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Abstract
Colonoscopy is a standard imaging tool for examining the lower gastrointestinal tract of patients to capture lesion
areas. However, if a lesion area is found during the colonoscopy process, it is difficult to record its location relative to
the colon for subsequent therapy or recheck without any reference landmark. Thus, automatic detection of biological
anatomical landmarks is highly demanded to improve clinical efficiency. In this article, we propose a novel deep
learning-based approach to detect biological anatomical landmarks in colonoscopy videos. First, raw colonoscopy
video sequences are pre-processed to reject interference frames. Second, a ResNet-101-based network is used to
detect three biological anatomical landmarks separately to obtain the intermediate detection results. Third, to achieve
more reliable localization, we propose to post-process the intermediate detection results by identifying the incorrectly
predicted frames based on their temporal distribution and reassigning them back to the correct class. Finally, the
average detection accuracy reaches 99.75%. Meanwhile, the average intersection over union of 0.91 shows a high
degree of similarity between our predicted landmark periods and ground truth. The experimental results demonstrate
that our proposedmodel can accurately detect and localize biological anatomical landmarks from colonoscopy videos.
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1. INTRODUCTION
Colorectal diseases, especially colorectal cancer (CRC), bring significant threats to public health worldwide.
According to the statistical data from the American Cancer Society, the incidence rate of CRC ranged from 30
(per 100,000 persons) in Asians to 89 in Alaska Natives from 2012 through 2016 [1]. Fortunately, CRC can be
prevented if adenomatous polyps and lesions within the colon can be detected and removed in a very early stage
as they are essential precursors to CRC [2]. Colonoscopy is the standard screening method to detect polyps,
with which the clinician can examine the entire rectum and colon of patients. Clinicians make diagnostic deci-
sions by checking the collected colonoscopy videos. Once they detect a lesion area during manual inspection,
they need to record its location relative to the colon for subsequent therapy or recheck if instant treatment
is inappropriate or not required. However, given the absence of certain reference landmarks, it is difficult
to obtain the relative location of lesion area with respect to the colon, since the endoscope can only capture
the real-time view inside the colon but has no perception of location or distance. Biological anatomical land-
marks can serve as a series of reference points that facilitate relative localization in colon environment. Hence,
automatic detection of biological anatomical landmarks is highly demanded to improve clinical efficiency.

Before the advent of the machine learning and deep learning revolution, research in polyp detection was pri-
marily dominated by traditional image processing-based methods [3–5]. Although these methods may show
effectiveness in certain sample scenarios, they are susceptible to various environmental factors, such as illu-
mination. After the emergence of machine learning, by exploiting low-level features such as color, texture,
and shape information, researchers have developed some machine learning-based methods for polyp detec-
tion [6,7]. However, these techniques are hand-engineered; thus, they cannot achieve satisfactory performance
due to poor characterization capability. Recently, various deep learning methods have been applied to polyp
detection with the revolution of computational technologies [8–14]. Hierarchical feature learning and discrim-
ination capabilities of neural networks can help significantly improve polyp detection accuracy. For instance,
Jia et al. proposed a novel two-stage architecture called PLP-Net for automatic pixel-accurate polyp detection
in colonoscopy images based on deep convolutional neural network (CNN) [8]. Although previous methods
have managed to detect polyps robustly and efficiently, there is no work to localize polyps within the colon,
which is crucial in clinical practice but challenging for clinicians to do manually.

According to the literature [15,16], biological anatomical landmark detection plays an essential role in various
medical image analysis assignments, which can help achieve registration [17], segmentation [18], and localization
tasks of medical images. Traditional landmark detection methods usually utilize classical machine learning
algorithms and design specific image filters to extract invariant features [19–23]. For instance, Liu et al. leveraged
the theory of submodular functions to search multiple human body landmarks including bone, organs, and
vessels in 3D computed tomography (CT) images [20]. Lindner et al. proposed a novel landmark detection
algorithm based on the supervised random forest regression-voting method for facial landmarks detection
and the annotation of the joints of the hands in radiographs [21]. The stratified decision forests method was
also utilized to detect anatomical landmarks in cardiac images [23].

Recently, researchers have proposed a large quantity of anatomical landmark detection algorithms [24–28] based
on deep learning and reinforcement learningmethods, and these algorithms showedmore robust and accurate
performance. Wester used a patch-based CNN to detect anatomical landmarks in 3D cardiovascular images,
providing automatic registration between ultrasound and CT images of the same patient [24]. Song et al. pro-
posed a two-step method to detect cephalometric landmarks automatically on skeletal X-ray images [25], utiliz-
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Figure 1. Biological anatomical landmarks (0: cecum; 1: hepatic flexure; 2: splenic flexure; 3: sigmoid-descending colon junction; 4: rectosig-
moid junction) and the proposed threefold detection system. The left figure is quoted fromNorthern Care Alliance [32]. CNN: Convolutional
neural network.

ing pre-trained networks with a backbone of ResNet-50 [29]. Moreover, a novel communicative reinforcement
learning agent systemwas presented for landmark detection in brain images and was evaluated on two datasets
from adult magnetic resonance imaging (MRI) and fetal ultrasound scans [26]. Notably, detecting landmarks
in colonoscopy videos is more challenging compared with other anatomical landmark detection tasks, since
their locations in colonoscopy videos are dynamic and not directly descriptive.

Despite a few research studies [30,31] whichworked on biological anatomical landmark detection in colonoscopy
videos, their detection performance is not satisfactory. To fill this gap, we propose a novel deep learning-
based algorithm to detect three biological anatomical landmarks in colonoscopy videos, providing a research
basis for calculating the relative distances between the lesion areas (such as polyps and bleeding regions) and
the landmarks. The proposed algorithm will help reduce human error and accelerate the diagnosis process
significantly.

As shown in Figure 1, the three biological anatomical landmarks to be detected include hepatic flexure, splenic
flexure, and sigmoid-descending colon junction. Cecum and rectosigmoid junction are the two end points of
the colon. The colonoscopy video sequences are passed into the threefold system consisting of a pre-processing
module, a detection network, and a post-processing module. The outputs of the system include prediction
results for each frame and locations of the three landmark periods within the video sequence.

Our main contributions can be summarized in the following two aspects:

1. We collect a colonoscopy video dataset and finely label the time periods of three biological anatomical
landmarks for each video.
2. We propose a novel three-fold biological anatomical landmark detection system for colonoscopy, consisting
of a pre-processing module, a deep learning-based detection network, and a post-processing module.

The remainder of this article is organized as follows. We introduce the colonoscopy video dataset in Section
2. Section 3 outlines the proposed biological anatomical landmark detection system, while the experimental
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results are presented and analyzed in Section 4. Finally, we draw some conclusions and discuss the future work
in Section 5.

2. DATASET
In a study approved by the local medical ethics committee, colonoscopy video data were obtained from 49
patients. All colonoscopies were performed on those who satisfied all of (1) at the age of 18-75; (2) cecal
intubation; (3) adequate cleansing of colon. Patients were excluded if satisfied one or more of (1) reduced
life expectancy; (2) history of CRC or adenomas; (3) history of serrated polyps with diameter above 10 mm;
(4) history of surgical colon resection; (5) on-going chemotherapy or radiotherapy; (6) inflammatory disease.
Each patient signed an informed consent form. The Olympus endoscopy system was used. The videos have
a resolution of 560 × 720 and a frame rate of 50 fps. The duration of each video is approximately 10-20 min,
with a maximal duration of 20.35 min (61,050 frames) and a minimal duration of 10.8 min (32,400 frames).
Clinical information, including the serial number of the patient, testing date, and current timestamp, is also
displayed in the videos.

During both the insertion stage and the removal stage of each colonoscopy video sequence, the timestamp
and scope length when passing each biological anatomical landmark are recorded by clinicians. However, due
to the resistance and disturbance, while inserting the scope, videos captured from the insertion stage contain
a large number of interference frames such as turbid and camera shaking frames. Therefore, in view of the
concern for data quality during the insertion stage, ground truth labels are generated from the timestamp and
scope length data during the removal stage. As shown in Figure 1, for each video sequence, there are three time
periods during which the anatomical landmarks are detected, each with a duration of 10 to 25 s. These periods
are represented as positive periods in ground truth labels. The labels were manually annotated and verified by
expert clinicians based on the bending features and biological characteristics of the landmark regions. Since
the differences between landmark regions and normal regions are subtle and hardly perceptible, identifying
the landmark periods is a challenging task involving significant difficulty, which can only be accomplished by
clinicians with sufficient experience.

In terms of sampling images from the videos, the sampling period for each landmark begins at the timestamp
of the previous landmark (or the timestamp when the removal stage starts) and ends at the timestamp of the
next one (or the timestamp when the removal stage ends). As shown in Figure 2, we introduce a positive-
and-negative gap (P-N gap) between the landmark and normal tissue periods to guarantee that the interclass
difference is sufficiently large. Given the P-N gap, the labeled landmark period is taken as the positive period
while 80% of the two remaining parts of the sampling period are taken as the negative periods. To tackle the
sampling imbalance problem, we apply adaptive sampling frequencies for landmark and normal tissue periods.
Details are presented in Section 5.1.

3. METHODS
In the proposed landmark detection system, the collected video sequences are first sampled into positive and
negative frames separated by the P-N gap with adaptive sampling frequencies. Next, the pre-processing mod-
ule is applied to reject interference frames. The pre-processed data are then shuffled, clipped, and divided into
training, validation, and test sets. In total, 8,640 image frames are available, of which 5,529, 1,382, and 1,729
frames belong to the training, validation, and test sets, respectively. Details are shown in Table 1. The training
and validation sets are applied to train and validate the detection model. After testing, the model outputs inter-
mediate detection results. Finally, the post-processing module is applied to reassign the incorrectly predicted
frames back to the correct class. The entire process of our proposed system is shown in Figure 2.
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Figure 2. Workflow of the proposed landmark detection system. The pre-processing module rejects interference frames in input data. The
pre-processed data are divided into training, validation, and test sets. The detection model based on ResNet-101 is trained and validated
using the training and validation sets. After passing the test data into the trained model, the model outputs intermediate detection results
indicating whether each frame should be classified as positive or negative. Finally, the post-processing module identifies the incorrectly
predicted frames and reassigns them back to the correct class. P-N gap: Positive-and-negative gap.

In this section, we first introduce a pre-processing module to reject interference frames in the collected data.
Then, we propose a novel network structure based on ResNet-101 to detect landmarks. Finally, we illustrate the
post-processingmodule for cleaning the intermediate detection results, which enables localization of landmark
periods within the video period and improves final detection performance.

3.1. Pre-process: rejection of interference frames
Colonoscopy video frames consist of biological anatomical landmark, normal tissue, and interference frames
caused by feces, bubbles, and camera shaking. The crucial issue of the biological anatomical landmark detection
task is distinguishing landmarks from normal tissue. However, during the sampling process, interference
frames may appear in both normal tissue and anatomical landmark sampling periods, which will cause the
detection model to take wrong samples as learning inputs and thereby reduce the detection accuracy. To
facilitate the accurate detection of biological anatomical landmarks in the colon, it is necessary to pre-process
all the video frames to reject those interference frames.

As shown in Figure 3, normal frames include biological anatomical landmarks and normal tissue, while inter-
ference frames include turbid, bubble, and blurry frames caused by camera shaking and black screen. It can
be observed from Figure 3 that normal and interference frames exhibit clear distinctions, especially in terms
of texture and color features. The textures of normal frames are finer and more complex than the textures of
interference frames. Further, the color of normal frames involves frequent changes, whereas the interference
frames are relatively monochromatic.

Based on the observation of the distinctions between normal and interference frames, the rejection of inter-
ference frames is achieved by applying an image processing tool named Canny edge detector [33]. The Canny
edge detector has been widely applied in the field of computer vision to locate sudden changes in intensity
and find object boundaries in images. In the direction of the maximum intensity change of the Canny edge
detector, if the amplitude of gradient of one pixel is greater than the width of gradient of the pixels on both
sides, the pixel is classified as belonging to an edge. The smallest value between the two thresholds is used for
edge linking, while the largest value finds initial segments of strong edges. In our pre-processing module, a
Canny edge detector with thresholds of 70 and 100 is applied. 𝐿2 norm is used to calculate the image gradient
magnitude.
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Figure 3. Interference frames and normal frames. Interference frames contain turbid frames, bubble frames, and blurry frames resulting
from camera shaking and black screen. Normal frames contain biological anatomical landmark frames and normal tissue frames.

Figure 4. (A) Normal frames in colonoscopy video; (B) The edge features of normal frames extracted by Canny edge detector; (C) Interfer-
ence frames in colonoscopy video; (D) The edge features of interference frames extracted by Canny edge detector.

Texture and color features can be regarded as edge indicators because the complexity of texture and the change
of color can be represented by the amplitude of the gradient. Compared with interference frames, normal
frames involvemore complex textures andmore sudden color changes. Therefore, the amplitude of the gradient
of pixels in normal frames is greater than in interference frames.

As shown in Figure 4, column A shows three original normal frames and column B depicts their edge features,
while column C shows three original interference frames and column D depicts their edge features, in which
the black pixels belong to edges whereas the white pixels do not. It can be observed that the edge pixels in the
normal frames are more numerous than the edge pixels in the interference frames. We calculate the number
of black edge pixels for each frame passed through the Canny detector.
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Figure 5. Our proposed landmark detection model based on ResNet-101. The single 1000-way fully connected layer is substituted by four
consecutive fully connected layers. A dropout layer is inserted in between each pair of the four fully connected layers, which randomly
drops neurons from visible and hidden layers to avoid overfitting.

To experimentally determine the threshold value of black edge pixels that distinguishes interference frames
from normal frames, we classify 200 images into interference or normal classes using various threshold choices.
It is observed that a threshold value above 2,000 will wrongly recognize some normal frames as interference
frames, while a threshold value below 2,000 will fail to identify some interference frames. To balance elim-
inating interference frames and preserving normal frames, 2,000 is chosen as the optimal threshold, which
means a frame should be classified as normal if it contains more than 2,000 black edge pixels. The threshold is
then applied to classify outputs of the Canny detector into normal class or interference class and thereby reject
interference frames in colonoscopy videos.

3.2. Landmark detection network based on ResNet-101
The network inputs are 256 × 256 colonoscopy images, while the network output is a two-dimensional vector
indicating whether an input image should belong to the biological anatomical landmark (positive) or nor-
mal issue (negative) class. The network structure is developed based on the ResNet-101 model. We conduct
comparative experiments with four other deep learning models, including Vgg16, Inception v3, ResNet-50,
and ResNet-101, and the results demonstrate that our proposed model outperforms the others. Details are
presented in Section 4.5.

As shown in Figure 5, the first layer is a 7 × 7 convolutional layer with a stride of 2. The second layer is a 3 ×
3 max pooling layer with a stride of 2. Next, 4 different kinds of 3-layer building blocks are stacked 3, 4, 23,
and 3 times, respectively. In the original model, the network ends with a global average pooling layer and a
1000-way fully connected layer with LogSoftMax. In the modified model for this task, the single 1,000-way
fully connected layer is replaced by four consecutive fully connected layers. To prevent overfitting, we use a
dropout layer between each pair of the four consecutive fully connected layers to randomly drop neurons from
visible and hidden layers. For the three dropout layers, the probabilities of an element to be set as zero are 0.4,
0.3, and 0.3, respectively.

Due to the considerable depth of the network and the limited volume of training data, it is difficult to train the
ResNet-101 model from scratch. Instead of randomly initializing the model weights, we load the weights pre-
trained on the ImageNet dataset [34] for all layers except the last four fully connected layers. The ImageNet is a
public dataset containing over 14 million quality-controlled and human-annotated natural images belonging
to 1000 categories.
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Figure 6. Post-processing module. In the intermediate detection results, some negative frames are discretely distributed in the presumably
continuous landmark periods. Post-processing module aims to reassign the wrongly predicted frames into the correct class to obtain
continuous landmark periods. It improves final detection performance and enables localization of landmark periods within the video period.

Output from the last fully connected layer could be activated by LogSoftmax activation, as shown in Equa-
tion (1). The LogSoftmax formulation can be expressed as:

𝐿𝑜𝑔𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑥𝑖) = log( exp(𝑥𝑖)∑𝑁
𝑗 exp(𝑥 𝑗 )

) (1)

where 𝑁 is the number of classes, which is 2 in our case. 𝑥𝑖 represents the specific predicted result of the
landmark or normal tissue class.

Our loss function is the negative log likelihood loss (NLLLoss), which is useful for training a classification
problem. Its input is a log probability vector and a target label. Our reduction is “mean”. NLLLoss can be given
as:

𝐿 (𝑥, 𝑦) =
𝑀∑
𝑛=1

−𝑥𝑛𝑦𝑛
𝑀

(2)

where 𝑀 denotes the batch size, which is 32 in our case. 𝑥𝑛 represents the predicted result of all classes. 𝑥𝑛𝑦𝑛
denotes the dot product of vectors 𝑥𝑛 and 𝑦𝑛.

Although freezing the model weights as pre-trained can reduce the amount of computation in the backward
pass and decrease training time, freezing the model has the potential to hinder the learning of features from
colonoscopy images, since the colonoscopy images exhibit distinctive features that vastly differ from images in
the ImageNet dataset. Therefore, to obtain better performance, the weights of all layers are not frozen during
the model training stage. They are updated through the backpropagation of gradients in every epoch.

In total, our proposed anatomical landmark detection model based on ResNet-101 contains 43,713,730 train-
able parameters. It takes 0.0279 s on average for the model to detect a single video frame into the biological
anatomical landmark or the normal tissue class. The statistics mentioned above are obtained from experiments
conducted on an NVIDIA GeForce RTX 2080 Ti GPU.

3.3. Post-process: result cleaning
After passing the colonoscopy video frames through the network, we obtain the intermediate detection results
indicating whether each frame should be classified as positive or negative. The next step toward the final
results is to locate the landmark periods within the whole video period. However, it can be observed that
some negative frames are discretely distributed in the presumably continuous landmark periods, while some
positive frames are discretely distributed in the non-landmark normal periods. Therefore, it is necessary to
post-process the intermediate detection results by identifying the incorrectly predicted frames and reassigning
them back to the correct class.

As shown in Figure 6, in the intermediate detection results, within the landmark period, a large proportion of
frames are predicted as positive while a small proportion are categorized as negative. In contrast, outside the
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Table 1. Sizes of training, validation and test data

Training Validation Total Positive Negative Test
L1 2536 634 3170 1400 1770 793
L2 1686 421 2107 957 1150 527
L3 1307 327 1634 742 892 409

L1, L2, and L3 represent hepatic flexure, splenic flexure, and sigmoid-
descending colon junction, respectively.

landmark period, a large proportion of frames are denoted as negative while a small proportion are labeled as
positive. Since each landmark period should be continuous, the incorrectly predicted frames in intermediate
detection results can be identified according to the temporal distribution.

The specific post-processing strategy is as follows. For each frame, we count the number of positive frames
among eight neighboring frames, including four on the left and four on the right. If the count is greater than 3,
the frame of interest should be considered as positive; otherwise, it should be classified as negative. For the first
and the last four frames, we count the number of positive frames among ten neighboring frames. If the count
is greater than 5, the first and the last four frames should be categorized as positive; otherwise, they should be
denoted as negative. The detailed algorithm is shown in the Supplementary Materials.

4. EXPERIMENT RESULTS
4.1. Experimental data and setup
In our experiment, we introduce a P-N gap between positive and negative periods and sample them with
adaptive sampling frequencies. The reason for leaving a P-N gap is that the labels of landmark periods may
contain some errors, which blur the boundaries between positive and negative samples. Therefore, when parts
of the positive and negative samples are highly similar, it is possible for the model to learn from the wrong
samples.

Another crucial issue is avoiding sample imbalance, whichwouldmake our detectionmodel suffer from serious
bias. To keep the balance between positive and negative samples, we sample them from the videoswith adaptive
sampling frequencies to ensure that the ratio of positive and negative samples is approximately 1:1 [Figure 2].
We set the positive sampling frequency as 10 fps and set negative sampling frequency based on:

𝑓𝑛 = 𝑓𝑝 ×
𝑡𝑝

𝑡𝑛
(3)

where 𝑓𝑛 and 𝑓𝑝 denote negative and positive sampling frequencies, and 𝑡𝑛 and 𝑡𝑝 indicate negative and positive
time periods in the video.

The training set contains 80% of the total samples, while the test set contains 20%. In order to guarantee no
overlap between the training and test sets, all images sampled from the same video are assigned to either the
training or test set. Images sampled from videos numbered 1-39 are assigned to the training set, while images
sampled from videos numbered 40-49 are assigned to the test set. We also create a validation set from the
training set to compare the performance of different models and to prevent the overfitting problem. Details
are shown in Table 1.

4.2. Performance metrics
To quantitatively assess the classification and localization performance, five evaluation metrics applied in the
experiments are accuracy, precision, recall, F1 score, and intersection over union (IoU), which are calculated
by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4)
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Figure 7. IoU of two time periods. IoU: Intersection over union.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(5)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6)

𝐹1 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(7)

where true positive (TP) cases are the biological anatomical landmark frames correctly predicted as landmarks
while true negative (TN) cases represent the normal frames correctly predicted as normal. False positive (FP)
cases are the normal frames incorrectly predicted as landmarks while false negative (FN) cases represent the
biological anatomical landmarks frames incorrectly predicted as normal.

IoU is a metric frequently used to evaluate the extent of overlapping of two regions in applications related to
object detection. It takes its value within the range between 0 and 1, with a greater value indicating a more
considerable extent of overlapping. The traditional definition of IoU measures the similarity between the
predicted and ground truth areas. Based on the IoU defined in a two-dimensional spatial context, we derive
the IoU defined in a one-dimensional temporal context. As shown in Figure 7, the IoU of two time periods,
T1 and T2, can be obtained by dividing the length of their overlapping period over the length of their union
period.

4.3. Training and implementation details
We train three separate models to detect three biological anatomical landmarks respectively. The resolution of
colonoscopy images is reduced from 521 × 478 to 256 × 256 to reach a trade-off between detection accuracy
and computational cost. Adam optimizer with a learning rate of 0.001 is applied when training the model. The
batch size is set to 32, and the number of epochs is set to 200.

During the testing process, the test samples are inputted into the trained detection model and classified into
positive or negative classes to obtain the intermediate detection results. The intermediate detection results are
then post-processed to retrieve the final detection results, which include the overlapping information of pre-
dicted landmark periods and ground truth labels. All the three biological anatomical landmarks are detected
following the above pipeline.

4.4. Intermediate detection results
After implementing the experiments based on the above-mentioned procedure and parameter settings, the
obtained intermediate detection results for the three biological anatomical landmarks in terms of various test
indicators are shown in Table 2. In terms of intermediate detection accuracy, our proposed model based on
ResNet-101 reaches 90.72%, 90.85%, and 92.03% for the three landmarks, respectively. Furthermore, the results
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Table 2. Intermediate detection results in terms of multiple test indicators

Accuracy Precision Recall F1 score
L1 0.9072 0.9092 0.9077 0.9071
L2 0.9085 0.9170 0.8751 0.8916
L3 0.9203 0.9234 0.9101 0.9157

L1, L2, and L3 represent hepatic flexure, splenic flex-
ure, and sigmoid-descending colon junction, respec-
tively.

Figure 8. ROC curves of intermediate detection results. AUC represents area under the ROC curve. L1, L2, and L3 represent hepatic flexure,
splenic flexure, and sigmoid-descending colon junction, respectively. ROC: Receiver operating characteristic; AUC: area under the ROC
curve.

of precision, recall, and F1 score illustrate that our proposed model guarantees the balance between precision
and recall, which demonstrates that our detection model is both precise and robust.

The Receiver operating characteristic (ROC) curves of intermediate detection results of three landmarks are
plotted in Figure 8. They measure the classification performance by plotting the TP rate (TPR) against the FP
rate (FPR) at various threshold settings. A trajectory ascending towards the upper-left corner indicates better
performance in discriminating between positive and negative samples. Therefore, our proposed detection
model shows satisfactory performance for the three biological anatomical landmarks. The area under the
ROC curve (AUC) quantifies themodel’s capability of distinguishing between two classes. A higher AUC value
indicates a more successful separation of the two classes. The AUC values of detecting hepatic flexure, splenic
flexure, and sigmoid-descending colon junction are 0.96, 0.942, and 0.958, respectively, which quantitatively
prove the discriminating capability of our detection model.

4.5. Comparison with other models
To further evaluate the performance of our proposed model based on ResNet-101, we conduct comparative
experiments with four other frequently applied deep learning models: Vgg16, Inception v3, ResNet-50, and
ResNet-101. To guarantee the fairness of comparison, the parameter settings and training process of each
model are consistent with our model. We apply Adam optimizer with a learning rate of 0.001. The batch
size is set to 32 and the number of epochs is set to 200. We summarize the corresponding results of accu-
racy, precision, recall, and F1 score in Table 3. As shown in Table 3 and Figure 9, in terms of intermediate
detection accuracy, our proposed model outperforms the Vgg16 model by 40.14%, 23.95%, and 31.87% for the
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Figure 9. Intermediate detection accuracy of Vgg16, Inception v3, ResNet-50, ResNet-101, and our model. L1, L2, and L3 represent hepatic
flexure, splenic flexure, and sigmoid-descending colon junction, respectively.

Table 3. Comparison with other models in intermediate detection results

Accuracy Precision Recall F1 score

L1

vgg16 0.5058 0.2529 0.5000 0.3359
Inception v3 0.7587 0.7735 0.7573 0.7547
ResNet-50 0.7703 0.7952 0.7720 0.7661
ResNet-101 0.8677 0.8904 0.8682 0.8676

Ours 0.9072 0.9092 0.9077 0.9071

L2

vgg16 0.6690 0.3345 0.5000 0.4008
Inception v3 0.7923 0.8179 0.7050 0.7243
ResNet-50 0.7606 0.7647 0.6679 0.6810
ResNet-101 0.8486 0.8287 0.8304 0.8295

Ours 0.9085 0.9170 0.8751 0.8916

L3

vgg16 0.6016 0.3008 0.5000 0.3756
Inception v3 0.8167 0.8513 0.7784 0.7917
ResNet-50 0.8406 0.8527 0.8152 0.8259
ResNet-101 0.9004 0.9010 0.8902 0.8948

Ours 0.9203 0.9234 0.9101 0.9157

L1, L2, and L3 represent hepatic flexure, splenic flexure, and sigmoid-
descending colon junction, respectively.

three anatomical landmarks, respectively. It also surpasses the Inception v3 model by 14.85%, 11.62%, and
10.36%, while exceeding the ResNet-50 model by 13.69%, 14.79%, and 7.97% for the three anatomical land-
marks, respectively. As for the ResNet-101 model, our proposed model excels it by 3.95%, 5.99%, and 1.99%,
respectively. In addition, the comparison results of precision, recall, and F1 score further demonstrate its su-
periority over the others in anatomical landmark detection. The comparison among Vgg16, Inception v3, and
the proposed model indicates the importance of residual blocks in network architecture, while the compari-
son among ResNet-50, ResNet-101, and the proposed model demonstrates that increasing the network depth
could contribute to performance improvement.

4.6. Final detection results
To better locate the landmark periods within the whole video period, we propose to post-process the inter-
mediate detection results by identifying the incorrectly predicted frames based on their temporal distribution
and reassigning them back to the correct class.

As shown in Table 4, the final detection accuracy for the three landmarks improves by 9.02%, 8.95%, and
7.68% compared with the intermediate detection accuracy. The results demonstrate that our result cleaning
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Table 4. Final detection results in terms of accuracy and IoU

Intermediate accuracy Final accuracy Final IoU
L1 0.9072 0.9974 0.8960
L2 0.9085 0.9980 0.9039
L3 0.9203 0.9971 0.9332

4L1, L2, and L3 represent hepatic flexure, splenic flexure, and
sigmoid-descending colon junction, respectively. IoU: Inter-
section over union.

algorithm can distinguish the wrongly classified frames based on their distribution and then correct them.
Meanwhile, to evaluate the localization performance of the landmarks, we apply the IoU metric to measure
the overlap between our predicted landmark periods and ground truth periods. The IoU values for the three
landmarks reach 0.90, 0.90, and 0.93, respectively, showing a considerable extent of overlap. The final detection
results demonstrate that our proposed system can accurately detect and localize landmarks against neighboring
normal tissue.

5. CONCLUSIONS
In this paper, we present a novel deep learning-based architecture to automatically detect biological anatom-
ical landmarks in colonoscopy videos. Comprehensive experimental results demonstrate that our proposed
ResNet-101-based model outperforms other deep learning-based models in terms of accuracy, precision, re-
call rate, and F1 score. Quantitative results indicate that our proposed architecture can correctly differentiate
biological anatomical landmarks from neighboring normal regions with an average accuracy of 99.75%.

In the future, there exist many promising research directions. First, nowwe only select three intermediate land-
marks inside the colon as our detection objects. To obtain a more complete marking of the colon, we should
consider adding cecum and rectosigmoid junction as detection objects, since they are the two end points of
the colon. At the current stage of our work, the binary classification model is applied to detect each landmark.
It would be more convenient and reasonable if all landmarks could be detected using a single model. We will
convert the binary classification problem into multi-class classification and seek strategies to fuse the models
without impairing the performance. We only compare the performance of the proposedmodel with traditional
deep learning models. We will investigate the possibility of applying other state-of-the-art models, including
You Only Look Once (YOLO) networks, transformers, generative adversarial networks (GAN), and recurrent
neural networks (RNN) to improve the detection performance. In terms of pre-processing approaches, the
Canny edge detector suffers from slow processing speed. In order to improve the pre-processing efficiency,
the edge detector should be optimized. We will explore alternative edge detectors such as Sobel in our future
work. In terms of post-processing strategy, we will compare our method with morphological operators such as
median filter. Our long-term plan is to develop a novel positioning algorithm based on combining visual and
magnetic trajectory information to estimate the relative distances between lesion areas and detected biologi-
cal anatomical landmarks. Furthermore, another challenging future extension is to establish a 3D space that
restores the internal structure of the colon based on 3D reconstruction technologies, which has the potential
to significantly improve the efficiency of diagnosing lesion areas.
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