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Abstract
Light-induced segregation limits the practical application of mixed halide perovskites in solar cells. Herein, halide
segregation is evaluated by a data-driven approach with constructing a bandgap database of 53,361 mixed ABX3

[where A = Cs, formamidinium (FA) or methylammonium (MA); B = Pb or Sn; X = Br, Cl, or I] perovskites. A
transfer learning strategy was employed to fine-tune the parameters of a Graph Neural Network model using
experimental and density functional theory (DFT)-calculated bandgaps. This approach accelerated the
construction of a unique database, distinguishing it from others primarily focused on ABX3 perovskite element

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/jmi
https://dx.doi.org/10.20517/jmi.2024.10
https://dx.doi.org/10.20517/jmi.2024.10
http://crossmark.crossref.org/dialog/?doi=10.20517/jmi.2024.10&domain=pdf


Page 2 of 18 Wu et al. J Mater Inf 2024;4:7  https://dx.doi.org/10.20517/jmi.2024.10

substitution. The database is characterized by continuously varying compositions and accurate bandgaps. It was 
utilized to calculate the free energy of 20,688 mixed iodine-bromine perovskites and generate corresponding 
phase diagrams for predicting their light-induced segregation behavior. It is found that the bandgap increases with 
decreasing ionic radii at the A-site and X-site. This composition-dependent bandgap difference drives halide 
segregation. Moreover, using a higher Cs content at the A-site, rather than MA, reduces this bandgap difference, 
enhancing photostability. The proposed data-driven strategy can facilitate the targeted design of novel perovskites 
with mixed compositions and the investigation of halide perovskite segregation.

Keywords: Mixed halide perovskites, bandgap database, machine learning, halide segregation

INTRODUCTION
Metal halide perovskites have rapidly gained attention due to their extraordinary optoelectronic properties
in solar energy harvesting[1-5]. Up to now, experimental implementations of tandem cells based on metal
halide perovskite/silicon combinations have improved quickly[6]. These cells have achieved an efficiency
exceeding 33%, surpassing the Shockley-Queisser limit (SQ-limit) of single-junction solar cells[7-9]. This
remarkable progress is primarily attributed to the tunable bandgaps of metal halide perovskites[10]. The
ABX3-type perovskites [where A = Cs, formamidinium (FA) or methylammonium (MA); B = Pb or Sn; X =
Br, Cl, or I] allow for continuous tuning of their bandgaps through compositional engineering and
adjustment of proportions on different lattice sites[5,11,12], ranging from 1.2 eV for MAPb0.5Sn0.5I3

[13], to > 3 eV
for MAPbCl3

[14]. While adjusting the ratios of anions and cations in mixed halide perovskites achieves a
tunable bandgap, making them an ideal choice for tandem solar cells[15-19], this modification of
compositional ratios can lead to halide segregation, ultimately causing photo-induced instability[20-24].

Halide segregation in mixed halide perovskites is important for engineering their compositions[12,24-27].
density functional theory (DFT) calculations are widely applied to validate and explain experimental
observations of halide perovskites[28-30]. Based on experimental observations, several microscopic models
have been developed using DFT methods to learn light-induced halide segregation in mixed halide
perovskites[31-35]. Previous studies suggested that photo-induced halide segregation was caused by factors
such as charge carrier gradients[34,36,37], polaron-induced strain gradients under illumination[36,38-40], or
thermodynamic origins[41-43]. These theories indicate that the bandgap differences between mixed-halide
perovskites are a crucial factor contributing to halide segregation under illumination, which means that the
bandgaps significantly influence the segregation behavior[33,34,44,45].

Given the significance of bandgaps in determining the properties and behavior of mixed halide perovskites,
it becomes important to rapidly identify materials with ideal bandgaps. Traditional trial-and-error
experimentation, although effective in obtaining true bandgap values, is time-consuming, labor-intensive,
and limited by discontinuous perovskite compositions, resulting in a restricted dataset[46]. Due to the vast
compositional space of mixed cation-anion perovskites, high-throughput DFT methods have been applied
for bandgap prediction to overcome the challenges. While standard DFT calculations employing the semi-
local generalized gradient approximation (GGA) functionals such as Perdew-Burke-Ernzerhof (PBE) can
cover a wide range of perovskite compositions, they often underestimate bandgaps[47]. On the other hand,
more advanced functionals such as Heyd-Scuseria-Ernzerhof (HSE) or Green’s function-based GW
approximation, combined with spin-orbit coupling (SOC), can precisely predict bandgaps[47,48]. However,
the high computational resource consumption of these advanced DFT methods renders it impractical to
perform high-throughput calculations across the vast chemical composition space of mixed perovskites[49,50].
Given this limitation, is it feasible to accurately predict bandgaps for the numerous mixed perovskite
materials resulting from continuous variations in anions and cations?
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In recent years, with the advancement of artificial intelligence (AI), data-driven approaches have become a
valuable tool for rapidly discovering materials and their properties[51-55]. Notably, AI has significantly
progressed in predicting bandgaps[56-58]. For example, Priyanga et al. predicted the bandgaps of perovskites
using elemental composition, ionic radius, ionic character, and electronegativity as inputs for a random
forest (RF) algorithm, and the prediction results were comparable to the mean absolute error (MAE) of
DFT computation[59]. However, they did not consider the structural information of the perovskites. Chen
et al. established a universal MatErials Graph Network (MEGNet) model trained on ~60,000 crystals in the
Materials Project for accurate property prediction in both molecules and crystals, achieving better than DFT
accuracy over a much larger dataset[60]. In the MEGNet model, each crystal was represented by a crystal
graph, which not only considered constituent elements and the basic physicochemical properties of
chemical components but also incorporated crystal structural features as model inputs. However, despite its
comprehensive approach, the model pre-trained by the PBE bandgaps still exhibited significant errors when
predicting experimental bandgap values. Chen et al. further developed the Atomsets framework encoded by
MEGNet by employing a transfer learning strategy to significantly improve the prediction accuracy of
experimental bandgaps[61]. To the best of our knowledge, no work has been carried out on utilizing data-
driven approaches to construct a mixed perovskite bandgap database and then explore the light-induced
segregation in halide perovskites.

In this study, we proposed a data-driven technique to construct a bandgap database of mixed perovskites
and study their segregation behaviors. Considering the limited amount of experimental bandgap data with
discontinuous components but high accuracy, abundant continuous components yet less precise PBE
bandgap data, and precise but time-consuming and expensive HSE bandgap data, we employed a transfer
learning strategy to construct machine learning models that can address these challenges. Furthermore, we
established a comprehensive mixed perovskite database with continuous components, a rich variety of
elements, and high precision. Database analysis shows a crucial relationship between bandgap variations
and ionic radius changes at the A-site and X-site. Based on the phase segregation theory model, we further
explored this relationship by generating phase diagrams. These diagrams revealed how compositional
variations led to bandgap differences, which drove halide phase segregation.

MATERIALS AND METHODS
Dataset preparation
The ABX3 perovskite experimental bandgap dataset was derived from three sources: the perovskite solar cell
(PSC) database established by Jacobsson et al.[62], 227 experimental data collected by Liu et al.[63], and 610 
experimental data collected by Yang et al.[64]. After excluding duplicate data, for perovskites with the same 
composition but different bandgaps, the average value was taken. Finally, a total of 645
experimental bandgap data were obtained. The experimental perovskite bandgap formulas for cubic
FAPb(I1-xBrx)3, MAPb(I1-xBrx)3, CsPb(I1-xBrx)3, tetragonal MAPb(I1-xBrx)3, and orthorhombic CsPb(I1-xBrx)3 are
given in Supplementary Table 1.

To further extend the bandgap dataset, we calculated the bandgaps of the cubic mixed halide perovskites
FAPb(I1-xBrx)3, MAPb(I1-xBrx)3, and CsPb(I1-xBrx)3. Starting from the unit cell of the pure iodides containing
three formula units, 3 × 1 × 1 supercells of a cubic perovskite were built (using the structure module within
the Pymatgen toolkit[65]). I anions were randomly replaced by Br anions at different concentrations: x = 0,
1/9, 2/9, …, 1. To obtain tetragonal MAPb(I1-xBrx)3 and orthorhombic CsPb(I1-xBrx)3, we considered a
supercell with 2 × 2 × 1 expansion of a pseudo cubic perovskite building block. Br anions randomly replaced
I anions at varying concentrations: x = 0, 1/12, 2/12, …, 1. Furthermore, the perovskite crystal structures
containing four formula units were constructed with 2 × 2 × 1 cubic supercells to calculate the bandgaps of
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halide perovskites such as FA0.75Cs0.25PbI3, FA0.5MA0.5PbBr3, FA0.5MA0.5Pb(I0.33Br0.67)3, FA0.5MA0.5Pb(I0.5Br0.5)3, 
FA0.5MA0.5Pb(I0.67Br0.33)3 and FA0.5MA0.5Pb(I0.83Br0.17)3. In total, 108 perovskite crystal structures were 
considered for the bandgap calculations.

All the calculations were carried out using the Vienna Ab initio Simulation Package (VASP) with the PBE 
functional for DFT. For structure relaxation calculations, the plane wave energy cutoff was set at 520 eV. All 
atomic structures were fully relaxed until forces on all atoms were less than 0.03 (eV/Å). The Brillouin zone 
was sampled with a gamma-centered grid, the K-spacing value was set to 0.03 (2π/Å), and then set to 0.015 
(2π/Å) for band structure calculations. The DFT calculated electronic band structures for six halide 
perovskites are shown in Supplementary Figure 1.

Machine learning model construction
Machine learning algorithms, including MEGNet[60], Materials Graph Library (MatGL)[66], Atomsets[61], 
Support Vector Regression (SVR), RF, and multi-layer perceptron (MLP), were applied to predict the 
bandgaps of perovskites. Additionally, cross-validation was implemented to evaluate the accuracy and 
generalization ability of the trained models for all the machine learning algorithms, with the DFT and 
experimental dataset being randomly partitioned into a 90% training set and a 10% test set.

The DFT bandgap dataset was combined with the corresponding experimental data to create a new dataset. 
Then, the pre-trained MEGNet model was fine-tuned on the new dataset to predict the DFT bandgap 
values, the experimental bandgap values, and the difference between these two. After converting the 
perovskite crystal structure into a crystal graph using MEGNet, it was fitted with the corresponding DFT 
bandgap, experimental bandgap, and the difference between them. The experiments were run for 100 
epochs, and the R2 and MAE were recorded. The main training parameters were bond attributes 
(nfeat_bond) and cutoff radius (r_cutoff).

In MEGNet, the composition features are stored by element embedding vectors[67]. The element embedding 
vectors themselves do not directly encode specific chemical information, but they are designed to provide 
useful feature inputs for MEGNet[60]. These embedding vectors capture certain chemical or physical 
relationships between elements, learned from a vast amount of chemical data through machine learning 
algorithms[60]. Since MEGNet is a black box model, we cannot determine which composition features are 
important for bandgap prediction. Nevertheless, the literature reports that the orbital energy of atoms is 
crucial for bandgap prediction[68]. Furthermore, bond length and coordination number in structure features 
are important for bandgap prediction because they influence the interaction strength between atoms and 
the overlap of charge density[56].

For the three datasets, the bond attributes and cutoff radius with the best correlation coefficient (R2) and 
MAE performance in the training sets were selected. As shown in Supplementary Figure 2, the performance 
of predicting the difference between the actual and DFT bandgaps was better. Therefore, in this work, the 
DFT bandgap and the gap between the DFT and the experimental bandgap of different perovskites were 
first predicted through MEGNet, and then the experimental bandgap of a perovskite was obtained by 
adding the two together.

The 645 experimental bandgap data were encoded using the Atomsets framework to represent the 
components of the mixed perovskites. After converting the components into element embedding vectors 
using Atomsets, three machine learning algorithms, MLP, RF, and SVR, were used to fit these vectors with 
their corresponding experimental bandgap data to construct a machine learning prediction model. Once the 
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optimal parameters were selected, the experimental bandgap values were predicted on the test set.

Enthalpy calculation
To calculate the total energy of each structure of FAPb(I1-xBrx)3, specifically, the graph neural networks with 
three-body interactions (M3GNet)[69] and Crystal Hamiltonian graph neural network (CHGNet)[70] were 
employed. In detail, these models predicted the total energy of each perovskite in the DFT bandgap dataset. 
The prediction results are shown in Supplementary Figure 3. M3GNet was chosen for energy prediction due 
to its lower MAE between the predicted energy values and those obtained from DFT, indicating better 
predictive performance.

The four types of energies for FAPb(I1-xBrx)3 were calculated using the multicomponent phase diagram 
module within the Pymatgen toolkit. Decomposition energy represents the energy required to decompose 
FAPb(I1-xBrx)3 into FAI, FABr, PbI2, and PbBr2. Mixing energy is the energy needed to decompose 
FAPb(I1-xBrx)3 into FAPbI3 and FAPbBr3. Formation energy was calculated using the energy values of the 
most stable phases for each element in the Materials Project database[71]. Energy above the hull (E_hull) was 
determined by comparing the energies of competing phases in the Materials Project database.

Helmholtz free energy calculation
The total number of structures for each system of mixed halide perovskites is 212 = 4,096 (12 halide atoms in 
2 × 2 × 1 supercells) for APb(I1-xBrx)3 in cubic structures (A = FA0.75MA0.25, FA0.5MA0.5, FA0.25MA0.75, 
FA0.75Cs0.25, FA0.5Cs 0.5, FA0.25Cs 0.75, MA0.75Cs 0.25, MA0.5Cs 0.5, MA0.25Cs 0.75),  MAPb(I1-xBr x)3  ( in  tetragonal  
structures) and CsPb(I1-xBrx)3 (in orthorhombic structures), and 29 = 512 (9 halide atoms in 3 × 1 × 1 
supercells) for APb(I1-xBrx)3 in cubic structures (A = FA, MA, Cs). In these structures, I anions were 
randomly substituted with Br anions at varied concentrations. Considering symmetry, there are 20,688 
independent structures. The total energy E of each independent structure was predicted by M3GNet.

The thermodynamic properties of the alloy were determined using the generalized quasi-chemical 
approximation (GQCA)[72]. This method has been successfully employed in the thermodynamic analysis of 
semiconductor alloys[73,74]. By considering the total energy and the degeneracy of each configuration, the 
method provides simple expressions for the mixing contribution to the alloy internal energy ΔU and the 
configurational entropy ΔS, as functions of the composition x and temperature T according to a Boltzmann 
distribution. The Helmholtz free energy in dark conditions was calculated by:

In this work, we used the hypothesis put forward by Zhu et al. that the energy resulting from illumination 
could be addressed within the thermodynamic framework by considering the above-bandgap photon energy 
deposited in the lattice via thermalization through phonon relaxation[75]. Then, for each structure J, this light 
contribution term can be defined as follows:

where  is Planck constant, the vexc is the frequency of the absorbed photon, and Eg(J) is the bandgap of each 
structure J predicted by Atomsets-MLP.

By additionally considering the mixing contribution of this energy term, ΔElight(J) is given by:
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which only negatively depends on the mixing contribution of the bandgap energy, ΔEg(J), defined as the 
bandgap difference between each structure, J, and the fractions of the parent compound A (pure I, x = 0) 
and B (pure Br, x = 1).

By further utilizing the probability δ(J, T) given by the GQCA, we obtained ΔElight(J), which was coupled 
with the composition effect and temperature effect using the Boltzmann distribution. The combination of 
ΔElight(J) and the ΔFdark(x, T) led to the excitation-intensity-dependent expression. Light intensity in this 
model was described through the photon deposited energy density, η: the ratio of absorbed photon energy 
units (Elight) to unit cells under illumination. Thus, the excitation-intensity dependent system free energy is 
given in:

The phase diagram of the alloy can be built by calculating the free energy at different temperatures (T) and 
light intensity (η). For each temperature and light intensity, the binodal points are determined by collecting 
the compositions for which ΔF has a common tangent. The spinodal points are those in which the second 
derivative of ΔF vanishes.

RESULTS AND DISCUSSION
Framework of data-driven strategy for perovskite bandgap study
Herein, we developed a data-driven framework for predicting perovskite bandgaps to study halide 
segregation of perovskite. The general outline of this framework is shown in Figure 1. In the first step, we 
used a transfer learning approach to construct four machine learning algorithms based on the pre-trained 
MEGNet and MatGL models. These models were trained on datasets from the Materials Project to predict 
perovskite bandgaps. The perovskite bandgap prediction model, Atomsets-MLP, was selected after 
evaluation [Figure 1A]. Secondly, as can be seen from Figure 1B, we established a database containing 
53,361 mixed perovskite compounds with continuous compositions. Their bandgaps were predicted using 
Atomsets-MLP and then compared with experimental values collected from the literature. Subsequently, we 
generated 20,688 mixed halide perovskites to study the halide segregation. Finally, as illustrated in 
Figure 1C, using the bandgaps predicted by Atomsets-MLP, we obtained the light contribution of mixed 
halide perovskites. By further utilizing the free energy variation under illumination conditions, the 
corresponding phase diagrams were generated to predict halide perovskite segregation.

Evaluation of machine learning methods for bandgap prediction
The predictive performance of pre-trained MEGNet and MatGL in the DFT bandgap dataset is shown in 
Supplementary Figure 4A and B. It can be clearly seen that these models show poor predictive performance. 
This is because MEGNet and MatGL were trained using DFT (PBE) calculated bandgaps of 69,640 crystals 
in the Materials Project and were used directly without changing any model parameters to predict the 
experimental bandgaps of perovskites. As can be seen from Supplementary Figure 4C, most data points are 
located below the y = x line, which indicates that the DFT (PBE) method tends to underestimate the 
bandgap of perovskite materials. The results are consistent with reports from other literature[76]. In 
conclusion, a pre-trained model learned from one large dataset is hard to use to directly predict a different 
small dataset.
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Figure 1. The framework of data-driven strategy for bandgap database construction of perovskites and the potential segregation study. 
(A) The comparison of traditional and data-driven approaches and evaluation of machine learning models; (B) The construction of 
perovskite bandgap database; (C) The application of database for perovskite halide segregation study.

To address this challenge, we further developed the Fine-Tuned MEGNet by fine-tuning the model 
parameters. As shown in Figure 2, the Fine-Tuned MEGNet exhibits low MAE values, indicating that the 
application of transfer learning has greatly improved prediction accuracy. Notably, the Atomsets 
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Figure 2. The bandgap prediction results for the training set and test set of (A) Fine-Tuned MEGNet; (B) Atomsets-SVR; (C) Atomsets-
RF; (D) Atomsets-MLP. MEGNet: MatErials Graph Network; SVR: Support Vector Regression; MLP: multi-layer perceptron.

framework, which combines supervised machine learning algorithms such as Support Vector 
Machine (SVM), RF, and MLP, outperforms the Fine-Tuned MEGNet. This enhanced performance 
results from the fact that the Atomsets framework is a hierarchical transfer learning framework derived 
from pre-trained MEGNet, which has better transferability and shows lower errors than the MEGNet at 
a different type of dataset. In summary, the transfer learning method effectively overcomes reduced 
accuracy encountered when Machine Learning (ML) models trained on one type of large dataset are 
applied to another distinct small dataset.

Although the MAE of the Atomsets-MLP model has reached 0.078, indicating relatively high prediction
accuracy, its R2 is only 91.21%, implying that there is still potential for enhancing the model’s predictive
performance. This limitation can be partially attributed to various sources for the training data. In this
study, the experimental data on the bandgap of perovskite primarily originates from diverse literature.
Multiple bandgap measurement techniques and preparation methods of perovskite thin films can influence
these data[77]. To further enhance the model’s predictive accuracy, adopting a high-throughput experimental
approach in the future could be beneficial. This would facilitate the acquisition of a substantial amount of
precise and consistent bandgap data from a sole, dependable source, and these data can then train machine
learning models to elevate their predictive performance.
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Machine learning accelerated the construction of perovskite bandgap database
To overcome the discontinuity of perovskite compositions, a database was constructed containing 53,361 
perovskite compounds with the component FA1-a-bMAaCsbPb(I1-x-yBrxCly)3 (a, b, x, y = 0.05, 0.1, 0.15, 0.2, …, 
1). The bandgap of each compound was predicted using the Atomsets-MLP model. The probability density 
distribution is shown in Supplementary Figure 5. Notably, a large portion of the predicted bandgaps is 
distributed in the 1.75 to 2.25 eV range, which is precisely the bandgap range prone to halide 
segregation[78,79]. It is worthwhile mentioning that it took only 320 s to predict 53,361 compounds on a 
graphics processing unit (GPU). This means that Atomsets-MLP required only 0.006 s to predict the 
bandgap for a single compound. On the other hand, DFT methods would require three hours to compute 
the bandgap of a perovskite. Thus, Atomsets-MLP greatly accelerated the construction of the experimental 
bandgap database of perovskites.

To explore the correlations between the compositions and bandgaps of perovskites, the heat maps of the 
predicted bandgaps of FA1-yCsyPb(I1-xBrx)3, MA1-yCsyPb(I1-xBrx)3, and FA1-yMAyPb(I1-xBrx)3 are shown in 
Figure 3A. It is evident that as the cation radius at the A site decreases, the bandgap rises correspondingly, 
indicating an inverse relationship between them. Likewise, decreased ion radii at the X site increase 
bandgaps. Moreover, changes in the ionic radius at the X site exert a more pronounced influence on the 
bandgap than the A site. In summary, the bandgap widens as the ion radius diminishes at both the A and X 
sites. This is consistent with the findings of Liu et al., who combined machine learning models with SHapley 
Additive exPlanations (SHAP) to calculate the impact of each chemical composition in ABX3-type 
perovskites on the bandgaps[63]. In addition, the influence of such compositional changes on bandgaps also 
agrees with the research conclusion of Yang et al. who combined feature engineering, the gradient-boosted 
regression tree (GBRT) algorithm, and the genetic algorithm-based symbolic regression (GASR) algorithm 
to identify the influencing factors of bandgaps[64].

Generally, the A-site cation does not directly contribute to the states governing the bandgap of ABX3 
perovskite, whereas the s-p antibonding of B and X contributes to the valence band maximum (VBM), and 
the p-p antibonding contributes to the conduction band minimum (CBM)[63,80,81]. Therefore, a decrease in 
the A cation radius leads to lattice compression, resulting in a simultaneous increase in both VBM and 
CBM[82]. However, the CBM increases more significantly, leading to a slight increase in the bandgap as the A 
cation radius decreases[83]. On the other hand, at the X site, in addition to the bandgap narrowing caused by 
lattice compression, orbital energy also decreases following the trend of Br 4p < I 5p[84]. This results in 
decreased VBM and increased CBM when transiting from I to Br, ultimately leading to a wider 
bandgap[80,82]. The combined effects of lattice compression and orbital contributions lead to a more rapid 
increase in the bandgap as the X anion radius decreases[63,85]. To summarize, the theory of physics explains 
why A-site cation and X-halogen ions influence the change of the perovskite bandgap.

As shown in Figure 3B, the deviations between the experimental and the predicted results are extremely 
small, revealing that Atomsets-MLP model can accurately predict the controlling effect of the A-site cation 
and X-site halide ions on the bandgap. Considering that difference in bandgaps of perovskites with mixed 
compositions is a crucial factor causing halide segregation, these systems are selected to generate 20,688 
mixed halide perovskites for halide segregation study [Figure 3C].

Application of the database in perovskite segregation study
To predict halide segregation in FAPb(I1-xBrx)3, various energies were calculated, including decomposition 
energy, mixing energy, formation energy, and E_hull. The results are shown in Supplementary Figure 6. 
Calculations of decomposition energy and mixing energy suggested that a bromide ratio of 0.66 would yield 
the most stable perovskite in FAPb(I1-xBrx)3. However, experiments have revealed decreased stability due to 
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Figure 3. The construction of perovskite bandgap database. (A) Heat maps of predicted bandgap of FA1-yCsyPb(I1-xBrx) 3, 
MA1-yCsyPb(I1-xBrx)3, and FA1-yMAyPb(I1-xBrx)3; (B) The comparison between predicted bandgaps and experimental bandgaps; (C) The 
mixed halide perovskites in database.

halide segregation at this ratio, and after exposure to light, the segregated domains remix in dark 
conditions[44,86-88]. Likewise, neither the E_hull nor the formation energy accurately predicted these 
segregation and reversal behaviors under illumination and in the dark. This mismatch results from 
limitations in the calculation methods used to determine these energies, as they exclude critical factors such 
as temperature and illumination conditions, which significantly influence perovskite stability. Thus, these 
approaches are insufficient for predicting complex behaviors without considering these external factors.

In order to accurately predict the experimental behavior, a thermodynamic model that Zhu et al. provided 
was applied in FAPb(I1-xBrx)3

[75]. As shown in Figure 4, the curve shape undergoes significant changes with 
excitation intensity, exhibiting a more asymmetric profile at higher intensities. In dark conditions or at 
lower excitation intensities (η = 1/9), the convex profile of ΔF(η, x, T) at 300 K means that a miscibility gap is 
not apparent (no points have the same tangent line), suggesting that under these conditions, the perovskite 
will not phase segregate [Figure 4A]. However, at higher excitation intensities, ΔF(η, x, T) begins to show a 
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Figure 4. The free energy calculations for perovskite phase segregation. (A-C) The excitation intensity-dependent free energy variation 
at 300 K with different light intensities (η = 1/9, 1/3, 1/2); (D) The predicted phase diagram along with different light intensities at 
300 K. The binodal and spinodal lines and regions are shown in blue and red, respectively. The light intensities are illustrated by 
greyscale shaded areas (~2-sun, 10-sun).

concave shape for higher excitation intensities (η = 1/3, 1/2), indicating the perovskites will segregate as 
illumination increases [Figure 4B and C].

Based on the Helmholtz free energy variation, we built the phase diagram of FAPb(I1-xBrx)3 [Figure 4D]. The 
red lines are the spinodals separating the metastable (blue) and unstable (red) regions. The blue lines are the 
binodals separating the stable (white) and metastable regions. The phase diagram, which reflects the 
asymmetry of the free energy, reveals the emergence of miscibility gaps below a critical Br concentration. 
Specifically, at a temperature of 300 K and an intensity of ~2-sun, the above 25% Br concentration makes 
the mixed compounds thermodynamically unstable. The transition from a stable to an unstable state is 
consistent with experimental evidence[34,87,89,90]. In conclusion, the model can help construct the phase 
diagrams for each compound, both in the dark and under illumination, to distinguish between stable, 
metastable, and unstable regions.

To identify candidates with the potential to suppress light-induced phase segregation in mixed halide 
perovskites, a screening study was conducted across different A-cations in compounds of the form 
APb(I1-xBrx)3, where A = FA0.75Cs0.25, FA0.5Cs0.5, FA0.25Cs0.75, MA0.75Cs0.25, MA0.5Cs0.5, MA0.25Cs0.75, FA0.75MA0.25, 
FA0.5MA0.5, FA0.25MA0.75. As shown in Figure 5, these phase diagrams indicate that the threshold below which 
Br content must be kept to prevent phase segregation was a component-dependent value. Figure 5A-C 
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Figure 5. The predicted phase diagrams of mixed halide perovskites [APb(I1-xBrx)3], A = (A) FA0.75Cs0.25; (B) FA0.5Cs0.5; (C) FA0.25Cs0.75; 
(D) MA0.75Cs0.25; (E) MA0.5Cs0.5; (F) MA0.25Cs0.75; (G) FA0.75MA0.25; (H) FA0.5MA0.5; (I) FA0.25MA 0.75. The binodal and spinodal lines and 
regions are shown in blue and red, respectively. The light intensities are illustrated by greyscale shaded areas (~2-sun, 10-sun).

shows that as the Br content threshold increases, the Cs content correspondingly rises. Similarly, for the 
MAPb(I1-xBrx)3, the Br content threshold increases for different cation compositions in the order MA0.75Cs0.25

-MA0.5Cs0.5-MA0.25Cs0.75 [Figure 5D-F]. The results indicate that mixing in Cs in the MA and FA compounds 
has a stabilizing effect. However, Figure 5G-I presents an inverse relationship between the Br content 
threshold and the MA content, indicating that partial MA alloying does not improve the photostability of 
FAPb(I1-xBrx)3. In conclusion, rational alloying of A-site cations, such as alloying Cs into both MA and FA 
compounds, can effectively combat halide segregation.

As mentioned above, the bandgap variation for different halide compositions primarily results from 
differences in the energy of the valence band maxima[84]. Specifically, an increase in Br concentration lowers 
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the energy of the VBM[85]. This energetic variation subsequently leads to bandgap differences between the 
parent, iodine-rich, and bromine-rich phases. When photon energy exceeds the bandgap of perovskite, it 
converts to phonons and deposits in the crystal lattice, facilitating ion migration[75]. This leads to uneven 
component distribution, forming regions with diverse bandgaps. Regions with smaller bandgaps more easily 
absorb photons, becoming rich in electrons and holes, while regions with larger bandgaps absorb less light. 
This disparity causes uneven charge distribution, promoting the nucleation of I- and Br-rich phases, 
ultimately leading to phase separation. Therefore, these bandgap differences are the thermodynamic drivers 
of free energy differences that favor halide segregation. As shown in Supplementary Figure 7A and B, 
incorporating Cs into both MA and FA compounds reduces the bandgap differences (ΔEg), hindering the 
formation of the iodine-rich phase and thus preventing phase segregation. However, excessive doping with 
MA yields an opposing effect, widening the bandgap differences [Supplementary Figure 7C].

Based on the kinetics of phase segregation, photo-induced phase segregation is due to the migration of 
halide ions[91,92]. If ion migration is suppressed, phase segregation becomes difficult[93]. Recently, it has been 
observed that lattice distortion plays a crucial role in this process[94,95]. Lattice distortion, which can be 
modulated by incorporating differently sized ions, such as small A-site cations or large X-site anions, 
effectively raises the energy barrier for ion migration[33]. This increase in the migration barrier is primarily 
due to the decreased average interatomic distance, especially between the A-site cation and iodide, caused 
by the lattice distortion[27]. Consequently, this hindrance to ion movement serves as a significant factor in 
inhibiting the onset of phase segregation[96,97]. Additionally, strategies such as incorporating small A-site ions 
can lead to lattice contraction, further enhancing the halide ion migration barrier and contributing to 
suppressing phase segregation[94,98]. To summarize, these findings from the kinetic perspective are consistent 
with the discoveries in this paper from the thermodynamic perspective. Specifically, small-sized A-site ions 
prove advantageous in preventing phase segregation.

The consequence of light-induced halide segregation studied here is that the attractive bandgap tunability of 
mixed halide perovskites simultaneously leads to photostability problems. Nevertheless, our study serves as 
a guide for further experimental research on light-induced halide segregation. The challenge can be 
overcome using informed alloying strategies. For example, using relatively high Cs content rather than MA 
at the A-site is preferable in improving photostability of mixed perovskites, which agrees with the findings 
of Chen et al. that screened the components of mixed halide perovskites capable of inhibiting phase 
segregation through a high-throughput robotic system[99]. Additionally, Cao et al. discovered that by 
adjusting and increasing the Cs content in wide-bandgap perovskites, the crystallinity of the perovskite 
films can be improved, thereby aiding in the suppression of phase segregation[100]. Appropriate component 
selection can also avoid light-induced segregation. As shown in Figure 5B, at 2 Sun illumination and room 
temperature, FA0.5Cs0.5Pb(I1-xBrx)3 should be photostable up to 40% Br concentration. This allows reaching a 
bandgap of 1.82 eV, which is sufficient for the monolithic tandem solar cell with a narrow bandgap 
perovskite of ~1.2 eV.

CONCLUSIONS
To summarize, photo-induced halide segregation in mixed halide perovskites limits the practical application 
of many alloy compositions. To address this challenge, we developed a data-driven framework to predict the 
bandgaps and study halide segregation. Firstly, by adopting a transfer learning strategy, we fine-tuned the 
parameters of the Graph Neural Network model using collected experimental bandgap data and DFT-
calculated bandgap data. The transfer learning model, Atomsets-MLP, improved the prediction accuracy of 
the perovskite bandgap to a MAE of 0.078 eV, better than the original Graph Neural Network without 
transfer learning, significantly improving transferability and accuracy. Secondly, applying Atomsets-MLP, 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202405/jmi4010-SupplementaryMaterials.pdf
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we predicted the bandgaps of 53,361 mixed perovskites with continuous compositions and built a 
comprehensive and high-accuracy mixed perovskite database with a rich variety of elements and 
compositions. Finally, utilizing this database and based on the light-induced segregation theoretical model, 
we calculated the free energy of 20,688 mixed iodine-bromine perovskites and generated corresponding 
phase diagrams to study their light-induced segregation behavior.

We found that the bandgap increases as the ionic radius at the A-site and X-site decreases. Reaching a 
desired bandgap is achieved by adjusting the ratio of I/Br. However, this adjustment will lead to the 
bandgap differences between the parent phase, the iodine-rich phase, and the bromine-rich phase, which 
are the driving force of phase segregation. To avoid the segregation behavior, the Br content must be kept 
below a certain threshold, which is related to the A-site composition. Furthermore, using a relatively high 
Cs content at the A-site rather than MA can reduce the bandgap difference in mixed perovskites. Therefore, 
it is preferable for improving the photostability of mixed perovskites. By accurately predicting bandgaps and 
studying halide segregation behavior, we can significantly reduce the need for costly and time-consuming 
experimental trials. The approach paves the way for more efficient and targeted material design, enabling 
the rapid identification of promising mixed perovskite compositions with enhanced photostability for 
practical applications in solar cells and other optoelectronic devices.
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