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INTRODUCTION

Saccular intracranial aneurysms (IAs) are the most 
frequent cause of subarachnoid hemorrhage (SAH), 
the stroke type with the higher morbidity and 
mortality.[1,2] A precise evaluation of their rupture 
risk is crucial to orient treatment of unruptured IAs 
relatively to the risk of endovascular or surgical 
treatment.[2-7] Statistic studies involved patients 
suffering from aneurysm rupture found that cigarette 
smoking, arterial hypertension, ethnic origin, age, 
previous SAH, size ≥ 7 mm, localization of IAs at the 
posterior circulation and aneurysm’s shape are the 
most important variables regarding the rupture risk.[2-7] 

However, the majority of IAs diagnosed following 
their rupture is small and located on the anterior 
circulation,[8,9] which indicates that the statistical 
approach does not allow individualizing the risk of 
rupture. Elucidating the pathogenic pathways inherent 
to the development and rupture of IAs may allow 
identifying more reliable markers of rupture-prone IAs. 
A growing body of evidence supports the correlation 
between modification of hemodynamic factors and 
arterial wall alteration leading to IAs development 
and rupture.[10-13] Particularly, wall shear stress (WSS) 
gradient might be an important factor of vascular 
remodeling through multiple mechanisms involving 
endothelial cells (ECs) and vascular smooth muscle 
cells (VSMCs) modification of gene expression 
triggered by local inflammatory reaction and leading to 
degenerative changes of arterial wall.[14] In this article, 
we summarize the existing data, extracted from a review 
of the pertinent literature, regarding inflammation and 
hemodynamic stress in the pathogenesis of IAs. Our 
endeavor is to explore the causative relationships 
that may link hemodynamics, inflammation, vascular 
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remodeling and the development and rupture of IAs. 
This approach may provide effective tools to predict 
the individual risk of aneurysmal rupture more reliably 
than statistical methodology.

METHODS OF THE REVIEW

The literature review was conducted using Medline 
and EMBASE searches that included works published 
between 1980 and 2014. The terms “IA” and “cerebral 
aneurysm” were used as text words and MESH headings 
with appropriate subheadings. A further search was 
performed to link cerebral and IAs and the following key 
words: inflammation, hemodynamic(s), remodeling, 
macrophages, neutrophils, lymphocytes, complement, 
VSMCs, mast cells, cytokines, and inflammatory 
biomarkers. Textbooks, journal bibliographies, and 
conference proceedings were also included. Language 
restrictions were not used.

INFLAMMATION AND INTRACRANIAL 
ANEURYSMS REMODELING

The central nervous system is an immunologically 
active environment where a complex set of interactions 
links the various constituents of the immune and 
inflammatory system with the constituents of nervous 
tissue and vasculature.[15] Aneurysm formation begins 
with a hemodynamically triggered endothelial 
dysfunction where inflammation initiated by nuclear 
factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) activation and imbalance between nitric 
oxide (NO) and peroxynitrite anion (ONOO−) in favor 
of ONOO− seem to hold a key role.[16] The following 
mounting inflammatory response implicates several 
inflammatory cells and mediators and phenotypic 
modulation of VSMCs from a contractile to a 
pro-inflammatory/pro-matrix remodeling phenotype 
with myointimal hyperplasia, inflammation and wall 
degeneration.

Several in vitro and in vivo studies found evidences 
that infiltration of inflammatory cells in the arterial 
wall initiates aneurysm formation and promotes its 
rupture through production of inflammatory cytokines, 
adhesion molecules, immunoglobulins, reactive 
oxygen species (ROS), complement and inflammatory 
cell-induced upregulation of matrix-degrading 
proteinases, among which macrophages, neutrophils, 
and lymphocytes hold a central role.[17,18]

Macrophages
Monocytes originally produced in bone marrow enter 
circulation and infiltrate endothelium at the site of 
the hemodynamic injury, where they differentiate into 
macrophages.[18] Macrophage is one of the first cell 

types to respond to injury, but it also regulates the later 
immune response.[18] The role of these inflammatory 
cells in IAs formation is demonstrated by the fact that 
macrophage depleted mouse displays a lower risk 
of IAs.[19] Macrophage action on the arterial wall is 
mediated by secretion of cytokines and proteinases.

Cytokines are peptides, proteins, and glycoproteins 
that mediate inflammatory and immune response.[20-22] 
Several cytokines secreted by macrophages have been 
found involved in the pathogenesis of IA especially 
monocyte chemoattractant protein-1 (MCP-1), tumor 
necrosis factor alpha (TNF-α), stromal cells derived 
factor-1 (SDF-1/CXCL12). MCP-1 is a chemotactic 
cytokine, also known as chemokine, for monocytes, 
lymphocytes, and some granulocytes secreted by 
macrophages.[23] Its implication in the development 
of IAs is demonstrated by a decrease of IAs and 
arterial wall inflammation in MCP-1 knockout 
mice.[24] TNF-α is another proinflammatory cytokine 
secreted by macrophages.[18] Experimental data 
suggest a critical role of TNF-α in the formation and 
rupture of aneurysms in a murine model of cerebral 
aneurysm formation induced by hypertension and a 
single stereotactic injection of elastase into the basal 
cistern.[25] TNF-α knockout mice and those pre-treated 
with 3,6’-dithiothalidomide (DTH), a synthesized TNF-α 
inhibitor, had significantly decreased the incidence of 
aneurysm formation and rupture as compared to sham 
mice. Protein and mRNA expression of TNF-α in the 
cerebral vasculature were not significantly different 
in TNF-α knockout mice and in those pre-treated 
with DTH. However, TNF-α expression was higher in 
unruptured and the highest in ruptured aneurysms 
when compared to other conditions of aneurysms, 
where it co-localized to both smooth muscle cells 
and macrophages. SAH occurred between 7 and 
21 days following aneurysm induction. Initiation of 
DTH treatment 6 days after aneurysm induction did 
not alter the incidence of aneurysm formation but 
resulted in aneurysmal stabilization and a significant 
decrease in rupture. Therefore, it can be inferred 
that inhibitors of TNF-α could be beneficial in 
preventing aneurysmal progression and rupture.[25] 
TNF-α upregulates the adhesion molecules such as 
intercellular adhesion molecule-1 (ICAM-1), vascular 
cell adhesion molecule-1 (VCAM-1) and E-selectin 
in ECs, fibroblasts, and SMCs.[26] These adhesion 
molecules attract and facilitate migration of leucocytes 
through the arterial wall, predisposing to atherosclerosis 
and IAs development.[26] Macrophages secrete also 
another potent chemoattractant cytokine, such as 
SDF-1/CXCL12.[27-29] Besides promoting angiogenesis by 
recruiting endothelial progenitor cells from the bone 
marrow through a CXCR4 dependent mechanism,[30] 
SDF-1 is associated with angiogenesis and migration 
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and proliferation of macrophages in the walls of 
human and murine aneurysms, possibly playing a 
role in the development of IAs.[31] Macrophages also 
directly promote degradation of ECM by secreting a 
zinc and calcium-dependent family of endopeptidases 
known as matrix metalloproteinases (MMPs) and 
modulate their activity by producing tissue inhibitors 
of metalloproteinases (TIMPs), MCP-1 and TNF-α.[32-34] 
Beside from degrading all kinds of ECM proteins, 
these proteinases, particularly MMP-9 secreted also 
by VSMCs,[35,36] induce macrophage migration and 
infiltration across ECM.[37] Overexpression of MMP-9 
in the wall of excised IA was first documented by 
Kim et al.,[38] followed by Takemura et al.[39] who later 
showed by immunohistochemical analysis of the 
overexpression of MMP-1, -2, and -9 in aneurysm 
walls. Moreover, the levels of MMP-2 and -9 were found 
to be higher in ruptured compared with unruptured 
aneurysms in a series of 30 patients, suggesting that 
MMP-mediated excessive breakdown of vessel ECM 
eventually leads to aneurysmal rupture.[40] The central 
role of MMPs in the pathogenesis of IAs is further 
demonstrated by the fact that inhibition of TIMPs 
promotes aneurysm formation in a rodent model.[41] 
Under physiological conditions, MMPs production is 
regulated at the level of transcription. An imbalance 
between the active MMPs and TIMPs leads to the 
accelerated destruction of connective tissue associated 
with several vascular diseases including IAs.[42]

Neutrophils
Other important inflammatory cells migrating to 
the site of arterial injury are neutrophils. As for 
macrophages, they secrete cytokines and MMPs. In 
addition, they produce peroxidases.[18] The array of 
neutrophil-derived cytokines is similar to that of 
macrophages, including TNF-α and cxc-chemokines 
such as interleukin (IL)-1β. However, unlike 
macrophages, they do not secrete cc-chemokines such 
as MCP-1.[39] IL-1β and cxc-chemokines are involved 
in various inflammatory cellular activities such as 
cell proliferation, differentiation, and apoptosis. 
Upregulation of IL-1β in animal models of IAs is 
associated with aneurysm formation and progression 
by reduced collagen biosynthesis in the aneurysm wall 
both at the transcriptional and post-transcriptional 
levels.[43,44] In addition, neutrophils secrete macrophage 
inflammatory protein 1-α, which reinforces cytokines’ 
action to promote inflammatory cell recruitment, 
migration, activation, and differentiation.[45]

Lymphocytes
Other first-responding inflammatory cells found in 
IAs wall are lymphocytes. They infiltrate arterial 
wall in early phases of aneurysm formation and 
rupture.[46] They are involved in the production of 

proinflammatory cytokines such as TNF-α, interferon-γ 
(IFN-γ) and IL-6.[47]

Complement
The role of complement in the mechanism of IA 
formation is not fully elucidated. In one study by 
a Helsinki group that compared ruptured with 
unruptured IA, the expression and activation of 
complement membrane attack complex were greater 
in ruptured samples and was associated significantly 
with aneurysm wall degeneration and inflammatory 
cell infiltration.[48] These authors showed in another 
study that complement activation occurs via the 
classical pathway as evidenced by the presence of 
classical pathway activators (IgG, IgM, C restive 
protein, oxidized low-density lipoprotein) in the IA 
wall.[49]

Vascular smooth muscle cells
As mentioned above, VSMCs are crucial in the process 
of IAs formation, and rupture. They are mostly found 
in the medial layer and synthesize the matrix for the 
structural integrity to the arterial wall. Thinning of this 
layer contributes to aneurysm formation and rupture.[50] 
In response to endothelial injury VSMCs first migrate 
into the intima where they multiply and give rise to 
myointimal hyperplasia.[51] Successively, VSMCs from a 
differentiated phenotype whose primary characteristic 
is contraction, dedifferentiation, losing capacity of 
expressing contractile genes, like myocardin, acquiring 
the capacity to express genes that may affect the rigidity 
or elasticity of the vascular wall such as collagen alfa2(I) 
gene (COL1A2) and upregulating proinflammatory 
genes, such as MMPs, MCP-1, VCAM 1, and IL.[52,53] 
This phenotypic modulation of VSMCs is induced 
by TNF-α and mediated by Kruppel-like transcription 
factor 4.[54] Phenotypically modulated VSMCs are no 
longer in spindle shape forming tightly compacted 
bands, but spider-like cells dissociated from each 
other, nonproliferating and noncontractile.[55] Likewise, 
aneurysmal rupture is associated with degeneration 
and caspase-mediated apoptotic loss of VSMCs of the 
aneurysm wall.[17,56,57]

Mast cells
Although best known for their role in allergy and 
anaphylaxis, mast cells play an important role in the 
inflammatory reaction leading to IAs formation and 
rupture mainly via cytokines release and expression 
and activation of MMPs.[58] Indeed, IAs formation is 
associated with the proliferation and degranulation 
of mastocytes, and ruptured aneurysms wall is richer 
in mast cells than unruptured IAs.[59] The finding that 
inhibitors of mast cell degranulation decrease the 
inflammatory reaction in aneurysm walls and block 
the progression of IAs in mice further support the 
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participation of mast cells in the pathogenesis and 
rupture of IAs.[58]

Inflammatory cells interaction and arterial wall degeneration
Inflammation of arterial wall leading to formation 
of IAs is initiated by the infiltration of inflammatory 
cells (macrophages, neutrophils and lymphocytes), which 
release proinflammatory cytokines and proteinases as 
well as chemokines and chemoattractant cytokines, 
for the upregulating recruitment of inflammatory 
cells into the aneurysm wall.[60,61] In particular, levels 
of MCP-1, chemokine (C-C motif) ligand-5 (CCL5), 
monokine - induced-by- [gamma] - in te r fe ron , 
interferon-[gamma]-induced protein-10, Eotaxin, 2 
other chemokines, IL-8 and IL-17 have been found to 
be higher in blood samples taken from the lumen of 
human IAs than blood samples from femoral arteries 
of the same patients.[61] Inflammatory cytokines lead to 
degradation and apoptosis of ECs and VSMCs through 
activation and upregulation of immune cells migration 
and activity.[21] Immune cells target not just cells but also 
ECM, the scaffolding structure that provides the arterial 
wall with tensile strength, elasticity, compressibility, 
adhesiveness as well as communicability between 
cells constituting the vessel wall.[17,18] In particular, 
macrophages secrete MMPs resulting in excessive 
proteolytic activity against connective tissue proteins, 
including collagens, elastin, and proteoglycans, which 
causes focal degradation of the vascular ECM and 
may contribute to aneurysm formation and growth.[31] 
Macrophages, in conjunction with lymphocytes, also 
act on VSMCs, for vessel wall remodeling.[21] Cytokines 
and growth factors secreted by macrophages and 
T-lymphocytes affect VSMCs phenotype changes[62] and 
promote their apoptosis.[48,63,64] One of the key initiators 
of apoptosis is interaction between the Fas receptor, 
which is expressed on the surface of both inflammatory 
cells and VSMCs, and its ligand (Fas-ligand, Fasl), 
which is expressed on the surface of macrophages and 
T-lymphocytes.[65] Their interaction induces VSMCs 
apoptosis through upregulation of cytokines such as 
TNF-α and interferons expressed by inflammatory 
cells.[17,54,56,57] These cytokines promote also the synthesis 
of NO, another factor inducing apoptosis.[66] Apoptotic 
loss of VSMCs induces arterial wall weakening by 
reducing matrix synthesis.[63,64]

HEMODYNAMIC FACTORS INDUCE ARTERIAL 
WALL INJURY AND INITIATE WALL 
INFLAMMATION

Endothelial dysfunction initially and vascular 
remodeling subsequently are triggered by shear 
stress.[67] This explains why IA is commonly found at 
arterial junctions, bifurcations or abrupt vascular angles 
where excessive hemodynamic stresses are exerted on 

arterial walls.[68] There is a close relation between 
WSS, endothelial dysfunction, and the downstream 
inflammatory reaction.[69,70]

Computational flow dynamic studies coupled with 
histological studies of the aneurysm wall demonstrated 
a correlation between hemodynamic conditions and 
inflammatory changes of intracranial arterial wall 
leading to aneurysm formation and rupture.[10-13,70] 
The most highlighted, even though, controversial 
factor studied is WSS,[12,71,72] which is the component 
of the forces coplanar with the cross-section of the 
artery, originating from blood circulation and acting on 
arterial walls.[73] WSS is related to dynamic viscosity 
of blood, flow velocity parallel to the arterial wall and 
distance of the vector to the wall.[73] Whether high or 
low WSS is involved in the arterial wall inflammatory 
damage, and development and rupture of IA are still 
matter of debate.[74] Hemodynamics in IAs is complex 
and includes areas of low and high WSS.[71,72] Several 
studies show that exposure to abnormal WSS drives 
endothelium-mediated proinflammatory reactions,[75] 
MMPs activation,[76-79] apoptosis of ECs and VSMCs,[80] 
ECM degradation, and arterial wall remodeling.[36,81] 
Spatial gradients and changes in WSS magnitude 
regulate ECs gene expression through the upregulation 
of transcription factors such as NF-κB under the 
conditions responding to cytokines, free radicals 
and other stimuli implicated in cell survival.[82-84] 
Oxidative stress in the arterial wall promotes IAs 
formation inducing direct endothelial injury, VSMCs 
phenotypic modulation and apoptosis, recruitment and 
invasion of inflammatory cells through upregulation 
of chemotactic cytokines and adhesion molecules, 
and MMPs activation.[85] Oxidative stress reflects an 
imbalance between the production of ROS and the 
arterial wall’s ability to readily detoxify the reactive 
intermediates or to repair the resulting damages. The 
ability of the arterial wall to counteract oxidative 
stress effects largely repose on NO action.[16] NO is an 
endothelium-derived relaxing factor that has several 
actions translating in anti-atherosclerotic properties: 
it modulates vasomotor tone, inhibits expression of 
MCP-1 and VCAM-1, prevents propagation of lipid 
oxidation, inhibits VSCMc proliferation, decreases 
platelet aggregation[86] and inhibits expression and 
activity of MMPs.[86] Practically, all risk factors for 
arterial wall damage (hypercholesterolemia, diabetes, 
insulin resistance, arterial hypertension, cigarette 
smoking) reduce production of endothelial NO 
through increased production of superoxide and 
other ROS.[16,86-90] These strong oxidants both disrupt 
NO-mediated arterial wall protection decreasing 
availability of NO and promote arterial wall 
inflammation increasing ONOO− production.[16,86-90] 
Under physiological conditions, unidirectional laminar 
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shear stress increases NO availability through a biphasic 
action: within seconds after stress the endothelial nitric 
oxide synthase (eNOS) enzyme expressed in ECs is 
activated by a calcium-independent mechanisms.[91] 
Subsequently, eNOS expression is upregulated through 
NF-κB activation by a transient, one hour lasting, 
increase in eNOS mRNA transcription and a sustained 
increase in eNOS mRNA stability.[92] However, NF-κB 
activation leads also to an increased expression of 
pro-inflammatory genes encoding cytokines, VCAM-1, 
ICAM-1, tissue factor and MCP-1.[16,86-90] At a first 
glance, the NF-κB mediated protective and damaging 
effect appears to be contradictory. Nonetheless, the 
evidence of a negative feedback pathway on NF-κB 
activation mediated by NO production resolves 
this apparent paradox. If eNOS levels are relatively 
high, sufficient NO is produced to shut down NF-κB 
activation soon after shear is applied to endothelium 
through a classical negative feedback pathway.[16] 
Conversely, if eNOS levels are relatively low, NF-κB 
activation persists enough to restore eNOS to normal 
levels in order to ensure a long-lasting protection 
to ECs. The double effect of NF-κB activation also 
explains why shear stress may reveal both harmful 
and protective to endothelium. As a matter of fact, 
in case of alteration of the inhibitory limb of the 
NO-mediated negative feedback, the proinflammatory 
action of shear stress prevails, leading to endothelium 
damage, with elongation, migration, change in density, 
and loss of ECs and to VSMCs phenotype change with 
acquisition of pro-inflammatory/pro-matrix remodeling 
properties.[17,50,61] ROS may also play a role in the 
pathogenesis of IAs.[93,94] Aoki et al.[95] demonstrated 
the upregulation of genes producing ROS and the 
downregulation of ROS-eliminating genes in a murine 
model of IAs. Moreover, the same study showed a 
similar effect of edaravone, a free radical scavenger, 
and of the deletion of ROS-producing gene: in two 
separate groups of animals both effectively inhibited IAs 
formation by suppressing inflammation in aneurysmal 
walls.[95] Moreover, low WSS may provide upregulation 
of proinflammatory cytokines and their receptors, such 
as IL-1α, IL-1 receptor, IL-6, and MCP-1.[96] In addition, 
an in vitro study showed that WSS on ECs causes a 
differential modulation of TNF-α-induced expression 
of adhesion molecules such as ICAM-1, VCAM-1, 
and E-selectin by reducing intracellular ECs ROS 
levels.[97] This may cause inhibition of TNF-α-induced 
VCAM-1 and E-selectin expression in ECs through 
inhibition of NF-κB activation.[97] However, the same 
authors showed that WSS-induced production of 
TNF-α stimulates the expression of another adhesion 
molecule, ICAM-1.[97] These apparently discordant 
findings indicate that a more thorough study of the 
cross-talk between these signaling molecules may shed 
further light onto the biological end-points produced 

by the WSS in modulating cytokine-induced adhesion 
molecule expression in ECs. Although the processes by 
which hemodynamic factors affect inflammation of the 
artery wall is incompletely known, vascular remodeling 
in response to abnormal WSS correlates with increased 
ECs and VSMCs apoptosis,[98,99] with upregulation 
of MMPs activity in both ECs[33] and VSMCs[36] and 
with upregulation of several transcription factors and 
inflammatory cytokines by inflammatory cells.[18] Along 
these lines, Wang et al.[82] showed in canine models 
that in areas of high shear stress (arterial bifurcations), 
aneurysm wall remodeling is associated with IL-1β and 
MMPs expression along with a loss of eNOS expression. 
In line with these findings, EC injury was found by 
Jamous et al.[100,101] to be the earliest change in aneurysm 
wall, followed by the formation of an inflammatory 
zone that leads to proteolytic destruction of the vascular 
ECM by MMPs and ultimately to aneurysm formation.

In summary, under physiologic condition shear stress 
promotes both endothelial NF-κB upregulation and 
immediate eNOS activation. In turn, NF-κB triggers 
both transient upregulation of eNOS and increased 
eNOS stability. This results in increased NO synthesis. 
NO protects arterial wall through a “direct” action on 
it as well as “indirectly” through a negative feedback 
on NF-κB activation. When the chain of events in red 
prevails, shear stress sustains arterial wall protection. 
Failure of NO-mediated direct and/or indirect arterial 
wall protection shifts the balance towards inflammation.

When the degeneration in the arterial wall, including loss 
of endothelial and smooth muscle cells and degradation 
of ECM are not healed, chronic remodeling of tissue 
takes place to alter the biomechanical properties of 
arterial wall and aneurysm formation, which eventually 
rupture [Figure 1].[63,64]

INFLAMMATORY BIOMARKERS AND 
ESTIMATION OF RISK OF RUPTURE

Giving that considerable evidence suggest the 
involvement of inflammation in development and 
rupture of IAs,[19-25,31,35-41,48-64,70,76-81,93,94,99-101] preoperative 
noninvasive assessment of inflammatory status of the 
aneurysm wall may guide management of unruptured 
IAs.[102-105] One possible tool to identify rupture-prone 
IAs is ferumoxytol-enhanced magnetic resonance 
imaging (MRI).[102-104] Ferumoxytol is an ultrasmall 
superparamagnetic particle of iron oxide that reveals 
phagocytic activity of inflammatory cells because 
it is cleared by macrophages.[102-104] Ferumoxytol is 
hypointense on MRI T2*-weighted gradient echo 
sequences and hyperintense on T1-weighted spin echo 
sequences. It is detected inside blood vessels for ≤ 72 h 
and begins to clear within 24 h from injection. Its early 
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uptake, within 24 h, is secondary to macrophage uptake 
and considering the crucial role of such inflammatory 
cells in development and rupture of IAs, it indicates active 
inflammation in aneurysm walls of unstable aneurysm, 
as suggested by one recent study.[102] These authors 
found that early ferumoxytol uptake was significantly 
higher in aneurysms with marked upregulation of 
inflammatory molecules such as cyclooxygenase-2 
and microsomal prostaglandin E synthase-1 and 
macrophages, independently from site and size of the 
aneurysms.[101] Moreover, all three unruptured IAs of 
their series with early ferumoxytol uptake that were 
managed conservatively ruptured less than 6 months 
after diagnosis, which supports the hypothesis that 
inflammation is the cause but not the consequence 
of the rupture.[102] Another line of research aiming at 
differentiating ruptured and unruptured IAs on the basis 
of distinctive patterns of expression of inflammatory 
markers is the analysis of gene expression profile.[105] 
A recent study compared the gene expression arrays 
of ruptured and unruptured aneurysms and found a 
significant difference of expression of genes encoding 
macrophage-mediated inflammatory molecules 
according to the age of patients.[105] In particular, genes 
involved in vascular remodeling, inflammation, and 
atherosclerosis such as S100/calgranulin genes (S100A8, 
S100A9, and S100A12), cluster of differentiation 163, 
myeloperoxidase (MPO), were upregulated, while genes 
for Krüppel-like family of transcription factors (KLF2, 
KLF12, and KLF15) and CDKN2, which are respectively 
anti-inflammatory regulators and inhibitors of cellular 
proliferation, were downregulated, together with cell 
adhesion molecules and cytoskeletal proteins of arterial 

wall.[105] Therefore, the authors conclude that some of 
these identified genes may help identifying IAs at risk 
of rupture, which warrant early treatment.[105]

CONCLUSION

Aneurysm formation begins with a hemodynamically 
triggered endothelial inflammatory dysfunction, which 
is the cause rather than the consequence of aneurysms’ 
development and rupture. The proinflammatory action 
of shear stress prevails over its endothelium protective 
action when the balance between NF-κB-mediated 
production of NO and proinflammatory mediators (ROS, 
cytokines, adhesion molecules) shifts in favor of 
inflammation because of alteration of the inhibitory 
limb of the NO-mediated negative feedback on NF-κB 
activation. Targets of the inflammatory reaction are, 
besides ECs, ECM, and VSMCs. Endothelial injury, 
VSMCs phenotypic modulation with acquisition of 
pro-inflammatory/pro-matrix remodeling properties 
and subsequent Fas-mediated apoptotic cell death lead 
to the arterial wall weakening and aneurysm formation 
and rupture. Clarifying the causative relationships that 
link hemodynamics, inflammation, vascular remodeling, 
and the development and rupture of IAs may provide 
effective tools to predict the individual risk of aneurysmal 
rupture and aid the treatment decision-making process.
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