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Abstract
This paper presents a framework for generating high-definition (HD) map, and then achieves accurate and robust
localization by virtue of the map. An iterative approximation based method is developed to generate a HD map in
Lanelet2 format. A feature association method based on structural consistency and feature similarity is proposed to
match the elements of the HD map and the actual detected elements. The feature association results from the HD
map are used to correct lateral drift in the light detection and ranging odometry. Finally, some experimental results
are presented to verify the reliability and accuracy of autonomous driving localization.

Keywords: High definition map, factor graph optimization, localization, reprojection error

1. INTRODUCTION
In recent years, vehicle localization has been treated as an important part of an autonomous driving system.
However, conventional odometry methods have drift problems with long-term use. An inertial navigation
system (INS) will likely fail in scenarios with poor GNSS signals, such as tunnel and urban canyon scenarios [1].
For the sake of more accurate localization, multisensor fusion is developed to compensate for the respective
deficiencies of various sensors. HDmaps, as stable prior information, can provide reliable location constraints.
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Fusion localization methods based on HD maps have been a significant research hotspot in recent years.

For HD maps, some computer-aided generation methods have emerged [2,3]. However, lane lines obtained
using thesemethods are a series of 2-dimensional point sets, which occupy large storage space and do not carry
elevation information. Some researchers store road features in point clouds and use point cloud registration
methods to determine vehicle positions [4,5]. However, point cloud formats have disadvantages such as high
coupling, difficulty in maintaining, and unfavorable object classification. For localization, some researchers
reduce localization errors by matching road surface features, e.g. manhole covers [6–12]. However, the visibility
of road features is easily affected by illumination, which makes the matching performance differ greatly at
different times and results in unstable localization.

In this paper, the main work focuses on two aspects: First, a computer-aided generation method for HD
maps is proposed. Currently, most papers consider the lane lines are in 2D plane when the lane line fitting
is implemented. These methods are almost unusable in scenarios such as overpasses and culverts [13–16]. To
broaden the use of HD maps, it is necessary to develop 3D fitting lane lines. Second, an accurate multisensor
fusion localization method using generated HD map and existing odometry is proposed. It is worth noting
that cumulative errors will occur if the localization method is only based on odometry. Thus, a positional
constraint that has no connection with error is required to correct the estimated position. The contributions
of this paper are summarized as follows:

1. We propose amethod based on an iterative approximation to generate the 3D curve of lane lines. The spatial
parameterized curve fitted by the proposed algorithm, which is global 𝐶1 continuous, has broader applica-
bility than the 2D curve equation. This method not only effectively reduces the number of parameters of
the spline curve but also ensures the accuracy of the curve.

2. We separate the lanes and store them in a particular HD map format instead of holding them as semantic
information in a point cloud. For the HD maps nonuniform sampling point problem, a method based on
numerical integration is proposed to achieve uniform sampling over the arc length.

3. We propose a method to associate the elements in the HD map and the other elements in the perception
results.In this paper, the basic elements of the HD map and the complete feature associations are formu-
lated with their respective similarity evaluation metrics, considering the matching time, similarity and local
structure consistency.

4. We transform the localization problem of fusing HD maps into a graph optimization problem. Based on
the HDmap and perceptual image feature association results, a lateral constraint is applied to the odometry
localization results, and accurate, low-cost localization results are obtained.

2. RELATED WORKS
2.1. Generation of lane curve equations
Chen et al. [14] demonstrated that a cubic Hermite spline (CHS) can describe line segments, arc curves, and
clothoids simultaneously and is a good choice for fitting lane lines. A CHS has at least 𝐶1 continuity, which is
more accurate in describing lane curves than a traditional segmented linear fold representation. Its uniform
form allows fitting any lane curves parametrically using a sequence of feature points. Jo et al. [15] proposed a
B-spline fitting method based on the optimal smoothing technique. Zhang et al. [16] proposed a lane line fitting
method that considered a vehicle model to generate globally 𝐶1 continuous lane lines that match the driving
trajectory. Gwon et al. [17] proposed a segmented polynomial fitting method with sequential approximation,
which outperformed 𝐵-spline and clothoid curves in terms of computational efficiency and modifiability.

2.2. Existing HD map formats
There is no unified standard for HDmap formats, and various institutions and companies use different formats.
The OpenDRIVE standard, developed by the Association for Standards in Automation and Measurement Sys-
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tems (ASAM), has been used in simulations for some time and has good landing performance in some as-
sisted driving models. The Navigation Data Standard (NDS) is a standard format for vehicle-level navigation
databases jointly developed and published by vehicle manufacturers and automotive suppliers. The NDS for-
mat enables sharing of navigation data between different systems by separating the navigation data from the
navigation software. Although OpenDRIVE and NDS are formats developed by more authoritative organiza-
tions, they need to be more open, as they provide only partial information to most developers. Therefore it is
challenging to use them in practice [18,19].

ApolloOpenDRIVE is amodified version of OpenDRIVE to accompany the BaiduApollo autonomous driving
system. Instead of using geometric elements, it uses sequences of points to represent road elements. In addition,
Apollo OpenDRIVE stores reference lines on the map and then describes the lane lines relative to the reference
lines. This allows Apollo OpenDRIVE to express maps with higher accuracy than OpenDRIVE for the same
map file size and also facilitates some calculations in the subsequent planning module.

In 2018, Poggenhans et al. [20] released the open source Lanelet2. Based on the OpenStreetMap (OSM) format,
Lanelet2 has been extended and allowed direct access to many of the open source tools that accompany OSM.
Benefiting from its complete toolkit, open architecture, and easily editable features, Lanelet2 not only allows
the storage of information about roads, road signs, light poles, and buildings with precise geometry but also
enables lane level and traffic-compliant routing.

2.3. Multisensor fusion localization
GNSS are widely spread in intelligent transport systems and offer a low-cost, continuous and global solution
for positioning [21]. It can provide a more stable location. GNSS localization system has obvious disadvantages:
significant errors and easy to be obscured. Therefore, scholars have increasingly recognizedmultisensor fusion
as necessary in recent years. Simultaneous localization and mapping (SLAM) is a technology that constantly
builds and updates environmental information by sensing things in an unknown environment while tracking
their position in the background. SLAM is generally divided into light detection and ranging (LiDAR)-based
SLAM, such as LOAM [22], LeGO-LOAM [23], LINS [24], and LIO-SAM [25], and vision-based SLAM, such as
ORB-SLAM [26], VINS [27,28]. If the localization relies solely on LiDAR or cameras, position estimation errors
will accumulate over a long time and distance. An HD map, as a globally consistent data source, can also
provide reliable global location constraints. Multisensor fusion localization algorithms combined with HD
map lane-level localization algorithms will be more accurate and have great potential.

2.4. Localization based on HD map
Scholars continue to reduce the error by matching pavement marking features or lane line curvature based
on existing localization [6–12]. However, the visibility of road markings is affected by light. The visibility of
different markings on the same road segment varies greatly at different periods, making it difficult to achieve
stable positioning performance. At the same time, these efforts do not consider the common function of
road elements in localization and planning, and these methods can only use the generated road elements in
localization.

3. SYSTEM OVERVIEW
The proposed system consists of three parts. The first part is lane line fitting. An inverse lane line perspective
mapping method combined with ground equations is discussed. An iterative approximation-based process
of fitting piecewise CHS curves is proposed. This method satisfies the requirement of small data storage and
ensures the continuity of lanes.

The second part is the HDmap postprocessing. The data structure and coordinate system required for the HD
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Figure 1. The coordinate system of the vehicle.

Figure 2. Lane detection data.

map are discussed. We use a numerical integration method to calculate the parametric curve arc lengths. In
this way, the parametric scale equidistant curves are transformed into arc-length scale middle curves, making
the curve structure more uniform.

The third part is a fusion localization method based on HD maps and odometry. A method for feature associ-
ation between current HD map information and the camera’s real-time perceptual features is investigated. A
respective similarity evaluation metric is formulated for different essential elements in the HD map. Accord-
ing to the accumulated confidence smoothing, the results are smoothed on the time scale and converted into a
graph optimization problem. Finally, the amount of computation for graphics optimization is reduced using
a sliding window method and improved keyframe selection.

The KITTI dataset is used for autonomous driving and mobile robot research [29]. This study uses only camera
2 and the synchronized and corrected data in the KITTI dataset. Therefore, we add some definitions based
on KITTI’s original definitions. Taking camera 2 as the origin to establish a camera coordinate system, the
intersection of the vertical line from the midpoint of the front and rear axles of the vehicle (the middle of the
four wheels) to the ground and the ground is taken as the vehicle center point, and the base_link coordinate
system is established. The positive direction of the 𝑥-axis is forward along the vehicle’s driving path, the 𝑦-
axis points to the left side of the vehicle’s driving direction, and the 𝑧-axis is vertical upward. The vehicle’s
coordinate system is shown in Figure 1.

4. HD MAP GENERATION
We discuss the generation of HD maps with the lane line detection results already available from existing
experimental data, and the test images are from the KITTI dataset [29]. An example of lane line data is shown
in Figure 2. The lane line data are stored as line segments. Each segment is a lane consisting of several points.
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4.1. Inverse perspective mapping with ground equation
The projection equation of the camera is as follows:

𝑍c

[
𝑷uv
1

]
= 𝑲𝑷c = 𝑲𝑻cb𝑷b (1)

where 𝑷c = [𝑋c, 𝑌c, 𝑍c]T is the coordinates of a point under the camera coordinate system, and 𝑲 is the intrinsic
matrix of the camera. 𝒁c is the 𝑧-axis coordinate of the actual ground point in the camera coordinate system.
𝑷b is the coordinates of a point in the vehicle coordinate system, 𝑷uv = [𝑢, 𝑣]T is the coordinates of a point in
the pixel coordinate system, 𝑻cb represents transformation matrix from the camera to the vehicle coordinate
system.

We calculate the ground equations in the LiDAR coordinate system as follows [30]:

𝒏T
l 𝑷l = 𝒏T

l 𝑻lc𝑷c = 𝒏T
c 𝑷c = −𝐷 (2)

where 𝒏l is the vector normal to the ground plane in the LiDAR coordinate system, and 𝑻lc is the transforma-
tion matrix from the LiDAR to the camera coordinate system. 𝑷1 is the point in the radar coordinate system.
𝒏c is the vector normal to the ground plane in the camera coordinate system.

Combining (1) and (2),

𝑍𝑐


𝑷uv
1
0

 =


𝑓𝑥 0 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0
0 0 1 0
𝐴 𝐵 𝐶 𝐷


𝑷c = 𝑴𝑻cb𝑷b (3)

where 𝑴 is:

𝑴 =

[
𝑲 0
𝒏T

c 𝐷

]
(4)

The physical meaning of 𝐷 is the offset of the plane in the direction of the normal vector (after normalizing
the normal vector 𝒏). In the camera coordinate system, 𝐷 in the ground equation cannot be zero. Therefore,
it can be assumed that 𝑴 is full rank.

Since the matrix 𝑴 varies with the ground equation, its inverse matrix must be calculated for each subsequent
frame, and the program overhead is significant. From the chunk matrix property, we can further obtain the
following:

1
𝑍𝑐

𝑷c =

[
𝑲−1 0

−𝐷−1𝒏T
c 𝑲

−1 𝐷−1

] 
𝑷uv
1
0

 (5)

From (5), the program only needs to compute 𝑲−1 once in the initialization phase. Then, it is just a matter of
computing 𝒏′T and 𝐷−1 in each subsequent frame of the program.

4.2. Piecewise cubic hermite spline fitting
A CHS curve is a cubic polynomial curve determined by the starting point 𝑝0, the ending point 𝑝1, the slope
of the starting point 𝑑0, and the slope of the ending point 𝑑1. The equation of a parametric cubic polynomial
curve is defined as:

F𝑖 ( 𝒑𝑖 , 𝒑𝑖+1, 𝒅𝑖 , 𝒅𝑖+1, 𝑡) = 𝑷𝑖𝑯𝒕 =


𝒑 𝒊
𝒑 𝒊+1
𝒅𝒊
𝒅𝒊+1


T 

1 − 3𝑡2 + 2𝑡3

3𝑡2 − 2𝑡3

𝑡 − 2𝑡2 + 𝑡3
−𝑡2 + 𝑡3


(6)
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(6) represents the equation of the 𝑖-th segment of a CHS curve. A CHS curve has global 𝐶1 continuity [16].

The problem of fitting the 𝑖-th segment of the curve to 𝑁𝑖 points can be transformed into a minimization
problem:

min
𝑁𝑖∑
𝑘=0

err = min
𝑁𝑖∑
𝑘=0



F𝑖 ( 𝒑𝑖 , 𝒑𝑖+1, 𝒅𝑖 , 𝒅𝑖+1, 𝒕𝑖) − 𝒑𝒌



 (7)

It is evident that in each segment of the curve except the first one, only the endpoint tangent vector 𝒅𝑖+1 needs
to be fitted. In (7), fitting a parametric curve equation needs to consider multiple minimization problems at
the same time.

An algorithm for fitting a piecewise spatial CHS curve is proposed based on the idea of asymptotic approxi-
mation, as shown in the Algorithm 1. The main idea of the algorithm is to cyclically optimize 𝒅𝒊 , 𝒅𝒊+1 and 𝒕.
That is, one parameter is optimized while keeping the other two parameters unchanged until each parameter
is optimized 𝑁iter times. To achieve global𝐶1 continuity, the vector tangent to the starting point of subsequent
curves adopts the endpoint tangent vector of the previous segment. In this paper, F𝑖 (𝒅𝑖) means that other
quantities are left unchanged, and only 𝒅𝑖 is changed, and the same is true for other variables. In this paper,
the optimizer uses L-BFGS-B [31].


arg min
𝒅0,𝒅1

∑𝑁0
𝑘=0 ∥F0(𝒅0, 𝒅1) − 𝑝𝑘 ∥ 𝑖 = 1

arg min
𝒅𝑖+1

∑𝑁𝑖

𝑘=0 ∥F𝑖 (𝒅𝒊+1) − 𝑝𝑘 ∥ 𝑖 = 2, 3, . . . 𝑁
(8)

Algorithm 1 CHS Curve Fitting with Asymptotic Approximation

𝑁 : Total number of curve segments.
𝑖: The 𝑖-th curve, 𝑖 ∈ [1, 𝑁].
𝑁𝑖 : Point set size.
𝑘 : The 𝑘-th point in the set of points, 𝑘 ∈ [1, 𝑁𝑖].
𝑡𝑘 : The parameter corresponding to the 𝑘th point.
𝒕𝑖 : The column vector consisting of 𝑡𝑘 .
𝑁iter: Number of iterations.
for 𝑖 ∈ [1, 𝑁] do

Initialization : 𝒑𝑖 , 𝒑𝑖+1
for 𝑗 ∈ [1, 𝑁iter] do

𝒕𝑖 = L-BFGS-B
(
arg min

𝒕

∑𝑁𝑖

𝑘=1 F𝑖 ( 𝒕𝑘 )
)

if 𝑖 == 1 then

𝒅𝑖 = L-BFGS-B

(
arg min

𝒅𝑖

∑𝑁𝑖

𝑘=1 F𝑖 (𝒅𝑖)
)

end if

𝒅𝑖+1 = L-BFGS-B

(
arg min

𝒅𝑖+1

∑𝑁𝑖

𝑘=1 F𝑖 (𝒅𝑖+1)
)

end for
end for
return F
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Figure 3. Curve fitting.

The traditional piecewise cubic Hermite interpolating polynomial (PCHIP) [32] algorithm fits a set of curves
with four parameters every two points, so the number of parameters to be fitted increases exponentially with
an increasing number of sampling points. The asymptotic approximation of the CHS curve fitting algorithm
proposed in this section adds several sampling points to the curve fitting equation as constraint terms, which
can effectively reduce the total number of parameters while ensuring that the curve is as close as possible to
the remaining sampling points. As shown in Figure 3, the gray line is the actual curve, the red line is composed
of 20 sampling points, and the blue and green lines are the curves fitted by the algorithm in this study. The
smooth and continuous connection between the blue and green lines is evident in Figure 3. This shows that the
algorithm’s results in this study can still guarantee a certain accuracy in the case of more serious disturbances.
This accuracy satisfies the need for lane line fitting.

4.3. Intersection completions
Considering that some roads prohibit left or right turns, it is not feasible to fix intersections through geometric
relationships. In this study, we evaluate the intersection connection using the trajectory information of the
vehicle driving. The vehicle driving trajectory is superimposed on the set of lane points. When the lane points
near the vehicle driving route are less than a threshold value, the intersection is considered to be at that point.

The parameters of a CHS curve equation in an intersection (called virtual lanes) can be determined by com-
bining the endpoint of the departure lane and its tangent vector with the start point of the entry lane and its
tangent vector. That is, for the equation of virtual lanes at this intersection, the equation of a lane line in inter-
section FI satisfies FI = F( 𝒑𝑝𝑟𝑒𝑣 , 𝒑𝑛𝑒𝑥𝑡 , 𝒅𝑝𝑟𝑒𝑣 , 𝒅𝑛𝑒𝑥𝑡 , 𝑡), where 𝒑𝑝𝑟𝑒𝑣 and 𝒑𝑛𝑒𝑥𝑡 are the endpoint coordinates of
the starting lane and the start point coordinates of the target lane, respectively, and 𝒅𝑝𝑟𝑒𝑣 and 𝑏𝑜𝑙𝑑𝑠𝑦𝑚𝑏𝑜𝑙𝑑𝑛𝑒𝑥𝑡
are the endpoint tangent vector of the starting lane and the start point tangent vector of the target lane.

4.4. Arc length equalization of curves
In Lanelet2, a sequence of points is used to describe lane lines. This storage method has some advantages; path-
planning algorithms with some processing can use this point sequence. In addition to manual adjustment to
edit HD maps, they must also manipulate the point sequence and cannot be operated on the parameterized
curve. In contrast, some scenarios require global smoothing of curves, such as lane visualization drawing.
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Therefore, lane parameters and point sequences are stored in the map file in this study. Optimizing the curve
equation after parameter 𝑡 does not have a physical meaning. To make the spacing of sampling points on each
section of the lane consistent, the arc length of the curve needs to be calculated and used to re-extract the
equidistant sampling points.

The CHS arc lengths can be calculated from the following equation:

𝑠 =
∫ 1

0
𝑔(𝑡) dt =

∫ 1

0

√
𝑥′(𝑡)2 + 𝑦′(𝑡)2 + 𝑧′(𝑡)2 dt =

∫ 1

0

√
𝒕′T𝑯T𝑷T𝑷𝑯𝒕′ dt (9)

(9) is an elliptic integral, which is difficult to calculate by ordinary methods. In this study, the Gauss-Kronrod
quadrature method [33] is used to simplify the integration calculation process.

We use the G7-K15 method, a 7-point Gauss rule with a 15-point Kronrod rule, apply it to (9), and use the
rules of the upper and lower limits of the integral transformation to calculate the arc length from 𝑡0 to 𝑡1:∫ 𝑡1

𝑡0

𝑔(𝑥) dx =
∫ 1

−1

𝑡1 − 𝑡0
2

𝑔

(
𝑥 + 1

2
(𝑡1 − 𝑡0) + 𝑡0

)
dx ≈

15∑
𝑖=1

𝑤𝑖
𝑡1 − 𝑡0

2
𝑔

(
𝑥𝑖 + 1

2
(𝑡1 − 𝑡0) + 𝑡0

)
(10)

(10) can be used to calculate the arc length of the lane curve, which is not only used for equidistant sampling
but also in intersection steering scenarios. The arc length can also be used to calculate curvature, which is
convenient for planning.

5. LOCALIZATION BASED ON AN HD MAP
There are a variety of complex road environments in the cities, such as tunnels, overpasses, and urban canyons.
These environmentsmakeGNSS-based localization less reliable. Someodometry fusingmethods have emerged
to solve the problem of GNSS failure. However, due to odometry drift, these methods cannot meet the local-
ization requirements in scenarios where there is a long-term lack of effective global position information [34].
Although point cloud map relocalization based on the iterative closest point (ICP) [35], normal distribution
transform (NDT) [36] and other methods is very effective, a very large point cloud map becomes a major chal-
lenge that affects practical use. An HD map contains various semantic features, while lane lines and traffic
signs have good recognition both day and night. To explore the global localization method combining an HD
map and IMU, two problems need to be solved. First, the elements in the HD map are associated with the
elements detected using other sensors. Second, the pose is estimated based on the feature association results.

5.1. Reprojection
Reprojection refers to projecting the coordinates of a corresponding point in 3D space back to the pixel plane
according to the currently estimated pose. The error between the reprojected and actual pixel coordinates is
called the reprojection error and is often used as an indicator to evaluate the pose. Based on the position of
the lane in the map, the known a priori knowledge of the HD map is projected onto the camera image by
combining the intrinsic and extrinsic parameters of the camera. The evaluation of a pose metric is obtained by
differencing the a priori map element positions and the coordinates of the matching perceptual results. Ideally,
the distance between the two should be zero. The optimal camera pose can be obtained by optimizing the
camera pose using a nonlinear optimization method to minimize this evaluation metric so that the optimal
vehicle pose can be calculated.

First, referring to the transcendental vehicle pose 𝑻bw, combined with (3), the representation of a feature point
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𝑷w in the world coordinate system at the coordinates 𝑷uv in the pixel plane system can be obtained.

𝒑𝑢𝑣 = ℎ(𝑻bw, 𝒑w) =
1
𝑍𝑐

𝑲𝑻cb𝑻bw 𝒑w (11)

where 𝑻cb is the transformation matrix from the vehicle coordinate system to the camera coordinate system,
𝑻bw is the transformation matrix from the world coordinate system to the vehicle coordinate system, and 𝑍𝑐 is
the 𝑧 axis coordinate of the feature point in the camera coordinate system, 𝐾 is the camera internal parameter
matrix. According to (11), the elements in the HD map are projected into the pixel plane.

5.2. Feature association
To use an HD map for localization, the location of objects detected by the sensors on the HD map needs to
be known. This step is called feature association. Feature association locates HD map elements that match
the features detected in the camera images. The correct selection of map features can significantly improve the
localization results. In this study, we choose lane line elements asmap features. This is because lane line features
are easy to detect, have a long duration, and have good reflection properties, and have a high detection success
rate in environments such as nighttime. The map elements are reprojected to the pixel plane (map features),
and the distance between the detected elements (perceptual features) is calculated and used to evaluate the
localization results.

Define the perceptual feature 𝑥 as consisting of kind 𝑥𝑙 and shape 𝑥𝑏 , i.e. 𝑥 = {𝑥𝑙 , 𝑥𝑏}. For lane line perception
feature 𝑥, the slope difference of lanes on the same road section is very small. There is a possibility that distant
lanes may be included in the HD map reprojection process by mistake. To better distinguish lane lines on
the same road section, the shape is defined to consist of a sequence of lane line points 𝑥𝑠 and their slopes 𝑥𝑑 :
𝑥𝑏 = {𝑥𝑠, 𝑥𝑑}.

Based on the consistency of the local structure, the map feature reprojection error is calculated. Then, coarse
matching of features and HD map perceptual features is performed. If the reprojection error is too large, the
gap between the map and perceptual features is considered too large and will not be matched and optimized.
The algorithm continues only when the error is less than a certain threshold. Define the map feature as 𝑦 and
given camera perceptual feature 𝑥, consider the confidence 𝑥𝑐 that a feature belongs to a certain class with
probability 𝑃(𝑥𝑙 |𝑦𝑙) given by the target detection module. Assuming that the shape detection noise obeys a
normal distribution, this is combined with computing the feature’s likelihood probability 𝑃(𝑥 |𝑦).

𝑃(𝑥 |𝑦) = 𝑃(𝑥𝑙 |𝑦𝑙)𝑃(𝑥𝑐 |𝑦𝑙 , 𝑥𝑙)𝑃(𝑥𝑏 |𝑦𝑏) (12)

For the lane lines, define the likelihood probability 𝑃(𝑥𝑏 |𝑦𝑏) of the shape.

𝑃(𝑥𝑏 |𝑦𝑏) = 𝜔𝑒
− 1

2

(
𝑥𝑑
𝑖
−𝑦𝑑

𝑖
𝜎𝑑

)2

+ (1 − 𝜔)𝑒−
1
2

(
�̄� 𝑝− �̄� 𝑝
𝜎𝑝

)2

(13)

where 𝑦𝑑 and 𝑥𝑑 are the slopes of the lane lines in the map feature and the perceptual feature, respectively, and
𝑥𝑝 and �̄�𝑝 are the average coordinates of the sampling points of the lane lines on the 𝑥-axis in the map feature
and the perceptual feature, respectively. 𝜎𝑑 is the variance of the lane slope. If the likelihood probability 𝑃(𝑥 |𝑦)
is greater than a certain threshold Th, this map feature and the perceptual feature are considered as a pair of
coarse matches 𝑧𝑖 𝑗 = {𝑥𝑖 , 𝑦 𝑗 } for the same feature.

Considering the map structure consistency, the perceptual feature structure should be similar to the map fea-
ture structure. After coarse matching, the distance between two of each map feature and the distance between
two of the matching perceptual features is calculated, as shown in Figure 4. These two sets of distances are
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Figure 4. Edge similarity definition

called the structural features of the map features and the structural features of the perceptual features. The dif-
ference in the structural features is used as ameasure to assess the similarity between a given frame’s perceptual
feature structure and the map feature structure.

Define the matching matrix 𝑫 ∈ R𝑁𝑛×𝑁𝑚 , where the element 𝑑𝑖 𝑗 = 1 indicates that the perceptual feature 𝑥𝑖
matches the map feature 𝑦 𝑗 ; otherwise, 𝑑𝑖 𝑗 = 0. Define that in two feature pairs 𝑑𝑖 𝑗 and 𝑑𝑘𝑙 , the edge 𝑒𝑥 (𝑖, 𝑘)
denotes the horizontal distance between perceptual features 𝑥𝑖 and 𝑥𝑘 , and similarly, the edge 𝑒𝑦 ( 𝑗 , 𝑙) denotes
the horizontal distance between map features 𝑦 𝑗 and 𝑦𝑙 . Then, the similarity between the perceptual feature
structure and map feature structure 𝑠𝑡 in a certain frame is shown in (14).

𝑠 =
1
𝑁𝑒

𝑁𝑛∑
𝑖=1

𝑁𝑚∑
𝑗=1

𝑁𝑛∑
𝑘=1

𝑁𝑚∑
𝑙=1

𝑑𝑖 𝑗𝑑𝑘𝑙 exp

((
𝑒𝑦 ( 𝑗 , 𝑙) − 𝑒𝑥 (𝑖, 𝑘)

2𝜎𝑒

)2
)

(14)

where 𝑁𝑛 and 𝑁𝑚 are the total numbers of perceptual features and map features after reprojection, respectively.
𝑑𝑖 𝑗𝑑𝑘𝑙 denotes the requirement that this edge exists for both map features and perceptual features. 𝑁𝑒 is the
number of all possible edges that satisfy the above requirement.

Considering the number of matches, structural consistency, and reprojection error, the feature matching prob-
lem can be expressed as a multi-order map matching problem.

�̂� = arg max
𝑫

𝜔1𝑁𝑑 + 𝜔2𝑠 + 𝜔3
1
𝑁𝑑

𝑁𝑛∑
𝑖=1

𝑁𝑚∑
𝑗=1

𝑑𝑖 𝑗𝑃(𝑥𝑖 |𝑦 𝑗 ) (15)

where 𝑁𝑑 is the number of feature matching pairs. 𝑃(𝑥𝑖 |𝑦 𝑗 ) and 𝑠 can be calculated by (12) and (15). 𝜔1, 𝜔2,
𝜔3 are the weight parameters.

5.3. Factor graph optimization
Define known sensor measurements 𝑍 = {𝑧𝑖}𝑁𝑧

𝑖=1, map feature measurements 𝑌 = {𝑦 𝑗 }𝑁𝑚

𝑗=1, where 𝑙 𝑗 ∈ R3,
and pose estimates 𝑋 = {𝑥𝑡}𝑁𝑥

𝑡=1 , where 𝑥𝑡 ∈ SE (2). The HD map-based localization can be expressed as a
maximum a posteriori probability (MAP) estimation as follows:

�̂� = arg max
𝑋

𝑃(𝑋 |𝑍,𝑌 ) (16)

This MAP estimation can be decomposed into two subproblems, feature association and pose estimation, to
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create a feature association 𝐷 = {𝑑𝑡}𝑁𝑑

𝑡=1 between the perceptual measurements andmap feature measurements.
It is obtained as follows:

�̂�, �̂� = arg max
𝑋,𝐷

𝑃(𝑋, 𝐷 |𝑍,𝑌 ) = arg max
𝑋,𝐷

𝑃(𝑋 |𝐷, 𝑍,𝑌 )𝑃(𝐷 |𝑋, 𝑍,𝑌 ) (17)

We use factor graphs to optimally fuse odometry 𝑧𝑜 and map feature measurements 𝑧𝑙 from feature matching.
It is more difficult to solve the posterior distribution directly, and with the matching relationship �̂� already
estimated, using Bayes’ theorem, (17) can be written as

�̂� = arg max
𝑋

𝑃(𝑋 |𝑍,𝑌, �̂�) = arg max
𝑋

𝑃(𝑋)𝑃(𝑍 |𝑋,𝑌, �̂�) (18)

The above equation splits the MAP estimation into the product of the maximum likelihood estimate (MLE)
and the prior. Therefore, (17) can be equated to anMLE problem. Therefore, the pose 𝑋 optimization problem
can be constructed based on the odometry 𝑧𝑜 and the feature matching pair (called landmarks) 𝑧𝑙 obtained in
the previous section. The error term consists of the odometry error 𝑒𝑜 and the observation error 𝑒𝑦 . The obser-
vation error 𝑒𝑦 can be composed of the coordinate error 𝑒𝑙 of the landmark and the map error 𝑒𝑚𝑗 . Therefore,
we divide the error term into three parts: odometry error 𝑒𝑜 , landmark error 𝑒𝑙 and map error 𝑒𝑚𝑗 .

Assume that the noise satisfies a normal distribution. The odometry error optimization term can be defined
as: ∑

𝑘

𝑒𝑜 (𝑥𝑘−1, 𝑥𝑘 , 𝑧
𝑜
𝑘 )

TΩ𝑜
𝑘𝑒
𝑜 (𝑥𝑘−1, 𝑥𝑘 , 𝑧

𝑜
𝑘 ) (19)

whereΩ𝑜
𝑘 is the information matrix, and the odometry error 𝑒𝑜 (𝑥𝑝𝑘−1, 𝑥

𝑝
𝑘 , 𝑧

𝑜
𝑘 ) can be expressed as the difference

between the current pose 𝑥𝑝𝑘
T after performing the transformation 𝑧𝑜𝑘 on the pose 𝑥

𝑝
𝑘−1 for the previous frame:

𝑒𝑜 (𝑥𝑝𝑘−1, 𝑥
𝑝
𝑘 , 𝑧

𝑜
𝑘 ) = 𝑥

𝑝
𝑘

T
𝑥
𝑝
𝑘−1𝑧

𝑜
𝑘

(20)

The landmark error optimization term can be defined as:∑
𝑘

𝑒𝑙 (𝑥𝑝𝑘 , 𝑥
𝑙 , 𝑧𝑙𝑘 )

𝑇Ω𝑙
𝑘𝑒
𝑙 (𝑥𝑝𝑘 , 𝑥

𝑙 , 𝑧𝑙𝑘 ) (21)

where the landmark error can be represented by the difference between the 𝑥-axis coordinates of the perceptual
features and map features:

𝑒𝑙 (𝑥𝑝𝑘 , 𝑥
𝑙 , 𝑧𝑙𝑘 )

T =

[
1
𝑍𝑐𝑘

𝑲𝑻cb𝑥
𝑝
𝑘

T
𝑥𝑙 − 𝑧𝑙𝑘

]
0

(22)

The map error optimization term can be described as [37]:∑
𝑘

𝑒𝑚𝑘 (𝑥
𝑙)TΩ𝑚

𝑘 𝑒
𝑚
𝑘 (𝑥

𝑙) = 𝛾(𝑐)
𝑟2

∑
𝑘

(𝑥𝑙 − 𝑚𝑘 )T(𝑥𝑙 − 𝑚𝑘 ) (23)

where 𝛾(𝑐) is the inverse-chi-squared distribution function, 𝑟 is the radius, and 𝑚𝑘 is the location of the 𝑘th
frame map feature.

When the error of a particular edge is significant, the growth rate of the Mahalanobis distance in the above
equation is substantial. Therefore, the algorithm will try to preferentially adjust the estimates associated with
this edge and ignore the effect of other advantages. This study uses the Huber kernel function 𝐻 (𝑥) to adjust
the error term and reduce the impact of erroneous data.
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Combining (19), (21), and (23), the pose optimization function is obtained as follows:

�̂� = arg min
𝑋

∑
𝑘

𝐻
(
𝑒𝑜 (𝑥𝑝𝑘−1, 𝑥

𝑝
𝑘 , 𝑧

𝑜
𝑘 )

TΩ𝑜
𝑘𝑒
𝑜 (𝑥𝑝𝑘 , 𝑥

𝑝
𝑘 , 𝑧

𝑜
𝑘 )

)
+
∑
𝑘

𝐻
(
𝑒𝑙 (𝑥𝑝𝑘 , 𝑥

𝑙 , 𝑧𝑙𝑘 )
TΩ𝑙

𝑘𝑒
𝑙 (𝑥𝑝𝑘 , 𝑥

𝑙 , 𝑧𝑙𝑘 )
)

+𝛾(𝑐)
𝑟2

∑
𝑘

(𝑥𝑙 − 𝑚𝑘 )T(𝑥𝑙 − 𝑚𝑘 )

(24)

6. EXPERIMENTS AND RESULTS
We validated the proposed localization algorithm through a series of experiments. First, the KITTI dataset
is gradually simplified to fit a single parametric curve based on various lane characteristics. The curve equa-
tion of each lane line is calculated based on the three-time Hermite spline curve fitting algorithm proposed
in this paper. Then, after intersection complementation and manual adjustment of elements, an HD map cor-
responding to the KITTI dataset is generated. Finally, based on the original odometry, the priori HD map
information and the fused HDmap localization algorithm proposed are used to further constrain the vehicle’s
lateral position.

6.1. Curve fitting
To fit the lane lines, we must extract the lane points. The first step uses the ground plane fitting (GPF) al-
gorithm [30] to calculate the ground equation. The coordinates of the lane lines on the image in the camera
coordinate system 𝑷c are calculated according to (5). Using the localization data of the GNSS/INS system
as vehicle position true value 𝑷b, the lane line recognition results of each frame are stitched and the same
road section with different lane lines are stored as different categories. The StatisticalOutlierRemoval (SOR)
filter [38] is used to filter some misdetected outliers. This step also excludes some poorly detected road sections
together, which are reflected as different colors in different lane line maps, as shown in Figure 5(a).

The second step uses density-based spatial clustering of applications with noise (DBSCAN) [39] clustering to
divide the closely spaced points (distance less than a certain threshold) into the same cluster. This search
threshold needs to be slightly greater than the lane spacing and less than the distance between adjacent lanes
at an intersection. This enables the clustering algorithm to search for adjacent lanes and ensure that the inter-
section area can be used for segmentation. Because of the large number of point clouds, the KD-Tree search
algorithm is used rather than a traditional traversal search. Through DBSCAN clustering, the lane lines are
divided into 19 areas, as shown in Figure 5(b).

In the third step, the lanes are divided via DBSCAN clustering using the information of different lanes in the
same road recorded in the first step. Then the lanes are divided according to the category attribute for each
segment, as shown in Figure 5(c). A unique ID is assigned to each lane here for subsequent lane completion.

The curve fitting process is shown in Figure 6, where the upper left, middle and right are X-Y, X-Z, and Y-Z
views, respectively, which show that the fitting effect is relatively good. The spatial curve can describe the
original lane line point set better.

The middle subplot of Figure 6 shows the fitting effect of parameter t , indicating the variation of the error of
all parameters 𝒕i with the number of iterations. After four iterations, the error of most parameters 𝒕i decreases
to below 1.0. The lower subplot shows the variation of the total error during the iterative calculation, and the
error is stable after two iterations. The 3D view of this lane line fitting effect is shown in Figure 7.

This study determines the intersection connection based on the vehicle path to solve the problem that there
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(a) Original lane data (b) Cluster division of lane (c) Cluster division with class

Figure 5. Extract lane points.

Figure 6. Curve fitting process.

may be no left turn or right turn on the road. The intersection topology is selected by combining the IDs
assigned to each lane. The algorithm completes the virtual lane lines of the intersection.
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Figure 7. Single lane fitting result.

(a) Crossing fitting before and after comparison (b) Global lane fitting result

Figure 8. Lane Fitting Process

The results before and after intersection completion are shown in Figure 8(a). The final lanes for the entire
area are shown in Figure 8(b), and the overall lane fit is relatively good. To create an HD map, further manual
adjustment of the lane curve is also required, and complements other elements on the map, such as sidewalks
and various traffic signs.

6.2. HD map production
The vehicle’s starting point is defined as the map origin, and the GPS coordinates of the origin (48.982 545 °W,
8.390 366 °E) are recorded. To obtain higher projection accuracy, the European ETRS89 coordinates are used
in this study. The coordinate system parameters are shown in Table 1.

We import the long-axis flattening of the Earth ellipsoid defined by the ETRS coordinate system in Table 1
into the Geographiclib geographic coordinate library for calculation. The coordinates of the initial point in the
MGRS geographic coordinate system are 32UMV-55394.36-25694.44, of which the area number is 32UMV, the
distance to the east is 55394.36 m, the distance to the north is 25 694.44 m, and the grid north angle is −0.5◦.
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Table 1. ETRS89 coordinate System

Name Value
EPSG number EPSG:25832

Prime meridian Greenwich

Earth’s ellipsoid GRS 1980 (long axis: 6,378,137 m, flat rate: 298.257,222)

Figure 9. The lanelet2 map.

TheMGRS coordinates of the lane lines and initial points shown in Figure 8(b) are stored in the Lanelet2 file.
After opening the Lanelet2 file with the JOSM professional map software, the Mapbox satellite map is loaded
as the base map. As shown in Figure 9, the converted coordinates can be recognized and displayed correctly
by the professional mapping software. The road shapes overlap with the roads in the satellite map.

Figure 8(b) shows that some intersections are poorly fitted. The elements, such as stop lines and crosswalks,
are not identified. Therefore, some elements that were missed by mistake were manually adjusted, the lane
shape was fine-tuned, and pedestrian crossing markings and some traffic signs were added. Figure 10 shows
the effect of manual labeling of some intersections. After adjusting the lane lines, a new curve equation needs
to be refitted for this lane using the method in Part IV. Finally, the lane curve is optimized using a numerical
integration method to approximate the arc-length isometric sampling.

6.3. Localization experiment
Following the previous preparations, the next step is to conduct a localization experiment. The points of the
HDmap are projected in the image coordinate system using formula (11). Considering the actual lanes in the
camera image orientation, only the lanes located in the lower half of the image are kept, as shown in Figure
11. Since the virtual lane (blue) in the figure should not be involved in matching and optimizing the position
attitude, only the actual lane (red) is reserved for lane matching and position optimization. The horizontal red
lanes on both sides result from the projection of the nearby road, not the current road. The algorithm filters
the possible lanes by radius and then projects them into the image. The final lanes involved in matching are
shown in Figure 12.

Because the inertial guidance odometry in the KITTI dataset is relatively accurate, it does not reflect the effect
of the localization algorithmwell. In this paper, we use the LOAM [22] algorithm as a laser odometry andmatch
the HD map with the actual detection results using the method proposed in Part V. The obtained matching
results are added to the Georgia Tech Smoothing and Mapping (GTSAM) [40] optimization as roadmap con-
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Figure 10. Manual marking.

Figure 11. The reprojection of HD map.

Figure 12. Available lanes for matching and optimizationp.

straints. To test the effect of fused localization, the fused HDmap localization algorithm designed in this study
is compared with the comparison of the actual value, as shown in Figure 13.

The metric commonly used in academia to evaluate trajectories is the root-mean-square deviation (RMSE):
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Figure 13. Comparison between our algorithm, LOAM and the ground truth.

Table 2. Localization error

Algorithm RMSE Min APE error Max APE error

Algorithm of this paper 4.3361m 0.6679m 15.1492m

LOAM 12.5518m 1.1545m 21.8804m

RMSE =

√√√
1
𝑁

𝑁∑
𝑖=1

APE2 (25)

The absolute pose error (APE) considers only translational errors:

APE =



trans(𝑻−1

𝑔𝑡,𝑖𝑻𝑒𝑠𝑡,𝑖)



 (26)

In this study, the EVO [41] toolkit is used to evaluate the trajectory error of the proposed localization algorithm,
and the results are shown in Table 2.

Figure 13 shows the comparison of the effect of the proposed algorithm and the LOAM algorithm. The pro-
posed localization algorithm has a more significant improvement compared to the pure LOAM distance meter.
As seen, the error in the localization effect of incorporating the HD map remains small most of the time. A
horizontal offset can be seen in the upper left part of the road where the HD map does not exist. Because
the leftmost road is long and has a particular curvature, the localization of the fused HD map needs to be
improved for the forward direction. The LiDAR odometer has a large offset on the lower left side of the road,
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(a) Experimental scenes (b) Localization results

Figure 14. Robustness test.

so the algorithm developed in this study also has a large offset. This problem can be solved by subsequently
considering adding more road elements.

6.4. Robustness test
Now, we compare the localization performance of the method in this paper with other methods. Since the
road in the experimental scenes is lined with trees, the features extracted by LiDAR from the dense foliage
are very noisy. In the experimental scenes, the GPS localization is correct because the GPS signal completely
covers the experimental data set. We treat the GPSmeasurements here as ground truth. Figure 14(b) shows the
localization results of the method in this paper with other methods in this case. LIOM lacks a pre-processing
method to filter out reliable features, so its results are far from the correct ones. The unsatisfactory LIO-SAM
results are due to unreliable features that severely affect the matching between keyframes. The method in this
paper can obtain more accurate results than other methods.

7. CONCLUSION
In this paper, an iterative approximation-basedmethod is proposed to generate the 3D curves of lane lines. For
the problem of uneven sampling points in HD maps, a method based on numerical integration is proposed
to achieve uniform sampling over the arc length. Based on the feature association results of the HD map and
the perceptual image, lateral constraints are applied to the odometer localization results to obtain accurate and
low-cost localization results. Experimental results show that the proposed method can generate HDmaps and
achieve high-precision localization. Future work will try to consider the lateral serial numbers of lane lines
for clustering. Larger thresholds are easier to cluster on lane points with the same serial number. The radius
threshold of lane points with different serial numbers is reduced so that the clustering can be clustered along
the direction of lane lines, which can solve the problem of intermittent lane lines. To improve the practicality
of this method, we will continue to explore the detection of more road elements, the generation of topological
relationships for complex road sections (e.g., traffic circles), and the automatic association methods of traffic
signs and lanes in the future. The main sensors used in this system are LiDAR and camera, which are sensitive
to rain and snow occlusion. Therefore, the present system is not robust in rain and snow environment. In
the subsequent work, thanks to the graphical optimization framework, we can easily add GPS measurement
constraints to the position map. This can overcome the effect of rain and snow environment on the system to
some extent. Cloudy weather is still one of the important challenges for GPS localization systems. In future
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work, we will add kinematic model constraints to improve GPS localization results.
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