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Abstract
Artificial intelligence (AI) is reshaping healthcare, particularly within the realm of spinal surgery, enhancing 
diagnostics, treatment, and patient management. AI is not only enhancing the technical aspects of spinal surgery 
but also revolutionizing patient care through personalized management, setting a new standard within the field. 
This computational renaissance has received increasing attention from providers and regulatory bodies to ensure 
novel technologies are being safely and effectively used. This review explores contemporary uses of AI in adult 
spinal deformity (ASD) surgery and the extent of their validation. Given the increasing complexity of ASD surgery 
and the expanding capabilities of AI, this review is essential to synthesize current applications, evaluate 
methodological strengths and limitations, and highlight future research opportunities in this evolving field.
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INTRODUCTION
In recent years, the application of artificial intelligence (AI) in healthcare has initiated a monumental shift 
in the methodology used to diagnose patients[1,2], assess prognosis[3], and provide therapies[4-6]. AI has 
developed into an essential tool for evaluating large patient datasets[7-9], deriving insightful conclusions, and 
directing medical decisions through advanced computational techniques[10,11]. Its capacity to transform the 
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delivery of healthcare encompasses a wide range of medical specialties.

Spine surgery is a standout candidate for the applications of AI. Adult spinal deformity (ASD) is a branch of 
spinal surgery that encompasses a variety of conditions involving an abnormal curvature or alignment of 
the spine in adult patients. These deformities can arise from various pathologies, including degenerative 
diseases like arthritis, the progression of a pre-existing condition that was present but stable during 
childhood (like scoliosis or kyphosis), or due to the effects of trauma or previous spinal surgery. ASD 
particularly resonates with this technological integration because of the plethora of clinical presentations 
and their heavily debated management[12,13]. In prior literature, spinal surgeons have attempted to develop 
models to eliminate some subjective decision making, only to discover the nonlinearity of ASD cannot be 
tethered to a one-size-fits-all approach[14,15]. Given this complexity, integrating AI into spinal surgery is 
crucial to developing new ways to improve surgical interventions’ accuracy, effectiveness, and results for 
patients with ASD[16-18]. AI is revolutionizing the management of spinal pathologies through predictive 
models, advancing surgical technologies, and enhanced therapeutic decision making.

A growing body of literature acknowledges AI is a turning point in the field of spinal surgery[19]. It brings the 
potential to improve clinical results, surgical technique, and patient care. Through the utilization of 
sophisticated computational techniques, predictive modeling, and surgical advancements, AI provides 
surgeons with tailored knowledge, accurate instruments, and research-backed approaches to effectively 
manage the complex terrain of adult spinal deformities and improve the quality of spine care in the modern 
healthcare environment. The purpose of this review is to outline the current applications of AI in spinal 
surgery and address their limitations. We aim to provide a commentary on the generalizability of these 
models and the validity of their performance. This narrative review was conducted by systematically 
searching PubMed and Embase using terms including “artificial intelligence”, “machine learning”, “deep 
learning”, and “adult spinal deformity”. Articles were selected based on relevance to clinical applications, 
with a focus on imaging, surgical planning, and predictive modeling. This is a narrative review intended to 
provide a broad synthesis of current trends and future directions. As such, it does not follow the PRISMA 
framework, although efforts were made to ensure transparency in the literature search and inclusion 
criteria. A brief synopsis of reviewed papers is included in Table 1.

IMAGING
The value of AI in spine imaging has increased tremendously over the last few years. Researchers believe 
that radiologists will use AI as a tool to aid the increasing demand for radiological inquiries from 
clinicians[20]. Cui et al. and Galbusera et al. emphasize how the application of AI could improve the quality, 
efficiency, and diagnostics of spine imaging[20,21]. These programs can improve patient satisfaction by giving 
faster and more reliable answers, while also helping doctors effectively cut down working time.

Numerous studies have looked at using model-based approaches for radiographs, CT, and MRI readings of 
spine images. Galbusera et al. showed promise for future usage of deep learning (DL) models with biplanar 
radiographs and a convolutional neural network (CNN) to obtain anatomical parameters, aiding in the 
interpretation of kyphosis, lordosis, Cobb angle, pelvic incidence, sacral slope, and pelvic tilt[21]. The study 
incorporated a CNN model with a C++ program to extract the 3D coordinates of the desired landmarks 
from the 2D radiographs. The model is a combination of a fully convolutional network with a differentiable 
spatial heatmap, allowing the transformation of graphical representation to be translated into quantitative 
data. The model training follows a 90:10 training-to-testing ratio, resulting in an overall success rate of 
landmark placement compared to standard measurements. Regression analysis showed all the spinopelvic 
parameters within 95% confidence intervals relative to ground truth data from sterEOS software. The 
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Table 1. AI and ML models used in spinal surgery

Model Authors Applications Benefits Risks

CNN Galbusera et al., 2019[21]; Löchel et al., 2024[23]; 
Jamaludin et al., 2017[26]; 
Schlemper et al., 2018[28]; Souza et al., 2010[29]; 
Yang et al., 2018[38]; Chen et al., 2017[39]; 
Xuan et al., 2023[30]; Wu et al., 2021[37]; 
Wang et al., 2021[65]; Zhang et al., 2023[66]; 
Zhao et al., 2023[67]

Imaging, patient benefits, ASD 
progression

• Layer specialization 
• Efficient at processing large datasets 
• Noise reduction 
• Excellent generalization

• High computational cost 
• Potential overfitting

DLTG Xuan et al., 2023[30] Imaging • Temporal consistency 
• Excellent reconstruction quality

• Hyperparameter tuning 
• Scalability issues

DQN Ghesu et al., 2016[24] Imaging • Can handle high-dimensional input spaces 
• End-to-end learning

• Overestimation bias 
• Training instability

MSL Kelm et al., 2013[25] Imaging • More robust and accurate detection results than an 
exhaustive full space search

• Requires retraining for abnormal cases

GAN Goodfellow et al., 2020[27]; Yang et al., 2018[38] Imaging • Improved image quality 
• Noise reduction 
• High-quality image generation with less data

• Generative models can be unpredictable 
• Requires careful tuning

RNN Sri Lalitha et al., 2023[31]; Nimal et al., 2023[32] Patient benefits • Excellent handling of sequential data 
• Different architectures enable better performance

• Requires large datasets for training 
• Vanishing gradients

KNN Sri Lalitha et al., 2023[31]; Nimal et al., 2023[32] Patient benefits • No assumption of data 
• Capture complex variables without defining separate 
model

• Does not provide relative importance of 
each predictor 
• Does not create a generalized separable 
model

ANN Kim et al., 2018[40]; Kuris et al., 2021[41]; 
Hopkins et al., 2019[42]; De la Garza Ramos et al., 
2022[63]

Risk calculator and decision-
making tools

• Automatic feature extraction 
• Continuous learning

• Potential for overfitting 
• Requires large datasets and 
computational cost

Hierarchical clustering 
model

Ames et al., 2019[43] Risk calculator and decision-
making tools

• Flexibility with different distance metrics • Sensitivity to noise and outliers 
• Irreversible merge/split decisions

Random forest Durand et al., 2018[44]; Raman et al., 2020[61] Perioperative applications • Minimal preprocessing 
• Parallel processing 
• Robust against overfitting

• Difficulty with imbalanced datasets 
• Interpretability can be challenging

SVM Bissonnette et al., 2019[55] Surgical applications • Kernel functions to handle non-linear data 
• Clear margins of separation

• Requires labeled training data 
• Can be sensitive to outliers

Geometric modeling Klinder et al., 2009[22] Imaging • Precise and accurate representation of shapes 
• Realistic rendering

• High resource requirements 
• Manual ground truth comparison 
required

AI: Artificial intelligence; ML: machine learning; CNN: convolutional neural network; ASD: adult spinal deformity; DLTG: dictionary learning with temporal gradient; DQN: deep Q-network; MSL: marginal space 
learning; GAN: generative adversarial network; RNN: recurrent neural network; KNN: K-nearest neighbors; ANN: artificial neural network; SVM: support vector machine.
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authors were optimistic about the potential diagnostic capacity of this model; however, they also cautioned 
about the need for further training.

In 2013, Klinder et al. used a range of models [Geometric modeling, deformable models, curved planar 
reformation, generalized Hough transform (GHT) models, statistical models of shape, gradient, and 
appearance, 3-D deformable model approach, appearance model] to extract the spine curvature, along with 
vertebrae detection/identification/segmentation of CT scans[22]. The variety of scans tested included: 
cervical, thorax, lumbar, and whole spine images from multiple institutions. Pathological cases of scoliosis, 
kyphosis, compression fractures, postoperative pedicle screws, and arthritic spines were included in the 
dataset to diversify the training. A clinician manually created the ground truth comparison to ensure 
accuracy. The models were successful in 56/64 cases, achieving a mean point-to-surface error of 
1.12 ± 1.04 mm. The identification rate for single vertebrae was 70%, increasing with the number of visible 
vertebrae and reaching 100% when 16 or more vertebrae were present in the image.

Parameters that have gained higher importance in the last decade are sagittal balance and spinopelvic 
angles. Until recently, no single model algorithm had been able to automatically analyze these sagittal 
balance parameters. However, in early 2024, Löchel et al. published a study analyzing 141 patients with 
ASD, both preoperatively and postoperatively, using a landmark detection algorithm with a high correlation 
coefficient ranging from 0.71 to 0.9[23]. The model employs a Mask Region-CNN to segment the images, 
with preprocessing steps that highlight bony structures and adjust image quality for analysis. Relevant 
anatomical landmarks are then identified, primarily on the sacrum and L1 body, and a regression line is 
fitted through the detected points. To validate the model’s measurements, the processed images were 
compared with radiographs manually measured by two authors using SurgiMap Spine software as the 
ground truth. The model showed a detection rate of 91.5% for preoperative images and 84% for 
postoperative images.

Advancements in other non-orthopedic medical imaging demonstrate impressive progression in 
automation using machine learning (ML) and DL. Ghesu et al. employed a deep Q-network (DQN), a 
variant of CNN that utilizes a Markov decision process framework for decision making of anatomical 
landmark placement in cardiothoracic patients[24]. The system rewards actions proportionally to their 
proximity to the ground truth landmark of anatomical landmarks of the heart. The landmarks and their 
mean detection error (mm) are: left ventricle center (1.8 mm), right ventricle extremities (4.9 mm), right 
ventricle posterior (2.2 mm), and right ventricle anterior (3.7). The model performed well and predicted 
these landmarks with a convergence rate of 90%.

Kelm et al. proposed an automated analysis using marginal space learning (MSL) of disk selection and 
labeling, along with structure segmentation of MRI images, to provide a 3D model of vertebral bodies[25]. 
The spine’s general location is found, and disk candidates are generated, including the position, orientation, 
and scale. A global probabilistic model is applied, encapsulating candidates based on appearance and pose, 
allowing the model to make educated guesses on the parameters of the spine. The training utilizes an 
iterative process and clustering, fine-tuning the selection by re-evaluating candidates constantly to make the 
outcome picture look as close as it can to the learned data. The study consisted of 42 MRI images of healthy 
volunteers, with a sensitivity of 98.64% and a PPV of 99.68%. This AI assistance can support segmental 
labeling and allows precise targeting of pathological disks when diagnosing ASD.

In 2017, Jamaludin et al. used a 2D and 3D CNN model named SpineNet to predict pathological features on 
MRI[26]. The study was on T2 sagittal spinal sequences from 2,009 patients to detect the following: foramen 
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grading, disc narrowing, upper/lower endplate defects and marrow changes, spondylolisthesis, and central 
canal stenosis. Using an 80:10:10 train:validation:test and a multi-task loss function, the model displayed a 
near-human performance compared to the intra-rater kappa value of the radiologist. Jamaludin also reports 
that the model improved when changed from single-task to multi-task CNN. As an example, the detection 
of lower endplate defects went from 79.5% to 86.4%. The intra-rater reliability score averaged 82.5%, ranging 
from 70.4% to 92.5%. The 2D and 3D models averaged 85.7% and 86.3% respectively. When comparing 2D 
vs. 3D models, the 3D model performed similar or better than the 2D model. The largest improvement 
between the models was in analyzing spondylolisthesis, where the transition to the 3D model jumped from 
92.9% to 95.2%. Overall, the decision to use 2D vs. 3D models should be determined by the specific 
deformity at hand.

AI can increase the rate and accuracy of medical imaging, not only aiding radiologists in their diagnostic 
time but also reducing the scan time and reconstruction of each image. This will allow healthcare systems to 
minimize waiting time and give patients a faster diagnosis. Goodfellow et al. proposed a generative 
adversarial network (GAN), an implicit model that needs less data than other ML models[27]. The model is 
designed to generate entirely hypothetical sample images, like creating an image of a person that does not 
exist from images of existing celebrities. Although this technology is fascinating, it can be used in medicine 
to improve the image quality of scans from previously learned data.

Schlemper et al. and Souza et al. used CNN to accelerate data acquisition of MRI scans[28,29]. Schlemper’s 
model used dynamic 2D sequences of cardiac images and outperformed state-of-the-art methods across all 
factors, taking only 23 ms to reconstruct each sequence and an average of 8.21 s on a GPU, much faster than 
dictionary learning with temporal gradient (DLTG), which took 6.6 h on average. To further aid radiologists 
and spine surgeons, Xuan et al. developed a DLTG with a PP-YOLOv2 object detection model to diagnose 
spinal diseases on MRI with 98% accuracy[30]. The models were trained on a generic data set, and labeled by 
experienced spine surgeons into: Normal, lumbar disc herniation, and spondylolisthesis. The model 
provided diagnostic results with an average time of 14.5 s, compared to the ten-minute average Xuan et al. 
reports a spine surgeon will spend on each case[30]. This can help maximize clinician efficiency and spot 
possible missed diagnoses.

Current limitations in AI imaging models include reduced performance in patients with atypical 
deformities, variability in image acquisition, and lack of standardization in annotation practices. Improving 
training data diversity and leveraging multimodal data inputs may enhance sensitivity and diagnostic 
accuracy in future applications.

PATIENT BENEFITS
AI has already turned heads around the world with chatbots and image creators such as open AI’s 
ChatGPT, where any question can be asked, and the service will give an answer. The application of these 
chatbots can be useful for patients and clinicians, as demonstrated by Sri Lalitha et al. and Nimal et al. 
articles[31,32]. Sri Lalitha et al.’s system used a recurrent neural network (RNN) followed by a K-nearest 
neighbors (KNN) ML model for disease prediction and classification[31]. The training data, consisting of text 
and symptoms, was preprocessed into numerical format, and keywords and phrases of medical symptoms 
were extracted. The processed data are then fed into an input layer, followed by hidden layers of decision 
tree algorithms that classify the phrases and assign a score compared to the ground truth. The chatbot can 
then respond to the patient’s questions using natural language processing (NLP), giving them information 
on symptoms and directing them to an appropriate healthcare site. The study showed promising results: the 
RNN had an accuracy of 96%, but the KNN had the lowest at 70% compared to ground truth. These 
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chatbots can shorten patients’ waiting time from experiencing symptoms and can save clinicians time spent 
seeing patients that do not fit their respective fields.

AI-assisted real-time call centers are on the horizon, aiming to improve efficiency, boost productivity, and 
cut costs. Bian et al. reported alarming results with an AI-assisted follow-up conversational agent for 
postoperative orthopedic patients[33]. The system uses an automatic speech recognition (ASR) model that 
converts audio to text, which is then analyzed with natural language understanding (NLU) to determine an 
appropriate response. The response is formulated with natural language generation (NLG) and output as a 
human response to the patient. The results showed the AI system to be as effective as the manual method; it 
required no human intervention, spending close to 0 h per 100 patients, compared to the manual method, 
which required 9.3 h per 100 patients.

Ronckers et al.’s 2010 study on “Cancer mortality among women frequently exposed to radiographic 
examinations for spinal disorders” reported a worrisome 8% increase in cancer mortality, notably breast 
cancer, where they had a standardized mortality ratio (SMR) of 1.68 (68% increase) compared to control 
groups[34]. Maximizing patient safety should be the highest priority for any surgeon, and a reduction in 
radiation during spine surgery could add to the never-ending list of ways to provide a safer experience for 
patients and healthcare professionals. In 2006, Gebhard et al. illustrated that computer-assisted spine 
surgery (CAS) significantly reduced the duration and amount of radiation used in standard surgery[35]. CAS 
is often referred to now simply as “Navigation”, using imaging before or during surgery, and registering 
perioperatively to track instrument use. This method, compared to the old way of using fluoroscopy of 
sagittal and transverse views, translated to a reduced radiation time from 177 to 40 s, and an 86% decrease in 
radiation value in mGy when using the Iso-C3D C-arm.

As important as Gebhard et al.’s findings were, they are now a thing of the past, as most operating rooms 
use navigation guidance during spinal surgeries[35]. To lower the dose even more, there has been the 
development of low-dose spine CT[36], which uses substantially less radiation than traditional CTs. AI has 
the capability, as mentioned above, to use models to create high-dose CT quality at a low-dose quality 
expense with image reconstruction models. Wu et al. proposed a DL-based algorithm to improve low-dose 
CT scans with a split unrolled grid-like alternative reconstruction (SUGAR) network[37]. The model 
leverages DL, physical modeling, and prior images to produce high-quality scans from minimal projection 
data. Yang et al. proposed a GAN network model with Wasserstein distance and perceptual loss, which 
showed an advantage in noise reduction while retaining critical image features compared to the mean 
squared error (MSE) network[38]. The Wasserstein distance measures how different two datasets are by 
seeing how much effort it takes to make one of the datasets look like the other. Perceptual loss measures 
how much information is lost or changed in the enhancement process of images and helps retain the overall 
feeling of the original image. Chen et al. introduced the residual encoder-decoder neural network (RED-
CNN), designed to enhance images with a filtered back projection[39]. As the name suggests, it uses both a 
convolutional and deconvolutional layer to process scans within the image domain. The conventional layer 
compresses the input image into a smaller feature-rich representation, while the deconvolutional layer 
performs the opposite function to restore spatial details. This reconstruction process helps recover fine 
image details that may have been lost during encoding, thereby improving image quality and reducing 
noise. A backpropagation is implemented in the residual learning step, allowing the loss of deeper layers to 
be kept without diminution and, therefore, preserving image details. The RED-CNN uses small overlapping 
patches from full images, like observing each tile of a mosaic instead of the whole image, increasing training 
data and allowing the model to improve on finer details. The RED-CNN trains using an MSE loss function, 
quantitatively comparing output images to the ground truth using the peak signal-to-noise ratio (PSNR) 



Sigurdarson et al. Art Int Surg. 2025;5:283-97 https://dx.doi.org/10.20517/ais.2024.35                                                Page 289

and structural similarity index (SSIM). Chen et al.’s results for the CNN-MSE model were the second best 
overall, with a PSNR score of 24.0637 and SSIM of 0.7966[39]. The only model to beat the CNN-MSE was 
Dictrecon, but the output images were blurry and had waxy artifacts.

RISK CALCULATOR AND DECISION-MAKING TOOLS
A collection of research has shown that machines, especially artificial neural networks (ANNs), have 
significant potential in predicting complications and readmission for spinal surgeries. In 2017, Kim et al. 
modeled a 70:30 training:testing ANN and logistic regression (LR) models, with data from 22,629 patients 
from the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQI), to 
identify risk factors for complications of posterior lumbar spine fusion[40]. The control for performance was 
the American Society of Anesthesiologists (ASA) class. ANN and LR performed better than ASA at 
predicting all four major types of complications: wound, cardiac, venous thromboembolism (VTE), and 
mortality. The ANN model had the best AUC prediction for cardiac (ANN: 0.710, ASA: 0.468), while the LR 
performed best for VTE (LR: 0.588, ASA: 0.435), wound (LR: 0.613, ASA: 0.491), and mortality (LR: 0.703, 
ASA: 0.369). Both the ANN models developed by Kuris et al. and Hopkins et al. successfully predicted 
readmissions using NSQIP data[41,42]. Kuris et al. reported being successful in predicting 30-day readmission 
for ALIF (94.6%), PLIF (94%), and PSF (92.6%)[41]. Hopkins et al.’s model achieved a mean and median PPV 
of 78.5% and 78.0% and an NPV of both mean and median 97%[42]. An impressive AUC was also found, 
averaging 0.812.

Accurately and efficiently predicting patient outcomes using AI involves: leveraging ML/DL trained on 
prior cases to generate background data, organizing new cases into subcategories, and then allowing AI to 
suggest what will be the best solution from what it has learned. Ames et al. applied a hierarchical clustering 
ML prediction model to analyze and categorize 570 confirmed ASD patients into three subcategories[43]: 
Young with coronal plane deformity, older with prior spine surgeries, and older without prior spine 
surgeries. The patients were split into either an objective group that included: age, sex, height, weight, and 
number of previous spine surgeries; and a subjective group that utilized patient-reported outcome measures 
that assessed the patient’s health status at a given time. The selected surgical parameters included: the 
number of previous spine surgeries, approach, number of fused vertebral levels, pelvic fixation, operative 
time, estimated blood loss, and length of hospital stay. Additional covariates included the use of 
transforaminal lumbar interbody fusion (TLIF), anterior interbody fusion (ALIF), and osteotomy types. The 
model outcomes were then grouped to compare subcategories based on major complication rates and to 
identify which surgical parameters were associated with the highest success rates. This approach was further 
developed by Durand et al. to include the analysis of sagittal plane morphology[44]. Like Ames et al., the 
retrospective study identified six different clusters (A-F) of preoperative lateral spine radiographs with 
unique spinal shapes and characteristics[43]. The outcome measures included: Oswestry disability index 
(ODI), proximal junctional kyphosis (PJK), proximal junctional failure (PJF), sagittal vertical axis (SVA), 
three column osteotomy (3-O), and upper instrumented vertebrae (UIV). The model showed certain 
clusters that were disproportionately higher in ODI, PJK, and PJF. Durand et al.’s findings conclude that the 
model is capable of predicting the factors mentioned, providing healthcare professionals with a reference to 
compare mean spine shapes for enhanced clinical decision making[44].

SURGICAL APPLICATIONS
Howe et al.’s paper published in 1999 foreshadowed what was to be a standard in modern healthcare[45]. 
Robots enable surgeons to perform minimally invasive surgeries, use image-guided assistance, and perform 
with higher accuracy. The main challenges reported in the 1999 article were: clinician acceptance, financial 
burdens of these robotics, performance reliability, and safety concerns. To be considered viable for clinical 
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use, robotic systems would have to improve patient safety, lower costs, or achieve both. The growth of 
surgical technology is exponential, demonstrated today with the Da Vinci telerobotic surgical system[46], 
allowing surgeons to operate from a computer screen with greater dexterity and accuracy. The navigation 
system used in spine and brain surgery mentioned previously is now standard, making techniques of the 
past seem primitive[47].

The advancement in AI-driven robotic spine surgery has shown promising results in improving accuracy, 
safety, and patient outcomes. Perioperative navigation and robotics, augmented reality (AR), and virtual 
reality (VR) training not only contribute to enhancing surgery precision and aiding patient recovery time 
but can expedite resident training on specific simulations. Rajasekaran et al.’s RCT study of 27 patients with 
thoracic spine deformity, involving a total of 478 thoracic pedicle screws, showed a staggering 23% pedicle 
breaches and 16% penetration into the anterior or lateral cortex in the non-navigation group, compared to 
2% and 0.8% in the navigation group, respectively[48]. The navigation system also dropped screw insertion 
time by nearly half and minimized radiation, as discussed in the previous text. Kosmopoulos et al.’s meta-
analysis of pedicle screw placement accuracy supported this finding when comparing screw violations[49].

Kim et al.’s prospective RCT on 78 patients with degenerative spinal disease undergoing PLIF compared 
minimally invasive robot-assisted to a conventional freehand (FH) technique using fluoroscopy[50]. The 
robot-assisted surgery used thin-slice CT scans to determine the optimal pedicle screw insertion path, select 
the appropriate implant size, and identify anatomical abnormalities. A Renaissance Surgical Guidance robot 
that can be precisely controlled was mounted on the operating table and secured on the spinous process of 
the desired vertebrae segment. A double verification via fluoroscopy is performed to ensure perfect 
alignment of the patient’s anatomy. Results showed a non-significant intrapedicular accuracy (P = 0.534), 
but the robot-PLIF significantly reduced violations of the proximal facet joint (P < 0.001), and demonstrated 
a superior convergence orientation of the screws (P < 0.001) to ensure a safer distance from critical 
anatomical structures. This result of pedicle screw placement accuracy differs from that of studies such as 
Lonjon et al., who reported an accuracy of 97.3% with robot-PLIF vs. 92.0% with the FH PLIF[51].

Kim et al. provided a comparative follow-up study of 1-year clinical and radiological outcomes[52]. The 
results stated that there were no significant differences between the two groups in ODI scores (P = 0.688), 
but a significant difference in disc height decrease in the robot-PLIF group (P = 0.039). D’Souza et al. 
performed a systematic review of robotic-assisted spine surgery, comparing several studies on accuracy, 
radiation exposure, and operative time[53]. They found that some studies showed that robot-assisted 
surgeries could improve accuracy and lower radiation exposure, but none of them resulted in faster 
operating times.

VR and AR are both perception-altering technologies that offer value in spinal surgery, but their 
experiences differ. VR allows surgeons and residents to train inside a simulation with the advantage of 
having a fail-safe for mistakes. Surgery resident training seeks to benefit from the innovative ways VR has 
evolved, as demonstrated in a pilot study performed by Ponce et al. on telementoring with a virtual 
interactive presence (VIP)[54]. The study assessed the effectiveness of the VIP in 15 surgeries, allowing 
attending surgeons to provide real-time assistance to resident surgeons performing surgery. The VIP uses a 
hybrid visual overlay and telestration, allowing attending surgeons to virtually “reach into” and even draw 
on the video feed to highlight anatomical structures and direct upcoming steps. Although a small sample 
size with only one attending surgeon participating, both attending surgeon and residents considered this 
favorable and easy to use, with possibilities to enhance training quality and quantity. Bissonnette et al. 
hypothesized whether AI could objectively distinguish between different levels of surgical training in a VR-
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simulated hemilaminectomy[55]. Participating residents were classified into either senior or junior groups 
based on their training level, and twelve performance metrics were analyzed. A support vector machine 
(SVM) was trained to identify performance metrics with an accuracy of 97.6% to distinguish between the 
two groups, providing a standardized objective assessment. Immersive virtual reality (IVR) has been shown 
to enhance technical and non-technical surgical skills compared to traditional learning methods[56]. Lohre’s 
blinded, multicenter RCT of 19 senior orthopedic residents and 7 consulting attending surgeons, aimed to 
compare IVR with traditional learning methods when performing glenoid exposure, using technical journal 
articles as a control. The IVR system included a head-mounted display (HMD) to immerse them in a virtual 
OR, a haptic controller with tactile feedback, and a feedback system on performance. No difference was in 
resident pre-surgical training, simulation familiarity, or previous VR training. The IVR group was 
significantly faster (14 ± 7 min) compared to the control group (21 ± 6 min) at completing the cadaveric 
dissection. Not only did the IVR show improved surgery and training module time, but resident instrument 
handling was also significantly better, and residents reported enjoying the learning activity (mean 4.8/5 IVR 
vs. 3.3 traditional). AR can apply computer-generated images to real-world scenarios, acting as a real-time 
guide. In 2013, Abe et al. introduced a novel AR system called virtual protractor with augmented reality 
(VIPAR), which aimed to improve the safety of percutaneous vertebroplasty of osteoporotic vertebral 
fractures[57]. The HMD was equipped with a tracking camera and ARToolKit AR software. Before surgery, 
patients undergo a 3D CT scan of the pathological spinal region, and a trajectory analysis is performed to 
optimize the patient’s respective anatomy. The study is split into two parts: 40 computer simulations of 
spine phantoms that resemble human anatomy and then 5 patients to evaluate real-world practicality. The 
error of inserted angle (EIA) was assessed in two groups A and B, comparing groups using VIPAR and a 
non-VIPAR group. Both groups showed a statistically significant improvement using the VIPAR, with an 
average improvement from 4.34° to 0.96° in the axial plane, and 2.55° to 0.61° in the sagittal plane. Looking 
at the real-world application, a postoperative 3D CT scan of the bilateral needle insertion resulted in an EIA 
of 2.09° in the axial plane and 1.98° in the sagittal plane.

Great leaps have been made in the applications for minimally invasive spine surgery (MISS) in recent years, 
as it has the potential to shorten hospital stays, minimize blood loss, and cause fewer wound infections[58]. 
Burström et al.’s feasibility and accuracy study on the augmented reality surgical navigation (ARSN) system 
with instrument tracking on pig cadavers showed great promise[58]. The system found improved surgical 
precision, utilizing AR to track instruments and navigate by overlaying digital information into the 
surgeon’s field of view, and VR to visualize 3D anatomical features in real time with enhanced spatial 
understanding. The study reported an advantage in accuracy, ranging from 97.4% to 100% depending on 
screw size, but also noted that the ARSN system does not require ionizing radiation during navigation. 
Elmi-Tarander et al.’s article was the first ARSN system researched on 20 patients undergoing pedicle screw 
placement[59], differing from Burströms et al. by using a C-arm with 2D/3D and only using AR to perform 
pedicle screw placement. The overall accuracy reported was 94.1%, with 5.9% of the screws being moderate 
breaches and none that were severely misplaced. The study also noted that most screws inserted were in the 
thoracic spine (64.4%), the most common range for lower accuracy insertion due to smaller pedicle size. 
Elmi-Tarander et al. followed up with a retrospective study comparing the ARSN group of 20 patients to a 
control group using traditional FH fluoroscopy[60]. A significantly higher screw placement accuracy was 
found in the ARSN, 93.9% compared to 89.6% FH, and a much higher rate of screws with no cortical breach 
(63.4% vs. 30.6%). These studies show how AR and VR can work together in the operating room to give 
surgeons more flexibility and insight for complex cases.

While still in the early stages, real-time AI-guided interventions are emerging in surgical planning and 
navigation. Challenges include integration with existing intraoperative systems, latency in image processing, 
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and ensuring surgeon interpretability and control. Further validation studies and close collaboration with 
engineers will be critical to safe implementation.

PERIOPERATIVE APPLICATIONS
Peri- and postoperative blood transfusions are a common practice, ranging from 27% up to 90% in some 
studies. An AI algorithm could minimize unnecessary RBC transfusions and highlight patients who are at 
risk for improved preoperative planning. Raman et al.’s study on conditional inference tree analysis of ASD 
surgeries was able to predict combinations of variables associated with intraoperative blood loss and 
perioperative RBC transfusions[61]. High-risk groups identified were: Fusion of more than 13 levels, ASA 
score greater than 1, history of hypertension, 3-column osteotomies, pelvic fixation, and surgery lasting 
longer than 8 h. Durand et al.’s random forest model supports these findings, reporting an 80:20 
training:validation model that showed an AUC of 0.85[62]. A simple classification tree was compared, 
producing an AUC of 0.79, proving an advantage of the ML random forest model. Newer studies, such as 
that by De la Garza Ramos et al., continue to back the use of AI in predicting patient groups that are likely 
to need blood transfusions[63]. The overall accuracy reported was 81% on the training data (70%) and 77% on 
the testing data (30%), with a sensitivity of 80% and an AUC of 0.84.

ASD PROGRESSION
An emergent application of AI in spine surgery has been the development of models to predict the 
progression of pathology in ASD, both in regard to nonoperative management and surgical intervention. In 
the early stages of predictive models for spinal progression, Nault et al. sought to develop a model that 
incorporated clinical characteristics, specifically skeletal maturity, and radiographic findings to predict the 
final Cobb angle of patients[64]. The authors developed a model with backward step regression that was then 
validated with a Bland-Altman method, which determined the goodness of fit to be 0.643. These findings 
demonstrated that while such primitive models had predictive merit, there was a significant need to refine 
and develop learning models with better performance.

In 2020, Wang et al. produced a DL model that implemented radiographs from an AIS patient’s first visit to 
distinguish between progressive and non-progressive curves[65]. The use of a self-attentive capsule learning 
network was found to outperform traditional CNNs and clinical parameter-based models. This study 
suggests the potential for automated prediction of AIS curve progression using DL and radiomics, which 
could guide treatment decisions at the initial visit, such as early bracing for at-risk patients. Looking beyond 
the clinic, Zhang et al. sought to develop a model that could assess spinal deformity progression with the use 
of a patient’s unclothed back appearance taken from a smartphone photograph[66]. This model, performing 
at an overall level of 91%, was found to have an AUC of 0.757 in distinguishing curve progression, 
suggesting a simple DL app has the promise for managing scoliosis in children outside of hospital settings, 
without radiation exposure. As researchers aim to expand the application horizons of AI, they also seek to 
strengthen the predictive value of these models. Zhao et al. produced a robust model known as 
SpineHRReformer that sought to characterize Cobb angles without the loss of efficiency from segmentation 
and endplate slope calculation[67]. This study produced a DL model that combined the transformer blocks 
and heatmap approaches to reliably produce spinal deformity assessments. One of the more worthy models 
described thus far, SpineHRReformer, performed at correlation coefficients exceeding 0.8 in predictive 
values.

DISCUSSION
As healthcare progressively digitalizes, a massive aggregate of patient data can materialize into new frontiers 
with AI and ML. These technologies are starting to revolutionize medical practices by providing 
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comprehensive, data-driven approaches for complex spinal pathologies in an efficient manner. They 
enhance decision making from patient selection to intraoperative strategies, fostering a cycle of self-
improving computational analysis. Recent innovations have tapped into AI prowess in surgical settings as 
well as education. We sought to outline these current implementations, particularly emphasizing ones that 
have not previously been reviewed. The caveat with all emerging technologies is the limitations. The 
applications of AI/ML seem to have no bounds so the task at hand is the quality assurance of these 
applications.

When AI models are trained on datasets that are limited in diversity and size, they are prone to become too 
closely aligned with the dataset in question, capturing noise or specific patterns that do not generalize well 
to new datasets[68,69]. Consequently, these models run the risk of misdiagnosis or misinterpretation by 
consumers. In the various subsets of applications we outlined above, we attempted to capture the extent of 
validation of these models - how tried and true the results truly are. Frequently, we noted models that were 
internally validated with discrimination, decision, ROC and AUC analysis. The most observed splits are 
70:30 or 80:20. To mitigate overfitting, many studies employed techniques such as L2 regularization, 
dropout layers in neural networks, and k-fold cross-validation. These methods enhance the robustness of 
models and ensure that performance is more likely to generalize across clinical settings. We rarely 
encountered instances where the models were externally validated against other datasets. This trend can 
partially be explained by the intersecting culture of academia and industry, where the goal is to be the front-
runner of a concept and not necessarily the one to deliver the polished version[70,71]. External validation 
remains a key challenge in the development of AI models for ASD. The lack of multi-institutional datasets 
and standardized imaging protocols limits generalizability. Future efforts should focus on collaborative 
databases and benchmarking to enhance external validation opportunities. Thus, while we appreciate the 
endless possibilities presented by AI, we advise cautionary use of compromised products outputted purely 
to match this pace and not sufficiently validated. Regulatory bodies such as the US Food and Drug 
Administration have ongoing discussions about placing a nutrition label equivalent on these models to 
properly advise the scientific community and its consumers[72]. Patients and surgeons alike should aim to 
use AI in provision with their joint decision-making process.

However, we do not intend to simply provide a cautionary tale but also encourage the celebration of 
technology that will inherently spearhead the evolution of our field. Thus far, we have heavily commented 
on the potential AI demonstrates for spinal surgeons. There is also a plethora of future directions for 
patients. A growing body of literature substantiates the use of AI for health literacy among patients[73]. It has 
been well established that patient-reported outcomes increase with the level of transparency surrounding 
their care. AI can supplement the discussions patients have with their providers and inherently bolster 
satisfaction with their treatment plans[74]. AI can also provide a level of continuous health monitoring that 
can alert patients to health events not immediately apparent. Following spinal surgery, patients are 
frequently referred to physical therapy. AI can be utilized to record these sessions and evaluate the 
outcomes to gauge recovery progress. At the interface of operating surgeons and patients is a series of 
communication and care delivery that is often inefficiently done because of conflicting schedules. AI can 
automate and increase the availability of these services, maximizing the satisfaction patients have with ease 
of access while simultaneously reducing the financial strain on healthcare systems. Ultimately, the 
concomitant public health initiatives that surface from this technological trend will define the patient care 
continuum for generations to come.
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CONCLUSION
AI has shown promising applications in imaging analysis, surgical planning, and outcome prediction for 
ASD. Despite these advancements, key challenges remain in data standardization, external validation, and 
real-time clinical integration. Future research should focus on multi-institutional collaborations, 
interpretability, and prospective clinical trials to fully realize the potential of AI in this domain.
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