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Abstract

In the current pig scale breeding process, considering the low accuracy and speed of the infrared thermal camera
automatic measurement concerning the pig body surface temperature, this paper proposes an improved algorithm
for target detection of the pig ear thermal infrared image based on the YOLOv8n model. The algorithm firstly replaces
the standard convolution in the CSPDarknet-53 and neck network with Deformable Convolution v2, so that the con-
volution kernel can adjust its shape according to the actual situation, thus enhancing the extraction of input features;
secondly, the Multi-Head Self-Attention module is integrated into the backbone network, which extends the sensory
horizons of the backbone network; finally, the Focal-Efficient Intersection Over Union loss function was introduced
into the loss of bounding box regression, which increases the Intersection Over Union loss and gradient of the tar-
get and, in turn, improves the accuracy of the bounding box regression. Apart from that, a pig training set, including
3,000 infrared images from 50 different individual pigs, was constructed, trained, and tested. The performance of the
proposed algorithm was evaluated by comparing it with the current mainstream target detection algorithms, such as
Faster-RCNN, SSD, and YOLO families. The experimental results showed that the improved model achieves 97.0%,
98.1% and 98.5% in terms of Precision, Recall and mean Average Precision, which are 3.3, 0.7 and 4.7 percentage
points higher compared to the baseline model. At the same time, the detection speed can reach 131frames per second,
which meets the requirement of real-time detection. The research results show that the improved pig ear detection
method based on YOLOv8n proposed in this paper can accurately locate the pig ear in thermal infrared images and
provide a reference and basis for the subsequent pig body temperature detection.
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1. INTRODUCTION

1.1. Backgrounds

The pig farming industry occupies an important position in livestock and poultry farming, and its development
is crucial for the prosperity of the economy and people’s livelihood. During the process of pig farming, the exis-
tence of various diseases, including swine fever, swine pneumonic disease, swine influenza, transmissible chest,
blue ear disease, and other diseases, is a major challenge for the pig industry!'), and they are usually reflected
in the ear temperature of the pig to varying degrees, which can be detected by testing the temperature of the pig
ear to understand the changes in the state of pig health >3], At present, small and medium-sized pig barns in
China still mainly rely on manual observation of disease inspection, which consumes a lot of human resources,
cannot realize the timely, comprehensive detection of all pigs, and suffers a risk of cross-infection between hu-
mans and animals. Therefore, efficient, portable, real-time temperature detection of pigs has become a hotspot
of concern and research in the field of pig breeding*3!. Along with the continuous development and increas-
ing maturity of automated temperature measurement technology, contact surface temperature measurement
with thermocouples!®”) and thermistors, implantable temperature measurement with digital temperature sen-
sors or microchips as the main components!®°], and non-contact surface temperature measurement with a
thermal infrared imager and laser have gradually become the means of livestock and poultry temperature
monitoring ['°~12]. Both contact and implantable temperature measurements are invasive methods, which, to
some extent, cause stress and tension in individual livestock and poultry. Thermal infrared, ultrasonic, laser,
and other non-contact temperature measurement methods are the most widely used in the field of temper-
ature measurement due to the advantages of rapid detection and no stress. Among them, as ultrasonic and
laser ones are mostly used in aerospace, metallurgy, and other fields, they are not very suitable for the detection
concerning the body temperature of livestock and poultry. Thermal infrared temperature measurement in the
early days relies on the infrared temperature sensors of livestock and poultry. However, with the continuous
advancement of technology, the infrared thermal image can be adopted to detect the infrared thermal radiation
emitted by objects when photoelectric conversion and signal processing will be mapped on the surface of the
object heat distribution data imaging. In terms of individual animal temperature measurement, the infrared
thermal image generated by the infrared thermal imaging camera can be the more intuitive display of the tem-
perature distribution of livestock and poultry and contour information and can be performed in the major
intensive farming-type farms in the body temperature patrol collection [}, Therefore, for the field of livestock
and poultry farming, thermal infrared technology, as the core of the non-contact temperature measurement,
has a broader application prospect. However, to automatically detect the body temperature of pigs through
thermal infrared technology, the most critical part is to realize the accurate identification of the temperature
measurement parts on the body surface of pigs, and thus, it is of great significance to develop a high-precision
automatic detection of the pig ear.

1.2. Challenges

Recently, computer vision technology and thermal infrared technology have been gradually applied to various
scenarios in the field of modern livestock and poultry breeding by virtue of their innate advantages of non-
contact, low cost, and high efficiency. Among them, there is no lack of relevant explorations on automatic
detection of pig temperature. For example, Lu et al. used a support vector machine to identify pig heads in
(141 According to Zhang, the ear root
region of each pig in the image was automatically cropped out by calibrating the grey value range and image
dissimilarity operation, thus obtaining the grey value of the ear root, and then calculating the average tempera-
ture of the ear root through the T-G algorithm to achieve the automatic detection of pig body temperature '3,
Although the above method can complete the automatic identification and extraction of the pig temperature,

infrared images, achieving a certain degree of automatic identification
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there are problems. For example, the detection method is too complicated, incomplete in one step, and easily
affected by the pig breeding environment regarding the part identification effect ['*7),

Fortunately, in recent years, deep learning, as one of the most effective image detection methods, has been
widely used in livestock and poultry related research fields!'®!. These applications include individual animal
detection1*?°], behavior discrimination 2!, body condition analysis??!, and disease diagnosis!>*/. With the
continuous development of deep learning, target detection methods derived from convolution networks can
achieve recognition and localization of target areas, which can better satisfy the needs of livestock and poultry
individuals in part detection 223, Particularly, a deep learning model developed based on infrared thermal
imaging can be adopted for the automatic detection of mastitis in dairy cows, with a detection accuracy of
83.33%2°]. A teat detection model based on R2Faster R-CNN enables automatic milking of cows with an
average detection accuracy of 80.41% for the model?”). The YOLOv3 network based on deep learning can
also achieve high-precision detection of key parts such as the legs, back, and head of cows in natural scenes (%),
Therefore, the target detection method is also gradually applied in the research on the automatic detection
of pig temperature by the infrared thermal image. Liu used a two-stage target detection model to explore
the temperature inspection of pigs in a facility farm using infrared thermal imaging[?°). Faster-RCNN was
employed to detect the temperature in the ear region of pigs with an average detection accuracy of 85.4%. Ma
et al. proposed an improved geometric contour model-based algorithm for segmenting adhered pigs in group
pig farming*°). The algorithm achieved an accuracy rate of 98% in correctly segmenting the adhered areas,
providing technical support for intelligent pig farming. Zhu et al. introduced a technique for detecting the pig
ear region using a combination of infrared and visible light images!*'!. Following the method, an enhanced
active shape model is utilized to automatically detect the segmented ear region. By comparing the automatically
detected ear region with the manually segmented ear region, it was shown that 84% of the detected regions had
an overlap percentage greater than 0.8, indicating a favorable detection performance. Zhou et al. put forward
an improved maximum interclass variance algorithm based on thermal infrared images*?/. The method can
detect 100% of the complete pig images with ear root features, but it cannot deal with the situation that some
ear features are obscured. Huang et al. used a deep learning algorithm model based on YOLOvS5 and multi-
target tracking for automatic identification and counting of pigs, which only has high accuracy for identifying
and counting pigs under ten heads and cannot be well applied to the large-scale pig sheds*).

Although the accuracy of these pig temperature detection methods based on target detection models is high,
the models, such as Faster-RCNN and Yolovs, have problems including large model size, a large number of
parameters, and low real-time performance, which leads to the high requirements of the detection model
for the hardware platform, and it is difficult to be transplanted to mobile or embedded terminal devices for
practical applications. As a classic one-stage target detection model, Yolovsn is characterized by the smallest
model size and the smallest number of parameters among the five versions of Yolovs. In this case, it is easier to
be embedded in edge devices**l. In addition, the convolutional layer module can extract feature information
in the image, hence effectively improving the accuracy of model detection. Due to the attention mechanism
module, the model can focus on the expression of valid feature information and attenuate the interference of
invalid feature information. As a key step in target localization performance, the bounding box regression loss
function can accelerate the convergence speed of the model, thus enhancing the target localization accuracy.

1.3. Objectives

With the proposal of the deformable convolutional layer module and bounding box regression loss function,
as well as the attention to vital features by the attention mechanism module, it is necessary for this study to
improve the lighter weight pig temperature site detection model Yoloven with the help of these innovative
techniques, and thus, it can achieve stronger robustness, higher accuracy, and better real-time performance,
which can be applied to satisfy the portable pig temperature inspection in the intensive farming scenario.
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2. IMPROVEMENT ALGORITHM FOR TARGET DETECTION BASED ON YOLOVSN

The YOLOvSn target detection model consists of three main components: the backbone network, the neck net-
work, and the predictive output header. The backbone network of the YOLOv8n model employs an enhanced
CSPDarkNet53 structure, which down-samples the input features to generate five different scale features. Fig-
ure 1A illustrates the structure of the backbone network, which employs the Cross-Scale Part (CSP) module in
the original design. However, in this study, the Deformable Cross-Stage Partial Network fusion (DC2f) mod-
ule is involved instead. The DC2f module is connected by a gradient shunt to improve the information flow
of the feature extraction network while maintaining computational efficiency [Figure 1B]. The Deformable
Cross-Stage Partial Network (DCBS) module uses a convolution operation on the input data [Figure 1C], fol-
lowed by batch normalization and activation using the Sigmoid Linear Unit (SiLU). To achieve adaptive-size
output, the backbone network incorporates the Spatial Pyramid Pooling Fast (SPPF) module, which pools the
input feature maps onto a fixed-size map. Different from the Spatial Pyramid Pooling (SPP) structure **), SPPF
reduces computational effort and latency by sequentially connecting the three largest pooling layers [Figure
1D].

Incorporating the Path Aggregation Network (PAN) concept, YOLOvSn uses a PAN-Feature Pyramid Network
(PAN-FPN) [¢37] structure in the neck, as presented in Figure 1E. Unlike the neck structures of YOLOv5 and
YOLOv7 models, YOLOv8n removes the convolution operation following up-sampling in the PAN structure,
causing a lightweight model without sacrificing performance. PAN-FPN employs top-down and bottom-up
network structures to leverage the combination of shallow positional and deeper semantic information through
feature fusion, which can thus ensure the diversity and comprehensiveness of features.

The head layer of YOLOvsn utilizes a decoupled head structure, as depicted in Figure 1F. This structure is
composed of two separate branches for object classification and predictive bounding box regression, each
with its own distinct loss functions. The classification task employs Binary Cross-Entropy (BCE) loss, while
the bounding box regression task utilizes Distributed Focus Loss (DFL) *®) and Complete Intersection Over
Union (IOU) (CIOU)[39]. This detection structure enhances detection accuracy and speeds up model conver-
gence. YOLOvSn is an unanchored detection model that precisely defines positive and negative samples. It
also employs a task-aligned allocator for dynamic sample assignment, further enhancing the detection accu-
racy and robustness of the model.

In this paper, an enhanced target detection algorithm called YOLOv8n-DMF [YOLOv8n-Deformable Con-
volution v2 (DCv2)+ Multi-Head Self-Attention (MHSA)+ Focal-Efficient Intersection Over Union (Focal-
EIOU)] based on the YOLOv8n network model is introduced. The algorithm is specifically designed for fast
and accurate detection of pig ears in a pig house environment. To address the limitations of traditional con-
volution kernels, the algorithm replaces them with DCv2[“°), a more adaptive and generalizable alternative, in
both the backbone network and the neck network, which is conducive to better adapting to unknown changes
for the model. In addition, to improve the expressive power of the model and expand the sensory field of view
of the backbone network, the MHSA module is integrated into the backbone network!*!l. This integration
enhances the model’s ability to capture relevant information. The algorithm introduces the Focal-EIOU loss
function*?] in the bounding box regression task in order to overcome the limitations of the CIOU-based loss
function, which obviously results in slow convergence and inaccurate regression outcomes. All these improve-
ments are visually represented in the red dashed box in Figure 1.

2.1. The deformable convolution

In the domain of visual recognition, one of the primary hurdles is effectively dealing with geometric variations
or capturing geometric transformations in the object scale, pose, viewpoint, and part deformation. Conven-
tional modules used for visual recognition face a constraint of fixed geometry, where the convolutional unit
samples the input feature map at a fixed position, lacking an internal mechanism to handle geometric trans-
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Figure 2. Comparison of feature sampling for (A) standard convolution and (B) deformable convolution.

formations. To overcome the existing limitations, in this study, deformable convolution (DC), which enables
the convolution kernel to adaptively adjust its own shape, is put forward. This approach extracts more key
information from the feature map, causing improved performance. The differences between DC and standard
convolution are shown in Figure 2, providing an intuitive understanding of the proposed method.

Figure 2 illustrates two mappings of 3 x 3 convolutional layers from the bottom to the middle layer and from the
middle layer to the top layer, as depicted in (A) standard convolution and (B) DC. The two 3 x 3 convolutional
layer mappings shown in (A) are standard 3 x 3 square samples, and (B) shows non-standard shaped samples,
but the sampled points are still 3 x 3, in line with the generalized definition of 3 x 3 convolution. The top
images in (A) and (B) represent activation units corresponding to distinct objects, whereas the middle layer
displays the sampling region of the top activation unit. Similarly, the bottom layer is the sampling region of the
activation unit in the middle layer. The (C1-C4) represents the convolution operation, and the convolution
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kernel corresponds to nine points and nine counts in the sampling region. Then, sampling is conducted to
obtain one point of the activation unit on top of it, i.e., one value.

As shown in Figure 2, it becomes obvious that (A) standard convolution fails to extract complete features of
the pig’s left ear due to its inability to consider the variations in shape and size across different objects during
feature point sampling. In addition, (B) DC considers the deformations of the target, resulting in the majority
of the mapped sampling points in the lower layer covering the target. In this case, sampling the complete
features of the irregular pig’s left ear can be achieved. The operation of standard convolution can be broken
down into two distinct steps:

(1) Sample the input feature map x using the 3 x 3 regular grid R (R = {(-1,-1), (=1,0),...,(0, 1), (1, 1)});
(2) Perform a combined sum of sampling values weighted by w.

Usually, a standard convolution defines a 3 x 3 kernel with an expansion of 1 (the kernel is a 2-dimensional
matrix, length x width). The formula given in Equation (1) represents the calculation for each position pg on
the output feature map y

Y(po)= D w(pa) - x (po+pa) (1)

Pn€ER

where p, enumerates the position within the output feature map.

DC adds an offset {Ap, | n=1,..., N} to the standard convolution operation, where N = |R|. By this offset,
the standard convolutional sampling becomes a deformable convolutional one. Then, DC can be written as

y(Po) = D, w(pa) X (po+ pa+Apy) 2)
Pn€R

where data samples are acquired at non-uniform offset positions, denoted as p,, + Ap,. Considering that the
offset Ap, is commonly represented in fractional or decimal form, Equation (2) is executed by employing the
method of bilinear interpolation. Then, Equation (3) is given as

x(p) = ). G(g,p) - x(q) (3)
q

where p indicates a variable (fractional) position (p = po + p, + Ap,), while ¢ denotes all integer positions
within the feature map x.

Additionally, the variable G (-, -) denotes a two-dimensional bilinear interpolating kernel. Notably, the kernel
G is two-dimensional and can be divided into two separate one-dimensional kernels. The equation is obtained

by
G(q.p) =8 (qx, px) - & (qy. Py) (4)

where g(a, b) = max(0, 1 — |a — b|). Equation (3) is fast to compute because it is non-zero for only a few g.
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Figure 3. Schematic diagram of 3 X 3 deformable convolution.

As described in Figure 3, the DC process begins similarly to standard convolution. Initially, the feature map
is extracted from the input image using a standard convolution kernel. Then, the obtained feature map serves
as input for another convolution layer, which generates the offset field responsible for the deformation in DC.
This offset layer, with a dimension of 2N, facilitates translation in the plane by modifying both the x and y
values in both directions. During the training phase, the convolution kernel for generating output features
and that for producing offsets are simultaneously learned. The offsets are learned through backpropagation,
employing an interpolation algorithm.

While DCv1 incorporates DC to enhance adaptability to geometric transformations of the target, it encounters
a visualization issue where the corresponding position of the sensory field of view extends beyond the target
range. Therefore, the features are still unaffected by the image content, hampering the effectiveness of DCv1.
To address the problems of DCv1, this paper adopts DCv2, which extends DC and enhances the modeling
capability. Its calculation formula is obtained by

Y(Po) = > W (pa) X (po+pu+Apy) - Am, (5)
Pn€R

where Ap, is the learned offset, which allows the sampling points to be irregularly shaped, and Am,, refers to
the learned weight, which solves the problem of the sensory field exceeding the target range in DCv1.

2.2, Efficient self-attention mechanisms

This paper is primarily aimed to investigate the identification of small targets and edge information. This study
is conducted within a complex environmental background, which poses significant challenges to the detection
model. Specifically, the detection model necessitates a strong capability to identify edge information and effec-
tively suppress background information. To address this concern and enable the detection model to focus on
diverse crucial information rather than specific details, the research incorporates the MHSA mechanism into
the backbone network of the model. MHSA processes the original input sequences with multiple sets of self-
attention, followed by splicing the results of each set of self-attention and performing a linear transformation
to get the final output results. This approach not only solves the defect of the self-attention mechanism that
overly focuses on its own position but also uses the multi-head self-attention mechanism to give the output of
the attention layer containing information about coded representations in different subspaces, thus enhancing
the expressive power of the model.

YOLOVS refers to a Convolutional Neural Network (CNN) model that overcomes a limitation of traditional
CNNs. Typically, CNNs perform localized processing, lacking the ability to capture relationships between
global features. By contrast, models incorporating attention mechanisms can assess the degree of correlation
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between data points within a global perceptual field. By incorporating effective attention mechanisms, robust
and powerful data-driven models can be constructed. This increased flexibility enables these models to effec-
tively handle complex and large-scale datasets. The self-attention mechanism operates through a series of steps.
Initially, the input data sequence X is encoded into an input matrix [x7,x2, ..., X,] that is then linearly trans-
formed using three trainable parameter matrices W¢, WX and WV, resulting in three new matrices, namely
Query (Q), Key (K), and key Value (V). The dot product between the queries and corresponding key values
is computed, normalized, and multiplied by the matrix V to obtain a weighted sum. The calculation formula
for this process is obtained by

KT
Scaled Dot-Product Attention (Q, K, V) = Softmax (Q ) Vv (6)
Vdg

where Vd is used to prevent the gradient of the result from vanishing, and dx denotes the size concerning
the dimension of the matrix K.

From Figure 4, it can be observed that firstly, O and K7 are subjected to MatMul’s dot product operation to
generate the similarity matrix. Then, each element in the similarity matrix is divided by Vdx, where dg is
the dimension size of K and this division is the Scale step in Figure 4. The Mask step is used to extract the
region of interest and mask the interference in the image. Then, the normalization operation of the Softmax
step is performed, and each value obtained is a weight coefficient greater than 0 and less than 1 and sums to o.
This result is considered as a weight matrix. Finally, the weighted summation is computed using the obtained
weight matrix multiplied by the matrix V.

To address the problem that the YOLOv8n master network exists to encode information about the target loca-
tion, it will excessively focus on its own location, leading to difficulty in extracting all the key feature informa-
tion. In this paper, MHSA is proposed and introduced into the backbone network of YOLOv8n. The essence
of the mechanism is to process the original input sequence with multiple sets of self-attention, thus obtaining
h multi-head outputs. The mechanism can obtain more feature information, which enhances the attention of
the model to different features and thus extends the model’s network horizon. Its structure is shown in Figure
5.

It has been derived from the principle of the self-attention mechanism. In Figure 4, O, K, and V are acquired
by multiplying the input X with W2, WX, and WY, respectively; W¢, WK, and W" are trainable parameter
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Figure 5. Structure of the multi-head self-attention mechanism.

matrices. As can be seen from Figure 6, there are three output heads (41, 2, and 43) in the graph. Besides,
correspondingly, for the same output X, three different groups of W€, WX, and W" are defined, and each group
is computed to generate different Q, K, and V separately. Subsequently, the normalization process is performed
through the Linear layer to accelerate the training process and enhance the generalization ability of the model.
Then, the self-attention process is carried out to obtain the three output heads: hi, h2, and h3. Finally, the
results of each set of self-attention are spliced together to perform a linear transformation and thus acquire the
output result (MHSA). The formula can be described as

h; = Scaled Dot-Product Attention (QWI.Q, KWK, VW,»V) , (7)

Multi-Head Self-Attention(Q, K, V) = Concat (hy, ..., h;) wo (8)

whereh; (i = {1,2,3}) is the result concerning each group of the self-attention process; Wl.Q € Rfmoda xdq WK ¢
Rifmoder xdic WV e RImoda Xdv WO ¢ Ridmode xhdy s the weight matrix of linear transformation; QW;2, KWX, VWY

in (7) are the input matrices regarding each group of self-attention processes, respectively; Concat (hy, . . . ., hy) WO
in (8) is the step of splicing the outputs of each ;, then multiplying the spliced outputs by WO € Rémoda Xhdy,
and finally carrying out a step for the further fusion of the results; in addition, each self-attention module is
limited to dy = dy = dodel /1 = 3, 50 hd, = dnodel-

2.3. Efficient loss functions for accurate bounding box regression

In target detection, bounding box regression plays a vital role in determining the accuracy of target localiza-
tion. However, previous loss functions used in bounding box regression often overlook the issue of imbalance,
where a large number of anchor boxes featuring minimal overlap with the target box contribute the most to the
optimization of bounding box regression. The original model of YOLOvsn introduced the CIOU loss func-
tion to address this imbalance problem by considering the overlap area, centroid distance, and aspect ratio,
which contributed to significant improvements in both convergence speed and detection accuracy compared
to previous loss functions. However, the CIOU loss function does not adequately consider the balance between
difficult and easy samples. In addition, as it accounts for aspect ratio, it only reflects the difference in aspect
ratio instead of the actual disparity between width and height and their respective confidences. Furthermore,
the CIOU loss function does not allow for simultaneous adjustment of anchor box length and width, which
hampers convergence. To mitigate these adverse effects, this study proposes the EIOU loss function, which
explicitly measures the differences in the three geometric factors of bounding box regression: overlap area,
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Figure 6. Schematic of the parameters of the efficient loss function for exact bounding box regression.

centroid distance, and aspect ratio. To prioritize high-quality anchor boxes during the regression process, the
concept of focal loss is introduced. Finally, the two components are combined to form a new loss function,
namely the Focal-EIOU loss function. Its calculation formula is obtained by

Lgiou = Liou + Lgis + Lasp

2 gt 2 gt 2 h. he&t (9)
10U+ P gb,b )2+p (w,vg )+p ( X )
(W)™ + (h°) (we) (h°)
Loca-eiou = 10U” Lgiou (10)

Where the EIOU loss can be divided into three parts: IOU Loss + Distance Loss + Aspect Ratio Loss. Figure 6
displays the parameters associated with Equation (9). b and b$" are the coordinates concerning the centroid of
the target frame and the prediction frame, respectively; p* (b, b%') denotes the Euclidean distance between the
two; w¢ and h¢ are the width and length of the smallest outer rectangle of the prediction frame and the target
frame; p? (w, w8') denotes the difference between the width of the target frame and the prediction frame, and
p? (h, h¥") indicates the difference between the length of the target frame and the prediction frame. To enhance
the focus on high-quality samples within the EIOU loss, the concept of Focal loss is incorporated, gaining the
final formulation, as given in Equation (10). In this equation, the hyperparameter y controls the curvature of
the curve, and its default value is set to 0.5.

3. EXPERIMENTS

3.1. Experimental data acquisition

This section presents a detailed outline of the experimental methodology utilized in this study, covering var-
ious aspects and procedures. Firstly, it outlines the process of data acquisition and dataset creation, detailing
the specific methods employed to collect and curate the necessary data for the experiments. Subsequently, the
experimental environment, including the hardware and software configurations utilized, and the training strat-
egy implemented to train the models are discussed. Furthermore, the evaluation metrics employed to evaluate
and analyze the experimental outcomes are introduced, offering a concise comprehension of the evaluation
and comparison process of the models.

The authors are grateful to the Tieqilishi Guanghui Core Pig Farm for the approval of our experiments.

The experimental data for this paper were collected from the Tieqilishi Guanghui Core Pig Farm in Santai
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Figure 7. (A)-(C): infrared images at different angles and distances; (D): physical drawing of the inspection robot; (E): design drawing of
the inspection robot system. (E)-1: sensing platform; (E)-2: automatic lifting and lowering device; (E)-3: information collection and control
system; (E)-4: walking device.

County, Mianyang City, Sichuan Province, China; collections were made from York breeding pigs in restriction
pens; the collection period was from April to June 2023, and data collection time was selected from 8:00 am
to 10:00 am; the dimensions of the restriction pens in the test barn were 220 cm long, 75 cm wide and 106
cm high. In order to enhance the generalization ability of the model by acquiring diverse data, a selection was
made to capture images of live pigs from various angles in an indoor room temperature environment. In terms
of images, those captured from close-up overhead angles, close-up side angles, distant overhead angles, and
distant frontal angles were involved, resulting in a total of 4,500 thermal infrared images of live pigs with a
resolution of 320 x 240 pixels. The acquired infrared images were manually screened at a later stage to remove
the images with serious ear loss due to shooting factors, temperature factors and site factors and those without
pig ears. In the end, 3,000 thermal infrared images of pig ears were obtained. Some of the infrared images
in the dataset and the physical and system diagrams of the acquisition equipment at the test site are shown in
Figure 7.

Experimental dataset production

The 3,000 thermal infrared images of pig ears in the dataset were labeled by using horizontal rectangular boxes
in the labeling software. The samples were obtained from different individual pigs in 50 pens. This paper tends
to identify the ears of live pigs and to avoid the interference of non-target areas to the identification of the target
area; the ear is labeled as closely as possible. In the meanwhile, thermal infrared images of pig ears may present
challenges, such as obstruction from the pen and variations in ear posture, making it difficult to accurately
label the ear in the image. To alleviate this labeling difficulty, pig ear regions in thermal infrared images that
are fuzzy, difficult to distinguish, and occluded by over 70% will not be labeled, and the labeling format used
is XML. The dataset utilized in this study is partitioned into three subsets, namely training, validation, and
test sets, adhering to the widely accepted 8:1:1 ratio employed in mainstream datasets. The training subset
comprises 2,400 images, whereas the test and validation subsets consist of 300 images each.

Experimental environment and training strategies

The model training in this study was conducted on a Windows 10 operating system, utilizing an AMD Ryzen
7 5800H processor with Radeon Graphics 3.20 GHz, an NVIDIA RTX 3060 graphics card with 6G of video
memory, and 16G of host RAM. The training process employed CUDA version 11.3 and Python version 3.9.12,
leveraging the PyTorch deep learning framework with PyTorch version 1.12.1. During the training phase,
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optimization was achieved using stochastic gradient descent (SGD) with specific hyperparameters. The initial
learning rate was set to 0.01, gradually decreasing to a final learning rate of 0.0001. The cosine annealing
hyperparameter was set to 0.1, the momentum factor to 0.937, and the weight decay coefficient to 0.0005. The
input size of the images was confirmed as 416 x 416 pixels, with a batch size of 32. During the training process,
eight processes were followed, and a total of 300 rounds were conducted.

3.2. Indicators for model evaluation

In this study, the widely accepted evaluation metrics of P, R, and m AP are adopted to assess the training accu-
racy of the model. These metrics are widely employed in the domain of target detection. The parameter count,
computational demands, and weight size of the model were considered to assess its complexity. To evaluate
the real-time detection performance of the model, the frame per second (FPS) is utilized as a quantitative
measure.

The P metric quantifies the proportion of the predicted algorithm area in relation to the actual detection area.
Its algorithm is obtained by

T
P=—" x100% (11)
Tp + Fp

where Tp (true positive) refers to the number of samples that are accurately predicted as positive by the algo-
rithm. In addition, the Fp (false positive) metric signifies the count of samples that are erroneously classified
as positive by the algorithm.

The symbol R represents the ratio of accurately predicted samples to the overall number of positive samples.
This metric quantifies the recall or sensitivity of the algorithm in correctly identifying positive instances. Its
algorithm is obtained by

Tp

R=—"—x100% (12)
TP + FN

where Fyy (false negative) metric denotes the count of samples that were inaccurately classified as negative
by the algorithm. This metric indicates the instances where the algorithm failed to identify positive samples
correctly.

The term mAP represents the mean average precision (AP), which is calculated as the average value of the
individual AP scores. The AP score, in turn, is determined by the area under the precision-recall curve. In the
curve, the relationship between the precision and recall values is illustrated, showcasing the model performance
in detecting and correctly classifying positive samples. Its algorithm is obtained by

=k Ji P(R)AR

mAP x 100% (13)

where N denotes the number of categories. In this study, only one category of pig ear is discussed, so N = 1 in
this equation.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS
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Table 1. Results of ablation experiments

Model Parameters/106M  Computation/GFLOPs ~ Weight/MB  Precision/% Recall/% mAP/%
YOLOv8n 3.20 8.70 6.08 937 974 93.8
YOLOv8n-D 3.20 8.70 6.15 94.3 97.6 96.2
YOLOv8n-M 3.34 8.90 6.67 96.6 97.0 98.0
YOLOv8n-F 3.20 8.70 6.08 95.7 98.1 95.9
YOLOv8n-DMF 3.34 8.90 6.74 97.0 98.1 98.5

4.1. Ablation experiments

Comparative experiments between the enhanced model and the baseline model, YOLOvSn, are performed to
demonstrate the improved detection performance of the enhanced model. Table 1 presents the values of key
evaluation metrics for both the improved model and the YOLOv8n model at each stage.

YOLOvsn-D: denotes the replacement of standard convolution with DCv2 in the YOLOv8n backbone and
neck networks; YOLOv8n-M: indicates the addition of an MHSA module to the YOLOvs8n backbone network;
YOLOvSn-F: represents the utilization of a Focal-EIOU loss function to introduce precise bounding box re-
gression in the head network of the YOLOvsn model; YOLOvsn-DME: signifies the incorporation of DCv2,
the MHSA module, and the Focal-EIOU loss function simultaneously into the YOLOv8n network. Accord-
ing to the results from the ablation experiments presented in Table 1, it can be found that each improvement
strategy implemented on the YOLOvSn base model contributes to varying extents in enhancing the model’s
detection performance.

Firstly, due to the introduction of a Focal-EIOU loss function for precise bounding box regression in the orig-
inal network, model precision, recall, and AP are improved by 2.0, 0.7, and 2.1 percentage points, respectively.
Notably, these improvements are achieved without any changes to the number of parameters, computation,
and weight size. The Focal-EIOU loss function addresses the issue of gradient vanishing that occurs in the
traditional IOU loss when the predicted bounding box does not overlap with the target box. By explicitly
quantifying the geometric aspects in the disparities of bounding boxes and integrating the notion of focal loss,
the regression procedure prioritizes anchor boxes of superior quality, thereby enhancing accuracy in regres-
sion.

Secondly, the inclusion of the MHSA module in the network effectively enhances precision and average ac-
curacy by 2.9 and 4.2 percentage points, respectively, compared to the original YOLOv8n network. However,
this enhancement comes at a slight cost of increased parameters, computational effort, and weight size, as
well as a slight decrease in recall rate. In the MHSA module, a global multi-head self-attention mechanism is
introduced, expanding the receptive field of the main network and improving sensitivity and adaptability to
small object detection. The increase in precision is attributed to this expanded sensory field. However, the
computational and spatial complexity of the MHSA module leads to a slight increase in model parameters,
computation, and weight size.

Lastly, replacing the standard convolution in the original backbone and neck networks with DCv2 yields im-
provements of 0.6, 0.2, and 2.4 percentage points in model precision, recall, and AP, respectively, compared
with the original model. Here, it should be noted that this improvement is achieved without any significant
changes in the number of model parameters, computation, and weight size. DCv2 enables the convolution
kernel to dynamically adjust its shape based on the input features, resulting in better feature extraction. In ad-
dition, the weight term in DCv2 incorporates a penalty mechanism, ensuring that features are not influenced
by irrelevant image content and thereby improving network recognition accuracy.

Figure 8 illustrates the variation curves of crucial evaluation metrics for the enhanced models at each stage,


http://dx.doi.org/10.20517/ir.2024.02

Han et al. Intell Robot 2024;4(1):20-38 |

http://dx.doi.org/10.20517/ir.2024.02

°
2

precision

—— YOLOv8
YOLOV8+MHSA

~—— YOLOv8+DCNv2
YOLOv8+Focal-EloU
YOLOV8+DCNv2+MHSA+Focal-EloU

- YOLOv8
YOLOV8+MHSA
YOLOv8+DCNv2
YOLOv8+Focal-EloU
YOLOV8+DCNv2+MHSA+Focal-EloU

—— YOLOv8

R

YOLOV8+MHSA

Mo onC

—— YOLOv8+DCNv2
YOLOv8+Focal-EloU

YOLOV8+DCNv2+MHSA+Focal-EloU

¥ 0.
0 20 40 60 80 100 120 140 160 180 200 220 240 o

Epoch
A

Figure 8. (A) Precision training curves for the improved YOLOv8n model in each stage and YOLOv8n model; (B) Recall training curves for
the improved YOLOv8n model in each stage and YOLOv8n model; (C) mAP training curves for the improved YOLOv8n model in each stage

and YOLOv8n model

20 40 60 80 100 120 140 160 180 200 220

Epoch
B

Table 2. Comparison of experimental results of different models

Epoch
C

0 20 40 60 80 100 120 140 160 180 200 220

Model Parameters/10° M Computation/GFLOPs  Weight/MB mAP/% FPS
YOLOv5n 7.28 16.70 14.67 90.4 90
YOLOv7n 6.03 13.60 1215 91.9 105

Faster-RCNN 32.34 378.84 118.06 84.2 17
SSD 21.66 183.76 9213 78.3 36
YOLOv8n 3.20 8.70 6.08 93.8 148
YOLOv8n-DMF 3.34 8.90 6.74 98.5 131

as well as the YOLOv8n model, throughout the training process. The figure demonstrates that the improved
models consistently outperform the YOLOvSn model in terms of precision, recall, and mAP, with the change
curves of the YOLOv8n-DMF model exhibiting the most noticeable improvements. All models cease training
after approximately 220 training epochs, and the enhanced models at each stage begin to stabilize. Compared
with YOLOvVS8n, the enhanced YOLOvsn-DMF model is featured with faster training speed and superior de-
tection results.

Through comprehensive ablation experiments, it was observed that the improved model resulted in a slight
increase in the number of parameters, computation, and weight size. Further analysis revealed that the in-
creased complexity of the network was responsible for enhancing the feature extraction ability of the network,
which is an expected outcome. However, in this study, only recognizing small pig ear targets was centered on,
and the recognition ability of the model was prioritized. Therefore, the slight increase in the number of pa-
rameters, computation volume, and weight size can be disregarded since the improvements in precision, recall,
and mAP were significant. With only 3.34 M model parameters, 8.9 GFLOPs of computation, and 6.74 MB
of weight size, the improved model achieves 97.0%, 98.1%, and 98.5% in terms of precision, recall, and mAP,
respectively, which are 3.3%, 0.7%, and 4.7% higher compared to the original YOLOv8n model, and is able to
achieve the goal of enhancing the model recognition accuracy without affecting the deployment of subsequent
devices.

4.2. Comparison experiments of different models

Aiming to evaluate the superiority and efficacy of the enhanced algorithm proposed in this research, compar-
ative experiments between multiple widely-used target detection algorithms, including SSD, Faster R-CNN,
YOLOvsn and YOLOv7n, and the novel target detection model introduced in this paper, were conducted.
The experimental outcomes, as presented in Table 2, offer a comprehensive comparison of the performance
achieved by each algorithm.

As can be seen from Table 2, except for the SSD and Faster-RCNN models, which possess lower average ac-
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curacy and speed of detection in the ear of live pigs, the other models are characterized by higher average
accuracy and faster speed of recognition in the ear of live pigs, which are above 90.0% and 90FPS. Considering
that, it is indicated that the Faster-RCNN model and SSD network model are not applicable to the thermal
infrared image dataset of live pigs in this paper. Analyzing the reasons, although the SSD model is a one-stage
target detection model, which is higher than Faster-RCNN in detection speed, and can also basically satisty
the demand of real-time detection, the model performs detection on low-resolution feature maps, which in-
troduces a relatively large error and leads to poor quality of the detection frame. In terms of the Faster-RCNN,
as a two-stage detection model, although the localization of the live pig ear has high accuracy, it is composed
of two independent network models, which leads to slower detection speed and is difficult to satisfy the de-
mand of real-time detection. At the same time, it is also shown that the network model of the YOLO series
can extract more useful feature information in the ear area of the pig, and the detection model can use these
effective features to complete the accurate recognition and localization of the pig ear. For the recognition of
the ear root part of the pig, the YOLOv8n-DMF model proposed in this paper achieves 98.5% in the average
accuracy of detection, which is 8.1%, 6.6%, 14.3%, 20.2%, and 4.7% higher than that of YOLOv5n, YOLOv7n,
Faster-RCNN, SSD, and YOLOv8n models, respectively. In the meanwhile, the YOLOv8n-DMF model also
performs well in terms of the number of parameters, computation, model weights, and image detection rate.

Compared with the YOLOvsn model before the improvement, the number of parameters, computational vol-
ume, and model weights of the YOLOv8n-DMF model increased slightly, but its average accuracy concerning
detecting the temperature-measuring site of the pig ear rose by 4.7%. Furthermore, for real-time detection to be
considered effective, it is necessary to achieve a detection rate of more than 24 images per second. As indicated
in Table 2, the enhanced network model YOLOv8n-DMF exhibits an impressive detection speed of 131FPS.
Notably, this detection speed is only marginally lower than that of the original YOLOv8n model. The reason
for the analysis lies in the fact that the replacement of the DC and the addition of the multi-head attention
module slightly improve the inference time of the model, but it is still much larger than the minimum require-
ment of 24FPS and is able to complete the task of real-time detection. In other words, the improved model
achieved better detection results without significantly changing the parameters, computational complexity, or
weight size of the model and without increasing the demands on high-performance hardware platforms.

In summary, based on the results of the above comparative experiments, improving the detection performance
of the model under the premise of ensuring its lightweight makes the YOLOv8n-DMF model proposed in this
study easier to deploy on hardware platforms with smaller storage and lower computational performance of
edge-based computing, which provides the possibility concerning further exploring the real-time detection
system construction at the temperature measurement site on the body surface of a movable pig.

4.3. Visualization analysis

The lack of interpretability in deep learning models poses a significant challenge to their development and
practical application. To address this issue, this study aims to provide a more intuitive and convenient way to
visualize the detection results of the proposed model. For the purpose of assessing the model performance, its
inference effect is analyzed from a detection perspective. Figure 9 illustrates the recognition performance of
various target detection models on thermal infrared images of pig ears, which offers a clear comparison of the
detection effects achieved by different models.

As can be seen from Figure 9, the improved YOLOv8n-DMF model can accurately identify the ears of pigs with
different morphologies in the three pictures under the condition of low-resolution thermal infrared images.
Other than that, the highest confidence level of ear identification reaches more than 0.9, while the lowest
detection confidence level is also 0.74. In the algorithms of the YOLO series, the confidence level is expressed
as the degree of certainty that the model is sure of the detected target. If the value of the confidence level
is close to 1, then the model believes that the detection frame contains the target object. Conversely, if the


http://dx.doi.org/10.20517/ir.2024.02

Page 35 Han et al. Intell Robot 2024;4(1):20-38 | http://dx.doi.org/10.20517/ir.2024.02

YOLOv8n-DMF YOLOv8n YOLOvV7n YOLOvSn Faster-RCNN SSD

ear 0.90

ear 0,85 0,74

e

Figure 9. Recognition effect of different models on thermal infrared image of pig ear.

confidence level is close to 0, according to the model, it is assumed that there is no target in the detection
box. Therefore, the confidence level can be seen as a probability value indicating the probability of the target
existence. Therefore, it can be seen that the improved YOLOv8n-DMF model has high recognition accuracy
for pig ears. In addition, the enhanced model is able to detect all the pig ears in the infrared image without any
leakage or misdetection. The YOLOv8n, YOLOv7n, and YOLOv5n models are all lower than the improved
model in terms of the confidence level for recognizing pig ears in infrared images, although they do not have
any leakage or omission in recognizing pig ears in infrared images. The confidence level of the three different
models for the occluded pig’s ear in the third image is lower than 0.3, which indicates that these models are
less capable of recognizing the pig ear in thermal infrared images under complex environments. Although the
Faster-RCNN network model is characterized by a target recognition accuracy not inferior to the improved
model for all the detected pig ears on the infrared images, its detection results for the three images have the
problems of missing detection and omission. In this case, it is shown that the model is less robust and finds it
difficult to complete the task of pig ear detection in complex environments. The SSD network model not only
has the lowest confidence in recognizing pig ears on infrared pictures but also features the problems of missing
detection and omission.

Based on the evaluation of model recognition performance, it is evident that the enhanced YOLOv8n-DMF
target detection model, built upon the YOLOv8n framework, exhibits superior performance in accurately rec-
ognizing pig ears in infrared images. The model demonstrates exceptional capability in identifying pig ears
even when they are partially occluded, without any instances of missed detection or omissions. These results
provide concrete evidence proving the effectiveness of the method in practical detection scenarios.

5. CONCLUSIONS

Based on the ablation tests performed on the improved YOLOv8n-DMF model, as well as the results of com-
parative tests and visualization analyses with other target detection models, the following main conclusions
can be drawn.

1. In the ablation experiments, the improved YOLOv8n-DMF target detection model with only 3.34 M param-
eters, 8.9 GFLOPs of computation, and 6.74 MB of weight size achieves 97.0%, 98.1%, and 98.5% of the model
precision, recall, and AP, respectively, which are improved compared to the original YOLOv8n model by 3.3,
0.7, and 4.7 percentage points, indicating that the improved model possesses high recognition accuracy while
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maintaining light weight.

2. In the comparison experiments and visualization analysis, the detection effect of the improved YOLOvsn-
DMEF model is better than that of the YOLOv8n model, and it also performs better than the current mainstream
network model. Moreover, the improved target detection model is better for pig ear recognition in infrared
images, can accurately identify different shapes and obscured pig ears, and is faster to meet the demand for real-
time detection, which verifies the feasibility of the enhanced target detection model for the pig ear in thermal
infrared images in this paper, and provides a reference for the next step of pig body temperature detection and
mobile deployment.

In this paper, infrared thermal imaging technology and deep learning technology are applied to carry out a
series of exploratory studies on non-contact pig body surface thermometry site detection, on the basis of which
further in-depth related work can be carried out in the future:

(1) Infrared thermal images have low resolution and lack detailed information about the temperature measure-
ment site compared to visible light images, such as edge details and texture of the ear region. Therefore, it is
expected that in future experiments, the detailed features of the temperature measurement site will be increased
by fusing the infrared thermal image and the visible light image so as to improve the model performance.

(2) An infrared thermal imaging automatic inspection track can be built in the test barn with a suitable number
of pigs and an appropriate environment. Beyond that, the high-precision detection model proposed in this
paper should be embedded into the inspection equipment, and an intelligent pig monitoring system with mul-
tiple functions, such as temperature warning, pig face recognition, and behavior analysis, should be developed
based on the image data automatically collected by the equipment.
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