations and machine learning methods.
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