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Abstract
Compared to bulk solvents, reactions in the confined spaces of supramolecular self-assemblies feature rate 
acceleration, high efficiency and substrate selectivity. These advantages lead to efficient catalytic efficiency and 
excellent selectivity in enantioselective supramolecular photochemical transformations. During the last few years, 
enantioselective supramolecular photocatalysis has developed into one of the most powerful strategies to 
construct enantioenriched chiral compounds. In this review, the recent advances of enantioselective photochemical 
reactions taking place within the confined spaces of supramolecular assemblies are summarized, with an emphasis 
on the specific catalytic modes and chemical transformations. Organization of the data follows a subdivision 
according to supramolecular host and reaction type. At last, the current limitations and the future research 
orientation of this research field are discussed.
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INTRODUCTION
Enantioselective photochemical reaction represents a powerful and intriguing protocol to construct 
enantioenriched chiral compounds[1-3]. In this regard, photochemical reactions take place in a chiral 
environment. Generally, there are two ways to realize enantioselective photochemical reactions. One is 
using a chiral photosensitizer (template) which can simultaneously initiate the photochemical reaction and 
induce the chirality of the terminal product. The other is a synergistic strategy where a photochemical 
process is mediated by an achiral photosensitizer and chiral transfer is controlled by another chiral catalyst 
(template). Nevertheless, some inherent challenges remain in the stereo-control of enantioselective 
photochemical reactions. For instance, the short lifetime and weak intermolecular interactions in 
electronically excited states complicate chiral transfer between a chiral template (catalyst) and substrate. 
Meanwhile, organic molecules in excited states have relatively high reactivity, leading to undesired 
transformations without interacting with the chiral template (catalyst).

Recently, supramolecular catalysis has generated increasing interest, whereby catalytic reactions can occur 
inside confined cavities - supramolecular containers and assemblies (hosts)[4-13]. In 2010, Meeuwissen et al. 
highlighted that the implementation of supramolecular assemblies into transition-metal catalysis and 
organocatalysis exhibits promising catalytic potential beyond enzyme mimics[14]. In contrast to bulk 
solvents, reactions in nanovessels feature (1) rate acceleration; (2) high efficiency; (3) substrate selectivity, 
which can be controlled at the microscopic level, as a consequence of the recognition and energetic 
stabilization of substrates (guests) and transition states within well-confined cavities[15-20].

Supramolecular hosts assemble from multiple components via weak intermolecular interactions (e.g., van 
der Waals, hydrogen bonding, metal ion coordination, π-stacking and hydrophobic interactions), which can 
serve as well-organized tunable catalytic systems[21]. Structurally, the host exhibits a certain degree of skeletal 
rigidity, and the inner lipid-soluble cavities can accommodate organic guests. This advantage creates a 
unique environment for the subsequent photochemically chiral transfer, avoiding the unfavorable impacts 
of external factors, i.e., solvent polarity, temperature and acidity/basicity, on the asymmetric induction. 
Supramolecular host-guest interactions can alter photophysical properties of guest molecules through the 
combined non-covalent forces and steric constraints. The non-covalent host and guest interactions in the 
ground state will complement the transient and weak excited-state interactions[22]. The confinement of 
chiral supramolecular hosts plays a key role in pre-organizing the substrate by the manipulation of the 
orientation and conformation/configuration of the guest and inducing the process of enantio-differentiation 
and photochirogenesis[23]. In light of these advantages, the rational design of novel supramolecular catalysts 
or platforms and studies of their applications in the asymmetric photocatalysis are a topic of great interest 
across academia and industry.

Over the past two decades, a plethora of supramolecular hosts have been developed to initiate the 
enantioselective photochemical reactions, including native and functionalized macrocycles, metal-organic 
cages (MOCs), metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Asymmetric 
photocatalytic transformations, such as photodimerization, photocyclization, photoisomerization, 
photocycloaddition, functionalization, and photooxidation reactions, have been well established using these 
supramolecular hosts. Table 1 summarized the hosts and enantioselective photoreactions discussed in this 
review. Reactions mediated by biomacromolecules (e.g., serum albumin and nucleic acids)[24,25] and liquid 
crystals[26,27] will not be discussed here. In this context, the review will provide a comprehensive summary of 
the recent advances in enantioselective photochemical reactions within the confined cavities of 
supramolecular assemblies, with an emphasis on the specific catalytic modes and types of chemical 
transformations. Due to different structural and physiochemical properties, these supramolecular hosts have 
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Table 1. Summary of the hosts and enantioselective photoreactions discussed in this review

Host 
type Cavity Reaction type Guest category Key role of cavity Stereochemical 

outcome [ref.]

Native CDs Photodimerization 
Photocyclization

ACs; naphthalenes 
Cyclic ketenes

Pre-organization 
Rigid environment

See Table 2 
14: 33% ee[45]; 16: 59% 
ee[46]; 20: 45% ee[48]

Modified CDs Photodimerization 
Photocyclization

ACs 
Adamantyl acetophenone

Pre-organization 
Chiral auxiliary

See Table 2 
cis-18: 20% ee; trans-18: 
9% ee[47]

OA Photodimerization ACs Pre-organization 2: up to 67% ee; 3: up to 
56% ee[41]

Macro-
cycles

Photosensitizing 
hosts

Photoisomerization 
Photoaddition

Cyclooctene; cyclooctadiene 
Diphenylpropene

Activate substrate 
Activate substrate

Refer to[44] 
22: 26% ee[50]

[Pd6(RuL3)8]28+ 
(MOC-1) 

Photodimerization 
 

Photocycloaddition

2-Naphthol 
Unsymmetrical 
acenaphthylene 
Active olefins

Stabilize product 
Energy transfer 

Heteromolecular binding

25: up to 58% ee[56] 
27: up to 88% ee[57] 

33: up to 99% ee[61]

MOCs

[Pd6L4]12+ (MOC-2) Photocycloaddition Fluoranthene and maleimide Pre-organization 30: 50% ee[59]

MOF-3 (M = K) Photodimerization ACs Multivalent interactions 47: up to 79% ee[65]

MOF-4 (M = Zn) α-alkylation of 
aldehydes

Saturated aldehyde Electron transfer and stereo-
induction

52: up to 92% ee[66]

MOF-5 (M = Zn) β-arylation of 
aldehydes

Saturated aldehyde Electron transfer and stereo-
induction

58: up to 52% ee[67]

MOF-6s (M = Zn, Zr, 
Ti)

α-alkylation of 
aldehydes

Saturated aldehyde Electron transfer and stereo-
induction

52: up to 87% ee[68]

MOFs

MOF-7,8,9,10 See Table 3

COF-11, COF-12 (with 
chiral additive)

α-alkylation of 
aldehydes

Saturated aldehyde Electron transfer and stereo-
induction (exogenous)

65: up to 94% ee[79]

COF-13, COF-14 
(with chiral additive)

α-alkylation of 
aldehydes

Saturated aldehyde Electron transfer and stereo-
induction (exogenous)

73: up to 94% ee[80]

COF-15 (chiral COF) α-benzylation of 
aldehydes

Saturated aldehyde Photothermal conversion and 
stereo-induction

65: up to 94% ee[82]

COF-16s 
(chiral COF)

α-alkylation of 
aldehydes

Saturated aldehyde Electron transfer and stereo-
induction

65: up to 93% ee[83]

COF-17 (chiral COF) Photooxidation Methylphenylsulfide Energy transfer and stereo-
induction and phase transfer

83: up to 99% ee[84]

COF-18 (chiral COF) Henry reaction Benzylic alcohol and 
nitromethane

Photothermal conversion and 
stereo-induction

86: up to 98% ee[85]

COF-19 (chiral COF) A3-coupling Benzaldehyde and aromatic 
alkyne and secondary amine

Photothermal conversion and 
stereo-induction

90: up to 98% ee[85]

COF-20 (chiral COF) Strecker reaction Benzaldehyde and 
trimethylsilyl cyanide and 
secondary amine

Photothermal conversion and 
Lewis acid catalysis and 
stereo-induction

94: 94% ee[86]

COFs

COF-21 (with 
enzyme)

Oxidative Mannich 
reaction

2-Arylindole Energy transfer and stereo-
induction (exogenous)

96: 86% ee[87]

CDs: Cyclodextrins; ACs: anthracenes; OA: octa acid; MOCs: metal-organic cages; MOFs: metal-organic frameworks; COFs: covalent organic 
frameworks; LA: Lewis acid.

diverse functions in enantioselective photocatalysis. In order to help the readers understand the unique 
advantages of supramolecular strategy in photochirogenesis, we will try to elucidate the specific 
supramolecular effects of the hosts exerted on the reactions. Organization of the data follows a subdivision 
according to supramolecular host and reaction types. The current challenges and potential research 
orientations of this research field will also be discussed.
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Scheme 1. The products of [4 + 4] photodimerization of 2-anthracenecarboxylate.

ENANTIOSELECTIVE PHOTOREACTIONS WITHIN MACROCYCLES
Macrocycles, especially composed of repeated glucose units, are the earliest supramolecular hosts to be used 
for asymmetric photoreactions. This kind of macrocycle features visible-light transparency, flexible 
modification and chiral cavities. In this section, enantioselective photodimerization, photoisomerization 
and several other types of photochemical transformations within macrocyclic hosts will be discussed.

Photodimerization within macrocyclic hosts
The selective [4 + 4] photodimerization of arenes within macrocycles is a long-standing research topic in 
supramolecular photochemistry. In this context, cyclodextrins (CDs) are always introduced as the chiral 
hosts. Anthracenes (ACs) are the most selected substrates to evaluate the photochirogenic ability and 
catalytic performance of a chiral supramolecular macrocycle[28]. Generally, the irradiation of 2-
anthracenecarboxylate will afford four configurational isomers [Scheme 1], among which syn-9,10:9’10’-
head-to-tail dimer 2 (syn-HT) and anti-9,10:9’10’-head-to-head dimer 3 (anti-HH) are chiral, while anti-
9,10:9’10’-head-to-tail (anti-HT) and syn-9,10:9’10’-head-to-head (syn-HH) cyclodimers 1 and 4 are achiral. 
Studies have also shown that the chiral slipped cyclodimers 5 and 6 (anti-5,8:9’,10’-HT, syn-5,8:9’,10’-HT) 
can also be generated[29]. In this part, the related work in this field will be presented in chronological order.

Native CDs and modified CDs
As shown in Scheme 2, CDs are cyclic oligosaccharides containing D-glucose units linked via α-1,4 
glycosidic bonds. Three kinds of native CDs, α-CD (n = 6), β-CD (n = 7), and γ-CD (n = 8), are formed with 
different numbers of glucose units. CDs bear two portals after assembling into a truncated funnel: a wider 
portal containing secondary hydroxyl groups and a narrow one comprising primary hydroxyl groups. Guest 
molecules will enter the hydrophobic cavity of the host upon complexation, while polar or charged 
functionalities reside outside. CDs feature chiral cavities, ready availability, good solubility in water as well 
as transparence in ultraviolet-visible (UV-vis) regions. The chiral confinement of CDs leads to a 
hydrophobic environment, substrate proximity, increased local concentration, and substrate pre-
organization, which have been widely used to promote the reactivity and manipulate the selectivity[30]. 
Accordingly, CDs and modified CDs have become the foremost hosts for asymmetric [4 + 4] 
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Scheme 2. The chemical structures of native CDs (top) and stereo-induction in the photodimerization of 2-ACs within CDs (bottom). 
CDs: Cyclodextrins; ACs: anthracenes.

photodimerization of AC derivatives [Scheme 3]. For a clear comparison, the stereochemical outcomes of 
photodimerization of AC within native and modified CDs have been summarized in Table 2.

To achieve excellent stereo-control, rigid and flexible caps or cationic side arms were always installed into 
γ-CD to pre-organize the guest molecules 2-ACs via multiple intermolecular interactions. In 2003, 
Nakamura and Inoue reported the generation of a 1:2 inclusion complex between γ-CD and AC could 
accelerate the photodimerization[31]. The enantiomeric excess (ee) of the syn-HT dimer was 32% at 25 °C, 
which was increased to 41% by lowering the temperature to 0 °C (46% yield). In contrast, the ee of anti-HH 
dimer was less than 5%. Later, they found that installing a cationic side arm (CD-1) or a rigid cap (CD-2) 
into γ-CD could further improve the ees of syn-HT and anti-HH dimers to 58% and 41%, respectively[32,33].

In 2008, Yang et al. synthesized α-CD-appended AC to investigate the stereodifferentiating 
photodimerization within γ-CD (CD-3) and cucurbit[8]uril (CB[8])[34]. Interestingly, the head-to-tail (HT) 
dimers were formed in 98% selectivity within CD-3. Particularly, the syn-HT photodimer was generated in 
68% yield with 91% ee, which were much higher than the reaction with unmodified AC carboxylate (32% ee, 
44% yield). An inversion of HT/head-to-head (HH) selectivity was also observed using CB[8], affording 
exclusively the HH photodimers (99% selectivity). This study indicated that the outside interactions can 
influence the asymmetric photochemical reaction by manipulating the ground-state complexation and the 
excited-state reactivity.

Shortly after, a non-sensitizing metallosupramolecular host (CD-4) consisting of diamino-γ-CD combined 
with Cu(ClO4)2 was exploited by Ke et al. to promote the photodimerization of AC[35]. In this study, the anti-
HH dimer formed in 51%-52% yields with 64%-70% ees within CD-4 at -50 °C in aqueous methanol. 
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Table 2. Stereochemical outcomes of photodimerization of 2-ACs within native and modified CDs in Scheme 3

Regioselectivity Enantioselectivity
CD host

HT/HH syn-HT 2 (ee %) anti-HH 3 (ee %)
Temperature (°C)

γ-CD[31] 8.3/1 41% < 5% 0

CD-1[32] 
CD-2[33] 
CD-3[34] 
CD-4[35] 
CD-5[37] 
CD-6[38] 
CD-7[39] 
CD-8[40] 
CD-9[40]

1/2.9 
2/1 
~1/0 
1/4 
~0/1 
1/6.7 
~1/0 
1.2/1 
0.9/1

3% 
58% 
91% 
13% 
- 
52% 
> 99% 
41% 
30%

41% 
14% 
2% 
70% 
99% 
86% 
- 
64% 
76%

-59 
0 
-20 
-50 
-18 
-85 
-20 
-20 
-20

ACs: Anthracenes; CDs: cyclodextrins; HT: head-to-tail; HH: head-to-head.

Scheme 3. Representative modified CDs employed in enantioselective photodimerization of 2-ACs. CDs: Cyclodextrins; ACs: 
anthracenes.

Mechanistically, the CD-4 facilitates the generation of a HH-oriented 1:2 host-guest complex and 
discourages the generation of the diastereomeric syn-HH complex.

Luo et al. studied the photodimerization of naphthalene derivatives in native γ-CD [Scheme 4][36]. Unlike 
AC, naphthalene 7 underwent a photodimerization and produced the anti-HH cubane-like product, which 
usually could not be obtained under thermal reaction conditions. In this study, the anti-HH 
photodimerization product 8 was generated in 48% (aqueous solution) and 34% (solid state) ee under 
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Scheme 4. Enantioselective photodimerization of naphthalene derivatives.

ambient temperature and pressure.

In 2011, Yang et al. developed an enantioselective photochemical protocol to realize the acceleration and 
excellent stereo-control in the photodimerization of 2-anthracenecarboxylate tethered to an α-CD 
scaffold[37]. In this protocol, two AC molecules tethered to one α-CD (CD-5) were accommodated in the 
cavity of γ-CD or CB[8]. The anti-HH dimer was selectively obtained in 98% yield with 99% ee using γ-CD 
as the host, while 97% yield and 98% ee were recorded in achiral CB[8].

To better manipulate the stereochemical outcomes of [4 + 4] photodimerization of ACs, Yao et al. 
synthesized several diamino-γ-CD and diguanidino-γ-CD hosts[38]. In the photodimerization mediated by 
diguanidino-γ-CD (CD-6), they found the ee and chiral sense of the final products were dynamic functions 
of reaction temperature and the co-solvent. The anti-HH dimerization product was generated with 
moderate enantioselectivity in aqueous methanol at -70 °C (64% ee), while the antipodal isomer was formed 
in 72% yield with excellent enantioselectivity at -85 °C in aqueous ammonia (86% ee). However, the 
diamino-γ-CD host did not exhibit this remarkable stereo-control behavior.

The above studies mainly focused on the modifications of larger-in-cavity γ-CD to mediate 
photodimerization of ACs and deliver classical chiral 9,10:9’10’-cyclodimer products. The slipped chiral 
cyclodimers have long been overlooked. In 2018, Wei et al. disclosed that chiral slipped 5,8:9’,10’-
cyclodimers 5 and 6 were produced by β-CD via higher-order 2:2 complexation [Scheme 5][29]. The authors 
also investigated the photophysical and structural aspects of the complexation-mediated transformation. 
Later, Ji et al. designed and prepared a range of sulfur-linked or arene-spacer-tethered β-CD dimers (CD-7) 
for manipulating the enantio- and regioselectivities of the photochemical dimerization of 2-AC[39]. In this 
system, two nonclassical 5,8:9’,10’-cyclodimers (5 and 6) and four stereoisomeric classical 9,10:9’10’-
cyclodimers were generated via a photoreactive 1:2 complex. Wherein syn-9,10:9’10’-HT dimer could be 
obtained in 98% yield with > 99% ee.

The enantiomeric forms of CD compounds are not readily available. Therefore, preparation of the enantio-
isomers of chiral products through the induction of opposite chirality is not relevant in CD-mediated 
transformation. Variation of external factors, such as temperature, solvent, irradiation wavelength, pH and 
additives, and modification of CD frameworks may lead to chirality inversion of CD-mediated asymmetric 
photochemical reactions. For instance, Kanagaraj et al. harnessed two types of γ-CD derivatives, videlicet, 
bisquinoline-modified γ-CD (CD-8) and its N-methylated derivative (CD-9) to catalyze the 
photodimerization of 2-anthracenecarboxylic acid[40]. By adjusting the pH, the ee of the anti-HH dimer was 
inverted from 25% to -64% (within CD-8) and 41% to -76% (within CD-9), respectively.
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Scheme 5. The formation of slipped cyclodimers via 2:2 host-guest complexation.

Other macrocyclic hosts
Apart from above CD-based hosts, organic macrocyclic octa acid (OA) is also suitable for enantioselective 
photodimerization of 2-AC. In 2020, Wei et al. found that OA can act as both a capsule and a cavitand[41]. As 
shown in Scheme 6, the AC molecules were oriented with the two COO- groups facing water and the two 
AC rings buried within the hydrophobic cavity of the cavitand. Interestingly, photodimerization with this 
cavitand favored a HH dimer product. In addition, when guests were tethered with a chiral auxiliary (α-CD-
AC), achiral OA can also induce this photodimerization reaction with good diastereoselectivity.

Photoisomerization within macrocyclic hosts
Photoisomerization of (Z)-cyclooctene 9 and (Z, Z)-1,3-cyclooctadiene 11 can also take place inside the 
cavity of macrocyclic supramolecular hosts, furnishing the desired chiral products (R/S)-(E)-cyclooctene 10 
and (R/S)-(E, Z)-1,3-cyclooctadiene 12, respectively [Scheme 7][42,43]. In this context, modified 
oligosaccharide supramolecular hosts, such as aryl-derived CD hosts and functionalized cyclic 
nigerosylnigerose (CNN), have been introduced to mediate this transformation. Due to the fact that neither 
cyclooctene nor cyclooctadiene can absorb the light, functionalization of these macrocyclic hosts with 
various photosensitizers is essential. These modified macrocycles can serve as a chiral photosensitizer to 
activate the substrate and manipulate the enantioselectivity simultaneously. Compared with the 
transformation in bulk solvents, enantioselective photoisomerization of cyclooctene/cyclooctene within 
supramolecular cavities can proceed in the aqueous environment and achieve promising enantioselectivity 
under relatively mild reaction conditions. Related works in this research field have been nicely summarized 
by Genzink et al.[44]. Therefore, we will not highlight this aspect herein.

Other transformations within macrocyclic hosts
Several other types of enantioselective photochemical reactions mediated by macrocycles have also been 
studied, including [2 + 2] photocycloaddition reaction, photocyclization and difunctionalization of alkenes. 
For instance, Koodanjeri et al. employed CDs in the photocyclization of achiral tropolone alkyl ethers 13 to 
yield a bicyclo[3.2.0] product 14 bearing two contiguous chiral centers (up to 33% ee) [Scheme 8A][45]. 
Subsequently, the same group reported a β-CD-mediated photocyclization of achiral N-alkyl pyridones 15 
to 2-azabicyclo[2.2.0]-hex-5-en-3-ones 16 with up to 59% ee in the solid state [Scheme 8B][46]. In 2009, they 
further studied the chiral induction by β-CD in intramolecular photocyclization of carbonyl compounds[47]. 
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Scheme 6. Enantioselective photodimerization of α-CD-ACs mediated by OA. CD: Cyclodextrin; ACs: anthracenes; OA: octa acid.

Scheme 7. Enantioselective photoisomerization of (Z)-cyclooctene 9 and ( Z, Z)-1,3-cyclooctadiene 11.

Taking the photocyclization of adamantyl acetophenone 17 as an example, trans-cyclobutanol and cis-
cyclobutanol 18 were obtained in 9% and 20% ee, respectively, in the presence of chiral benzylamine-derived 
β-CD [Scheme 8C]. Moreover, Mansour et al. utilized β-CD to mediate the photochemical electrocyclization 
of 1,3-dihydro-2H-azepin-2-one 19 [Scheme 8D][48]. The authors found that no enantioselectivity was 
recorded in solution. However, solid-state [2 + 2] photocycloaddition followed by reduction delivered the 
terminal (1R,5R)-2-azabicyclo[3.2.0]heptan-3-one 20 in up to 79% isolated yields and with up to 45% ee.

On the other hand, Fukuhara et al. reported an enantioselective photochemical addition of methanol to 1,1-
diphenylpropene (DPP) initiated by a cyanonaphthalene-modified β-CD (CDnp), affording anti-
Markovnikov adducts[49]. They further investigated the competitive addition of water and methanol to DPP 
in the presence of CDnp. In this study, the ee of water addition product 22 was up to 26% [Scheme 8E][50].

The above examples show that CD-based macrocycles are promising chiral hosts for enantioselective 
photodimerization of 2-anthracenecarboxylates and photoisomerization of cycloolefins. Asymmetric [2 + 2] 
photocycloaddition reaction, photocyclization and difunctionalization of alkenes using CDs also work, 
albeit with lower enantioselectivity. The chiral confinement of CD hosts plays a significant role in the pre-
organization of the substrates in the ground state, which leads to not only the closer substrate proximity but 
also selective spatial arrangement of the guest molecules.
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Scheme 8. Other asymmetric transformations within macrocyclic CD-based hosts. CD: Cyclodextrin.

ENANTIOSELECTIVE PHOTOREACTIONS WITHIN MOCS
Different from macrocycles, MOCs are assembled from metals and organic ligands through 
coordination[51-53]. Recently, some chiral MOCs have been successfully introduced into enantioselective 
photocatalysis. In these studies, MOCs serve as efficient nanoreactors to utilize the light energy and induce 
the asymmetric photochemical reactions. This section will discuss the recent progress in enantioselective 
photodimerization and photocycloaddition reactions using chiral MOCs.

Photodimerization within MOCs
In 2014, Li et al. constructed a heterometallic [Pd6(RuL3)8]28+ MOC host (MOC-1), which incorporated 
photoredox-active and stereogenic RuL3 units and supramolecular RuL3/Pd photo-hydrogen-evolving 
(PHE) moieties[54]. Further endeavors allowed them to obtain the homochiral and photoactive MOC-1 (Δ/Λ-
MOC-1) with a chiral coordination space[55]. Subsequently, Guo et al. reported a seminal work about regio- 
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Scheme 9. Regio- and enantioselective 1,4-homocoupling of 2-naphthol derivatives within Δ/Λ- MOC-1. MOC: Metal-organic cage.

and enantioselective 1,4-homocoupling of 2-naphthol derivatives to form 4-(2-hydroxy-1-naphthyl)-1,2-
napthoquinone in the confined chiral-control cavity of Δ/Λ-MOC-1 [Scheme 9][56]. In most cases, the 
dimerization of 2-naphthols will generate relatively stable 1,1’-homocoupling product 1,1’-bi-2-naphthol 
(BINOL), with unstable 1,4-homocoupling 25 as a side product. Under the optimized reaction conditions, 
1,4-homocoupling product 25 was obtained in 54% (Δ-MOC-1) and 58% (Λ-MOC-1) ee with 5 mol% of Δ/Λ-
MOC-1. Based on some spectral studies and theoretical calculations, a plausible mechanism was proposed. 
Upon the irradiation of blue light-emitting diodes (LEDs, 453 nm), MOC-1 was excited to the excited state 
*MOC-12+, which was then quenched by O2 to give MOC-13+. Meanwhile, H2O2 formed via the reduction of 
the O2 could easily produce hydroxyl radicals. Then, MOC-13+ would oxidize the 2-naphthol via single 
electron transfer (SET) to give a 2-naphthol radical, which combined with a hydroxyl radical to generate the 
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Scheme 10. Enantioselective [2 + 2] photodimerization of acenaphthylene derivatives within Δ/Λ- MOC-1. MOC: Metal-organic cage.

naphthalene-1,2-dione intermediate. Finally, the coupling of a 2-naphthol radical and naphthalene-1,2-
dione yielded the desired product. Owing to the constrained cage effects and host-guest chiral recognition 
and matching, Δ/Λ-MOC-1 could manipulate the stereoselectivity and stabilize the unstable configuration of 
the 1,4-homocoupling product. On the other hand, chiral-control space can also improve the coupling 
conversions by pre-organizing the substrates close to the ruthenium sites.

The [2 + 2] photodimerization of olefins has been extensively studied, which represents a feasible and 
efficient approach in the construction of cyclobutanes. Kindled by the pioneering work, Guo et al. reported 
an unprecedented [2 + 2] enantioselective photodimerization of an unsymmetrical acenaphthylene 
derivative 26 mediated by enantiopure Δ/Λ-MOC-1[57]. The dimerization of 26 gave anti-HH product 27 
both within Δ-MOC-1 (86% ee) and Λ-MOC-1 (-88% ee) with high regio-, stereo-, and enantioselectivity. In 
this transformation, the chiral confinement of Δ/Λ-MOC-1 played a pivot role in governing the 
stereochemical outcome. The combination of multiple functions, including the pre-organization of 
substrates in the ground state, the regulation of excited-state stereochemistry as well as the transfer of triplet 
energy and chirality, have been verified by experimental results and computational studies. As shown in 
Scheme 10, they have established the possible simplified cage models to deduce the most stable 
configurations of reactants and products associated with the cage to explain the high enantioselectivity.
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Scheme 11. Enantioselective [2 + 2] photocycloaddition of fluoranthene with maleimide within MOC-2. MOC: Metal-organic cage.

Photocycloaddition within MOCs
In 2006, Yoshizawa et al. prepared a self-assembled coordination cage (M6L4) by mixing an exo-tridentate 
ligand and an end-capped PdII ion in water[58]. They found that the Diels-Alder reaction between AC and 
phthalimide occurred inside of this M6L4 cage with excellent regioselectivity. Subsequently, replacing the 
ethylenediamine with chiral diamines on each Pd center formed the chiral MOC (MOC-2) [Scheme 11][59]. 
They used MOC-2 as a chiral host for the [2 + 2] photocycloaddition reaction of fluoranthene 28 with 
maleimide 29. To their delight, the modification at the periphery of MOC-2 was sufficient to produce 
considerable asymmetric induction. Upon the irradiation of 360 nm light, cyclobutane product 30 was 
obtained in 75% yield with 50% ee. MOC-2 exhibited excellent guest binding capability, which worked as the 
prerequisite for the pre-organization of substrates at the ground state. Based on the calculation results, the 
authors ascribed the high regioselectivity to the steric effect within the confined cavity rather than orbital 
control. The control experiments suggested that the steric profile of the diamine ligand was correlated with 
the ee of the product. This study utilized a chiral diamine ligand to assemble a photoactive supramolecular 
coordination cage. The diamine ligand first coordinated with the Pd center and then induced the chiral 
deformation of the cavity. Further investigations revealed that the larger steric bulk of the N-substituent (R) 
increased the tilt angle of the triazine ligand, resulting in the enhancement of enantioselectivity.

Based on the previous studies on the applications of MOC-1 in the enantioselective 1,4-homocoupling, [2 + 
2] photodimerization and Diels-Alder reaction[60], Ruan et al. explored its catalytic potential in other 
chemical transformations. Recently, they successfully utilized Δ-MOC-1 to catalyze the asymmetric [2 + 2] 
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Scheme 12. Multilevel-selective [2 + 2] cross-photocycloaddition of α, β-unsaturated carbonyl compounds within Δ- MOC-1. 
Reproduced with permission from[61]. Copyright 2024, American Chemical Society. MOC: Metal-organic cage.

photocycloaddition of chalcone and cinnamate derivatives with high levels of chemo-, regio-, diastereo-, 
and enantioselectivities [Scheme 12][61]. In comparison with well-established photocycloaddition between 
active and inactive olefins, the formation of two different diradical intermediates renders the selective [2 + 
2] cross-photocycloaddition of two photoactive olefins with similar reactivities a considerable challenge, 
since it may result in a complex outcome for photocycloaddition with the generations of multiple undesired 
isomers. This chiral cage photoreactor has enabled the enantioselective [2 + 2] cross-photocycloaddition via 
multilevel-selectivity control to promote the formation of syn-HH isomer that is sterically and 
thermodynamically unfavorable in traditional conditions. Under the optimal conditions, a syn-HH isomer 
was obtained in good yield with excellent ee (39 examples, up to 86% yield and 99% ee). In this study, they 
obtained two single crystals of [43]18 ⊂ Λ-MOC-1 and [44]2 ⊂ rac-MOC-1-Zn complexes, both of which 
accommodate two same substrates in each pocket via π-π stacking interactions. It suggested that the distance 
(4.8 Å) or angle (75°) between the C=C bonds of the two same molecules is indeed unfavorable for 
homocoupling, which accounts for the preferential heterocoupling of two different substrates. Moreover, 
the controlled excited-state processes and dynamic exchange between the reactant and product within the 
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Scheme 13. Enantioselective [4 + 4] photochemical dimerization of 1-AC within γ-CD containing MOF-3. Reproduced with permission 
from[65]. Copyright 2021, American Chemical Society. AC: Anthracene; CD: cyclodextrin; MOF: metal-organic framework.

cage reactor facilitated the formation of syn-HH cross coupling products. This study further demonstrated 
the advantages of supramolecular photochemical strategy in manipulating the chemoselectivity and 
stereoselectivity.

ENANTIOSELECTIVE PHOTOREACTIONS WITHIN MOFS
MOFs are a class of nanomaterials that feature high specific surface area and porosity, and easy 
functionalization[62-64]. In recent years, some chiral MOFs have also been designed and employed in 
enantioselective photochemical reactions. In this part, asymmetric photodimerization, functionalization of 
aldehydes, and other intermolecular couplings within MOFs will be introduced.

Photodimerization within MOFs
In 2021, an elegant enantioselective [4 + 4] photodimerization of 1-AC- was reported by Chen et al. 
[Scheme 13][65]. Employing an anion-exchange protocol, 1-AC- was encapsulated inside the porous tunnels 
of MOF bearing γ-CD moieties (MOF-3). They demonstrated the [4 + 4] photodimerization of 1-AC- within 
MOF-3 proceeded smoothly to give the dimerization product in good yield with excellent selectivity (up to 
85% yield, 91% rr, 79% ee). The solid-state superstructure indicated that stable 3D spatial configuration was 
constructed by four hydrogen bonds formed via 1-AC- anion with the four hydroxyl groups of the γ-CD 
(C-2 and C-3), and the hydrophobic and electrostatic interactions between carboxyl motif and four 
potassium cations. Two types of cavities in MOF-3, i.e., the (γ-CD)2 tunnels and the (γ-CD)6 cubes, play an 
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Scheme 14. Enantioselective α-alkylation of aliphatic aldehydes within Zn-based MOF-4. MOF: Metal-organic framework.

important role during the photodimerization process. The tunnels can promote the selective 
transformations and the cubes can store the terminal products. The substrate 1-ACs first diffused into the 
(γ-CD)2 tunnels. Subsequently, two 1-AC- molecules reacted and the corresponding products were released 
into the (γ-CD)6 cubes. The multiple non-covalent bonding interactions, e.g., hydrogen bonding, π-π 
stacking and electrostatic interactions, result in the excellent regio- and enantioselectivity.

Asymmetric functionalization of aldehydes within MOFs
In 2012, Wu et al. prepared a pair of enantiomeric Zn-based MOFs (Δ/Λ-MOF-4) via incorporating (L)- or 
(D)-pyrrolidin-2-ylimidazole (PYI) and a tertiary triphenylamine redox moiety[66]. The enantioselective α-
alkylation of aldehydes could successfully take place in the confined supramolecular environment of MOF-4 
[Scheme 14]. Under the irradiation of visible light, three chiral coupling products 52 from aliphatic 
aldehydes 50 and diethyl 2-bromomalonate 51, i.e., phenylpropylaldehyde 53, octaldehyde 54 and (E)-non-
6-ena 55, could be obtained in good yields (74%, 65%, 84%, respectively) with excellent enantioselectivity 
(ee = 92%, 86%, 92%, respectively). The results of control experiments indicated that both PYI and 
triphenylamine moieties were essential for the light-induced asymmetric α-alkylation reactions. The tertiary 
amine moiety on MOF-4 with a strong reductive excited state initiated the photoinduced electron transfer 
process, producing an active intermediate for the following α-alkylation reaction. The PYI moieties served 
as synergistic chiral organocatalysts to promote the asymmetric catalysis. These outcomes demonstrated 
that MOFs can serve as a versatile platform for cooperative and tandem catalysis.
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Scheme 15. Enantioselective β-arylation of aliphatic aldehydes with p-dicyanobenzene mediated by interpenetrated MOF-5. MOF: 
Metal-organic framework.

The catalytic performance of MOFs shows strong correlations with their topological structures. As shown in 
Scheme 15, Xia et al. took advantage of an interpenetrated homochiral MOF (MOF-5) containing the 
photoredox and asymmetric catalytic units to achieve the enantioselective β-arylation of aldehydes (ee up to 
52%)[67]. X-ray single-crystal analysis showed the generation of the twofold interpenetrated coordination 
polymer, which shortens the space distance between two active units and, therefore, accelerates the electron 
transfer between the oxidized photosensitizer and enamine intermediate. The authors postulated a possible 
mechanism to explain the functions of interpenetrated MOF-5 in photocatalytic β-carbonyl activation. 
Initially, aldehydes 57 diffused into the channels of MOF-5 and condensed with (L)-PYI to form the 
enamine intermediate. Under the irradiation of visible light, 1,4-dicyanobenzene 56 was adsorbed by 
MOF-5, followed by the generation of radical anion and oxidized MOF-5+. Subsequently, the enamine was 
oxidized by MOF-5+ through SET to form an enaminyl radical cation intermediate, which increased the 
acidity of the allylic C–H bonds. Therefore, the deprotonation took place at the β-position of aldehyde. The 
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5πe- β-enaminyl radical intermediate was then coupled with a 1,4-dicyanobenzene radical anion to generate 
the cyclohexadienyl anion, which was hydrolyzed to the terminal β-arylation product 58 and released (L)-
PYI to re-enter the catalytic cycle.

In the same year, Zhang et al. constructed a series of chiral crystalline MOFs (X-MOF-6, X = Zn, Zr, Ti) via 
a chiral photoredox ligand coordinated with different metal ions (Zn2+, Zr4+ and Ti4+), and successfully used 
in visible-light-induced enantioselective α-alkylation of 3-phenylpropionaldehyde and cis-6-nonenal 
[Scheme 16][68]. The organic ligand contains a chiral secondary anime moiety and a visible-light absorption 
fragment, which was formed by the condensation of chiral proline derivatives and amino-substituted 
terephthalic acid. This bifunctional chiral molecule only exhibited low activity in asymmetric α-alkylation of 
aldehydes as a homogeneous catalyst. When integrated with metal ions to form the MOFs, a significant 
enhancement of catalytic efficiency was recorded. Results indicated that all synthesized X-MOF-6 have 
excellent catalytic performances in heterogeneous α-alkylation of aldehydes. For instance, the desired α-
alkylation product 52 was formed with good enantioselectivity (87% ee) by use of (S)-Ti-MOF under the 
irradiation of visible light at 0 °C. The catalytic efficiency of these MOFs could be altered with different 
metal ions, owing to the differences in optical absorption and charge separation among MOFs.

Other asymmetric intermolecular couplings within MOFs
MOFs can also serve as the carriers for photocatalysts or/and chiral catalysts to promote the asymmetric 
photochemical reactions. As shown in Scheme 17, this kind of MOF can be classified into three types based 
on its roles in photocatalytic asymmetric reactions: (1) chiral MOF loaded with photocatalyst (MOF-7)[69]; 
(2) achiral MOF loaded with enzyme (MOF-8)[70]; (3) supporting frameworks for photocatalyst and chiral 
catalyst (MOF-9, MOF-10)[71,72]. For a clear comparison, their applications in the photocatalytic asymmetric 
intermolecular couplings have been summarized in Table 3.

ENANTIOSELECTIVE PHOTOREACTIONS WITHIN COFS
COFs are a class of porous and tunable crystalline polymers constructed by strong covalent bonds with 2D 
or 3D network topologies, which have shown great potential as heterogeneous photocatalysts[73-78]. In 
general, COFs used for asymmetric photochemical reactions can be divided into two types: achiral and 
chiral. Achiral COFs function as supramolecular photocatalysts and are used in combination with chiral 
organocatalysts, while chiral COFs (CCOFs) containing both photosensitizer and chiral moieties can 
mediate the light-energy conversion and manipulate the stereoselectivity. This part will discuss the recent 
works about the designs and applications of COFs in enantioselective photochemical transformations, 
including α-functionalization of aldehydes, photooxidation of thioethers, and other asymmetric 
intermolecular couplings.

Asymmetric α-functionalization of aldehydes within COFs
In 2020, Kang et al. designed a pair of 3D COFs (COF-11, COF-12) with a rare twofold-interpenetrated ffc 
topology through condensations between rectangular and trigonal monomers [Scheme 18][79]. 
Triphenylamine was selected as the functional molecule, since it not only exhibits unique photophysical and 
redox properties but also represents an important hole-conducting molecule. COF-11 was obtained from 
tetraamine (ETTA) and trialdehyde (NBC), while COF-12 was from tetraaldehyde (ETBC) and triamine 
(BADA). The authors proposed that both COFs adopted a twofold interpenetrated ffc topology with the C2/
m space after simulations. The two COFs tethered with a chiral amine organocatalyst could catalyze the 
asymmetric α-alkylation of aldehydes, which exhibited similar catalytic performances in reactivity and 
enantioselectivity. Under the optimized conditions, the desired α-alkylation products 65 were formed in 
good yields with excellent enantioselectivity (up to 88% yield, 94% ee).
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Table 3. The applications of MOF carriers in photocatalytic asymmetric intermolecular couplings

MOF Substrate Reaction Role                                 Outcome

TiO2@MOF-7[69] Benzyl alcohols and methyl acrylate Sequential MBH reaction MOF-7: chiral induction;
TiO2: photocatalyst

Up to 99% yield; 
99% ee

WGL@MOF-8[70] (a) Tetrahydroisoquinoline and 
ketones; 
(b) 2-arylindoles and acetone

(a) Dehydrogenation 
coupling; 
(b) Oxidative Mannich 
reaction

MOF-8: photocatalyst; 
WGL: chiral induction

Up to 65% yield; 
70% ee

Ru(bpy)3@MOF-9/ 
proline[71]

2-Arylindoles and ketones Oxidative Mannich reaction MOF-9: supporting 
framwork; 
proline: chiral induction; 
Ru(bpy)3: photocatalyst

Up to 88% yield; 
99% ee

Au@MOF-
10/proline[72]

Aromatic aldehydes and acetone Aldol reaction MOF-10: supporting 
framwork; 
proline: chiral induction; 
Au NPs: photocatalyst

Up to 81% yield; 
91% ee

MOF: Metal-organic framework; MBH: Morita-Baylis-Hillman; WGL: wheat germ lipase; NPs: nanoparticles.

Scheme 16. Visible-light-mediated asymmetric α-alkylation of aldehydes within chiral X-MOF-6. Reproduced with permission from[68]. 
Copyright 2017, American Association for the Advancement of Science. MOF: Metal-organic framework.
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Scheme 17. MOFs loaded with photocatalyst or/and chiral catalyst employed in the photocatalytic asymmetric intermolecular 
couplings. (A) Reproduced with permission from[69]. Copyright 2019, American Chemical Society; (B) Reproduced with permission 
from[70]. Copyright 2024, American Chemical Society; (C) Reproduced with permission from[71]. Copyright 2021, American Chemical 
Society; (D) Reproduced with permission from[72]. Copyright 2024, Royal Society of Chemistry. MOFs: Metal-organic frameworks.

Li et al. also synthesized two robust tetrahydroquinoline-linked (QH)-COFs (COF-13, COF-14) visible light 
photocatalysts and used in the enantioselective photochemical α-alkylation of aldehydes [Scheme 19][80]. The 
tetrahydroquinoline linkage plays an important role in enhancing the stability and widening the absorption 
spectrum of COFs. Up to 94% ee was obtained using this kind of COF by merging with a chiral secondary 
amine, and the catalytic efficiency is similar to that of conventional Ru catalyst [Ru(bpy)3]Cl2·6H2O (80% 
yield, 91% ee). In this study, the authors also proposed a possible catalytic mechanism. Under visible light 
irradiation, one electron was transferred from the conduction band (CB) of COFs to α-bromocarbonyl 
substrate 72, thus leading to the formation of the alkyl radical intermediate. Then, aldehyde 50 condensed 
with the chiral secondary amine organic catalyst to form an enamine intermediate, followed by the addition 
of the electron-deficient alkyl radical. Subsequently, the generated α-amino radical delivered one electron to 
the hole in the VB of QH-COFs and formed an imine cation. Hydrolysis of the imine intermediate afforded 
the terminal product and regenerated the catalyst to finish the cycle. Additionally, Zhou et al. also 
synthesized an achiral photoactive COF by the condensation of 1,3,6,8-tetrakis(4-formylphenyl) pyrene 
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Scheme 18. Highly enantioselective α-alkylation of aldehydes within 3D COFs. Reproduced with permission from[79]. Copyright 2020, 
Royal Society of Chemistry. COFs: Covalent organic frameworks.
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Scheme 19. Visible-light-induced enantioselective α-alkylation of aldehydes within QH-COFs merging with a chiral secondary amine. 
Reproduced with permission from[80]. Copyright 2020, Elsevier. QH-COFs: Tetrahydroquinoline-linked covalent organic frameworks.

with amino/cyano-containing monomers. By merging with a chiral amine catalyst, the asymmetric α-
alkylation of aldehydes proceeded quite well under visible light irradiation[81].

Regarding asymmetric photochemical reactions, achiral COFs usually served as photocatalysts to harvest 
light and chiral induction usually required an additional chiral catalyst. The construction of CCOFs by 
merging photoactive and chiral units into a single framework is a promising strategy. In 2022, Ma et al. 
designed and synthesized a chiral multifunctional COF (COF-15) through the condensation of chiral 
BINOL-phosphate with Cu(II)-porphyrin-derived monomers, and successfully introduced in the 
enantioselective α-benzylation of aldehydes [Scheme 20][82]. COF-15 bears both Brønsted (phosphate) and 
Lewis [Cu(II)] acidic catalytic sites, chiral confinement space, and photothermal conversion (PTC) 
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Scheme 20. Photoinduced thermally-driven enantioselective α-benzylation of aldehydes catalyzed by (R)- COF-15. Reproduced with 
permission from[82]. Copyright 2022, Royal Society of Chemistry. COF: Covalent organic framework.

properties. Upon 420 nm light irradiation, (R)-COF-15 could catalyze the α-benzylation of aldehydes with 
alkyl halides in good yields with excellent enantioselectivity (ten examples, up to 98% yields, 94% ees). The 
PTC behavior of COF-15 was also investigated, and results indicated that a significant temperature increase 
was observed when a solution of (R)-COF-15 in MeOH was irradiated under 420 nm light for 18 min. 
Interestingly, the configuration of the terminal product could be easily reversed by tuning the chirality of 
MOF, without any loss of yield and ee.

Recently, He et al. has successfully synthesized a series of CCOFs (COF-16a-16f) with photoactive 
porphyrin moieties as knots, and secondary-amine-based chiral functional groups were fixed on the 
benzoimidazole linkers [Scheme 21][83]. Among these CCOF photocatalysts, COF-16a exhibited the best 
results in the enantioselective α-alkylation of aldehydes 50 in high yields (up to 97%) with good 
enantioselectivity (up to 93% ee) under visible light irradiation. The good results benefited from the 
activation of bromide 64 by porphyrin units and aldehydes by chiral secondary amines. The authors also 
investigated the physical and chemical properties of these COFs. Broad absorption region and excellent 
stability and recyclability also showed their advantages as metal-free catalytic platforms in enantioselective 
photocatalysis.
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Scheme 21. Visible-light-mediated enantioselective α-alkylation of aldehydes catalyzed by COF-16. COF: Covalent organic framework.

Asymmetric photooxidation within COFs
In 2022, Kan et al. designed and constructed a photoactive and hydrotropic CCOF (COF-17) bearing a 
photosensitizer, chiral moiety, phase transfer group and linkage, which was successfully applied in the 
enantioselective photooxidation of sulfides to sulfoxides in water [Scheme 22][84]. This homochiral COF-17 
was synthesized via asymmetric A3-coupling polymerization of 2,5-dimethoxyterephth-aldehyde, 
quaternary ammonium bromide-modif ied phenylacety lene and 5 ,10 ,15 ,20-tetrakis(4-
aminophenyl)porphyrin. The key active units, photosensitive porphyrin, chiral propargylamine linkage and 
amphipathic quaternary ammonium bromide, were introduced into the CCOF supramolecular catalyst. 
Under the irradiation of 660 nm light, (R)-COF-17 could catalyze the oxidation of substituted 
methylphenylsulfides 82 to the corresponding (R)-methylphenylsulfoxides 83 in water with molecular 
oxygen in air as the oxidant (81%-96% yields, 77%-99% ee). Interestingly, biologically active (R)-modafinil 
could also be obtained using this protocol.

Other asymmetric intermolecular couplings within COFs
Photoactive CCOFs integrated with metal nanoparticles (M NPs) are also suitable for enantioselective 
photochemical reactions. For instance, Ma et al. designed two kinds of M NP (M = Au, Pd)-loaded and 
Cu(II)-porphyrin-containing homochiral COFs (COF-18, COF-19), which exhibited excellent PTC and 
asymmetric catalytic performance in visible-light-induced thermally-driven enantioselective Henry and A3-
coupling [Scheme 23][85]. For instance, Henry reaction between benzylic alcohols 84 and nitromethane 85 
within COF-18 could generate the desired nitroaldols 86 in high yields (up to 99%) with excellent 
enantioselectivity (ee of up to 98%). Meanwhile, A3-coupling of benzaldehyde derivatives 87, aromatic 
alkynes 88 and secondary amines 89 within COF-19 also took place and delivered the products in good 
results (yield of up to 98%, ee of up to 98%). According to the experimental results, the loading of M NPs 
into COFs would not affect the PTC efficiency. The confinement of CCOFs played a crucial role in 
suppressing the racemization of the terminal products under high temperatures.
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Scheme 22. Enantioselective aerobic photooxidation of sulfides into sulfoxides catalyzed by COF-17. COF: Covalent organic framework.

Scheme 23. Asymmetric visible-light-induced thermally-driven Henry and A3-coupling reactions within chiral COFs loaded with metal 
nanoparticles. Reproduced with permission from[85]. Copyright 2019, Springer Nature. COFs: Covalent organic frameworks.
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Scheme 24. Visible-light-induced asymmetric synthesis of drug intermediate (S)-CIK catalyzed by COF-20. Reproduced with 
permission from[86]. Copyright 2020, American Chemical Society. COF: Covalent organic framework.

Ma et al. employed a versatile homochiral COF (COF-20) synthesized by the condensation of Cu(II)-
porphyrin-derived monomers [5,10,15,20-tetrakis(4-aminophenyl)porphyrin-Cu-(II) (Cu-TAPP)] and 
chiral (R)-4,4’-dialdehyde-6,6’-dichloro-2,2’-diethoxy-1,1’-binaphthalene [(R)-BINOL-DA][86]. COF-20 
possessed multiple active sites, including chiral templating (CT), Lewis acid (LA) and PTC sites, which 
ensured its excellent performance in catalyzing the asymmetric Strecker reaction (98% yield, 94% ee). They 
successfully used COF-20 to synthesize the (S)-CIK 94, a key intermediate in the synthesis of 
antithrombotic drug (S)-clopidogrel [Scheme 24]. The detailed physical and chemical property studies of 
COF-20 were also conducted. This study further demonstrated the promising potential of CCOFs as a green 
and facile synthesis platform for chiral drug preparation and discovery.

In the last few years, the combination of photocatalysis and biocatalysis has attracted much research interest 
in asymmetric synthesis. Merging photoactive COFs with enzymatic catalysts is an effective strategy to 
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Scheme 25. Asymmetric oxidative Mannich reaction catalyzed by a heterogeneous photobiocatalyst WGL@ M-COF-21. Reproduced 
with permission from[87]. Copyright 2022, American Chemical Society. WGL: Wheat germ lipase; COF: covalent organic framework.

promote enantioselective photochemical reactions. Recently, Jin et al. developed a COF-based 
photoenzymatic platform for asymmetric oxidative Mannich reaction [Scheme 25][87]. In this study, a 
photoactive M-porphyrin-containing COF (M-COF-21; M = H, Zn, Cu, Ni) served as a porous carrier to 
encapsulate wheat germ lipase (WGL) and generated a heterogeneous photobiocatalyst 
(WGL@M-COF-21). This catalyst could promote the sequential oxidation and asymmetric Mannich 
reaction of 2-arylindole derivatives 95 under visible-light irradiation with O2 as the oxidant and acetone as 
the nucleophile. Based on the mechanism studies, the authors proposed a possible catalytic pathway in 
which photoactive M-COF-21 oxidized the substrate using the generated reactive oxygen species (ROS), 
and then WGL catalyzed the following Mannich reaction to produce the desired products 96 in moderate 
yields with moderate to good enantioselectivity (ten examples, 43%-62% yields, 40%-86% ees).

CONCLUSION AND OUTLOOK
In the review, we have summarized the recent advances in enantioselective photochemical reactions within 
the confined spaces of supramolecular assemblies including macrocycles, MOCs, MOFs, and COFs. This 
research field has flourished over the past two decades, accompanied with the development of new types of 
supramolecular hosts with excellent catalytic and stereo-controlled performance. However, there are still 
some limitations in supramolecular enantioselective photocatalysis. For instance: (1) The types of chiral 
hosts for enantioselective photochemical reactions are not diverse. Macrocycles are largely limited to CDs, 
and chiral organocatalysts immobilized into MOFs and COFs are mainly based on chiral secondary amines 
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and BINOL backbones; (2) The reaction types are quite narrow. CDs-initiated reactions are mainly focused 
on photodimerization of 2-ACs. Most of the asymmetric reactions mediated by MOCs, MOFs and COFs are 
[2 + 2] photocycloaddition reactions and α-alkylation of aldehydes; (3) Only a few guest molecules can be 
accommodated very well in the rigid cavities of chiral hosts, leading to the low substrate diversities.

To enrich the library of chiral hosts for enantioselective photochemical reactions, other modified metal 
complexes and organic photosensitizers could be used to construct new types of chiral supramolecular 
hosts. Meanwhile, some other chiral privileged structures, e.g., chiral hydrogen bonding moieties (urea, 
thiourea), N-heterocyclic carbenes and chiral tertiary amines, can be incorporated into the hosts, or as 
cooperative catalysts in supramolecular enantioselective photochemical reactions. By doing so, growing 
reaction substrates can be introduced, and therefore, the reaction types could be further expanded. On the 
other hand, dual activation models by the combination of supramolecular catalysis with transition metal or 
LA catalysis are also potential strategies. Future advances can be expected along these lines.
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