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Abstract
Cells have the capability to discharge extracellular vesicles (EVs) into a range of bodily fluids. Extracellular vesicles 
(EVs) encapsulate biological molecules such as proteins and nucleic acids, playing a role in facilitating cell-cell 
communication. They actively engage in a myriad of physiological and pathological processes. In vivo tracing of EVs 
in organisms significantly contributes to elucidating the biological mechanisms of EV-based therapy. The 
development of molecular imaging technology makes it possible to trace EVs in vivo. Experiments frequently 
employ a range of molecular imaging techniques, encompassing bioluminescence imaging, fluorescence imaging, 
magnetic resonance imaging, single photon emission computed tomography, positron emission tomography, 
photoacoustic imaging, and multimodal imaging. These methods have their own advantages and disadvantages. In 
this review, typical applications of in vivo tracing of EVs are reviewed.
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INTRODUCTION
Extracellular vesicles (EVs) are a group of nanoscale heterogeneous lipid bilayer membrane vesicles, which
are released into the extracellular environment by different cell types through various stages of evolution[1].
EVs can be detected in a range of liquid body substances, including but not limited to blood, breast milk,
urine, and saliva[2-5].

EVs were first observed in healthy human plasma by Chargaff et al. in 1946. Initially, they were recognized
as a class of platelet microparticles with procoagulant effects[6].

In 1967, Wolf first utilized electron microscopy to examine the structure and dimensions of these
particulate deposits and named them “platelet dust”[7]. Subsequently, Johnstone et al. first formalized the
name of this granular material as exosomes in an in vitro culture study of sheep reticulocytes[8]. In 2011,
György et al. proposed to refer to all the different types of lipid bilayer-encapsulated extracellular structures
as “extracellular vesicles (EVs)”[9].

Initially, EVs were considered primarily as a means for cells to expel waste substances, and for an extended
period, they remained relatively overlooked. Over the last several years, with the deepening of research, it
has gradually been discovered that EVs contain other bioactive substances such as mRNA, ncRNA, miRNA,
lncRNA, protein, and DNA, and have a lipid structure of information carriers, which can be used as
transmitters of genetic information[10]. The surface molecules of EVs allow them to specifically target and
reach receptor cells. Once attached to the target cell, EVs can activate receptor-ligand interactions or fuse
with the target cell membrane through endocytosis, delivering their contents into the cytoplasm and thereby
altering the physiological state of the receptor cell[11]. Diseases such as cancer can be predicted or diagnosed
by detecting the presence and number of specific EVs; thus, EVs can be employed as a valuable diagnostic
marker in the identification of diseases. In addition, EVs can be used as drug delivery agents. By utilizing
EVs as carriers, drugs can be accurately delivered to the lesion site, thereby increasing the efficacy of the
drug and reducing side effects.

According to the different sizes, biological properties, and formation processes, EVs are primarily
categorized into three distinct groups: exosomes, microvesicles (MVs), and apoptotic bodies[12,13]. Exosomes
emerge through the fusion of vesicles with cell membranes, exhibiting sizes ranging from 30 to 150 nm[14].
MVs are generated by the budding process of cell membranes and typically have a diameter spanning from
50 to 1,000 nm[15]. Apoptotic bodies are vesicles formed by cell shrinkage and fragmentation in the process
of cell apoptosis, with a diameter of 500-2,000 nm[16]. Among them, exosomes have received more
attention due to their unique generation pathway.

Studies have found that different cell types or different physiological states can cause expression differences
in exosome contents. For example, exosomes derived from B cells contain B cell receptors (BCR), and
exosomes derived from DC cells contain CD86, MCH-II, ICAM-1 proteins, etc.[17]. However, exosomes
usually contain some common specific proteins that can be used as their markers, such as the adhesion
molecule MFGE8[18], the proteins involved in membrane transport such as Annexins, Flotillins and
GTPases, and the proteins engaged in the creation of the multivesicular body (MVB) encompass Alix,
TSG101, and Clathrin. Additionally, four transmembrane proteins, namely CD9, CD63, CD81, and CD82,
as well as heat shock proteins such as HSP90, HSP70, HSP60, and HSPA5, play crucial roles in these cellular
processes[18-21]. Kowal confirmed that the protein in exosomes is different from other subtypes of vesicle
structure using protein profile analysis[22,23]. Lundholm also reported that the proteins in exosomes are
different from cellular structural protein components, such as cell membranes, cytoplasm, mitochondria,
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Golgi, and endoplasmic reticulum[24]. These data prove that exosomes are a special type of subcellular 
structure, which is different from cell fragments.

Currently, the most extensively studied subgroups are exosomes and MVs. However, there is some overlap 
in diameter size between MVs and exosomes. So far, due to the lack of specific markers and technical 
methods, there has not yet been a strategy to unequivocally separate these two types of EVs in complex 
biological fluid samples[25,26]. Therefore, EVs is uniformly used as a generic term in this review.

Recently, the study of EVs has been deepened with the continuous development of biological and medical 
research. In order to monitor the activities of EVs in organisms more intuitively and in real time, and to 
observe the biological processes such as the production, transfer and distribution of EVs in living animals, 
researchers have gradually expanded the scope of research from in vitro to in vivo. This shift not only 
contributes to a more comprehensive understanding of the biological functions of EVs, but also presents 
fresh viewpoints and innovative ideas to enhance the understanding and management of diseases. The 
method of tracing EVs in vivo is to use specific imaging methods to track EVs in animals, so as to observe 
the biological behavior of EVs in the body. In vivo tracing of EVs was widely used because of its intuitive 
results, high sensitivity, and non-invasive nature (i.e., obtaining information or data of EVs through 
methods that do not cause any damage or interference to EVs). Several imaging methods are currently 
available for tracking EVs in vivo, such as bioluminescence imaging (BLI), fluorescence imaging (FI), 
magnetic resonance imaging (MRI), positron emission tomography (PET), and single photon emission 
computed tomography (SPECT), and photoacoustic imaging (PAI). The main current methods discussed in 
this review are succinctly summarized in Figure 1 and Table 1.

BIOLUMINESCENCE IMAGING
Bioluminescence imaging (BLI) mainly refers to the integration of the luciferase gene into the chromosomal 
DNA of the target cells, so that the cells can secrete luciferase-containing exosomes, and the luciferase gene 
can be stably expressed in the cell without loss. The most commonly used reporter systems for 
bioluminescence imaging are fluorescent protein and luciferin/luciferase bioluminescence systems[27].

Hikita et al. labeled exosomes with Antares2 and observed long-term accumulation of exosomes in vivo 
using bioluminescence resonance energy transfer (BRET). Implantation of prostate cancer cells expressing 
CD63-Antares2 into mice facilitated the quantification of exosomes originating from the primary tumors 
entering the bloodstream. Additionally, it enabled the visualization of the extended homing patterns of 
exosomes to their respective target organs or tissues over an extended period[28]. Gupta et al. investigated the 
bioluminescent tagging of EVs by employing various luciferase enzymes attached to CD63. Their findings 
revealed that the dispersion pattern of EVs is influenced by the injection route. Moreover, distinct 
subpopulations of EVs exhibited variations in their biodistribution patterns[29]. Luo et al. established a 
genetic mouse model incorporating the Nano-luciferase (NanoLuc) reporter, which was fused with the 
exosome surface marker CD63 to facilitate exosome labeling. The induction of CD63NanoLuc reporter 
expression was achieved through tamoxifen. Luciferase assays and bioluminescent imaging outcomes 
demonstrated the targeted labeling and discernible tissue distribution of naturally occurring exosomes 
released from cardiomyocytes[30]. Sung et al. introduced a stabilizing mutation, M153R, in the pHluorin 
moiety and released exosomes in vivo. The incorporation of a non-pH-sensitive red fluorescent tag in the 
exosomes enabled the observation of the complete exosome lifecycle. This included visualizing processes 
such as MVB trafficking, MVB fusion, exosome uptake, and endosome acidification[31].
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Table 1. EVs labeling and in vivo tracking strategies

Imaging 
modality Isolated sites/cells Isolation 

method Labeling agent Concentration Subject Injection site
Imaging 
time 
points

References

Prostate cancer cells (PC3) UC EGFP-CD63-
Antares2

1 × 106 
cells/100 µL

BALB/c-nu/nu 
mice 

Subcutaneously 
transplanting

0 d, 5 d, 
10 d, 15 
d, 20 d, 
25 d, 30 
d, 35 d

Hikita et al.[28]

 
(2020)

HEK-293T cells/MSC cells TFF/SEC/UC DiR,CD63-
NanoLuc/CD63-
ThermoLuc

1 × 1011 
cells/100 µL 
PBS

NMRI mice IV 5 min, 15 
min, 30 
min, 60 
min, 6 h, 
24 h

Gupta et al.[29]

(2020)

Plasma/cardiomyocyte/cardiac 
fibroblats

ExoquickTM 
precipitation/ 
UC

CD63-NanoLuc - TG-αMHC-
STOP-
CD63NanoLuc 
mice

IP 5 min Luo et al.[30] 
(2020)

BLI

Fibrosarcoma cells(HT1080) Iodixanol 
gradient/UC

pHluo_M153R-
CD63

1 × 106 
cells/mice; 
1 × 105 
cells/chick

NOD/SCID 
mice, 
ex ovo chicks

Mouse 
mammary fat 
pad 
injection/IV

1 week, 
24 h

Sung et al.[31] 
(2020)

Milk and cancer cells (U87, 
B16F10)

UC SCy 7.5 and BDP-
FL succinimidyl 
ester 
fluorophores

25 μg/150 μL 
PBS

AlbCre mice, 
mT/mG mice

IV 1 h, 4 h, 
24 h 

González et 
al.[39] (2021)

MSC UC DiR 100 µg/200 µL 
PBS

C57BL/6J 
mice(ischemic 
stroke)

IV 0 d, 1 d, 3 
d, 5 d, 7 
d, 10 d,  
14 d

Xu et al.[40] 
(2020)

FI

A549 cells UC DBCO-Cy5, DiD 1.5 mg/kg Tumor-bearing 
mice

IV 24 h Song et al.[41] 
(2020)

CESC UC PKH67, DIR 40 μg/mL SD rats (CEP 
and IVDD)

IV 6 weeks Luo et al.[43] 
(2021)

MSC UC FTH1 50 µg/100 µL 
PBS

C57BL/6 mice IM After 
injection

Liu et al.[44] 
(2020)

MRI

ASCs PureExo® 
Exosome 
isolation kit

USPIO 5 µg and 25 µ
g/100 µL PBS

C57BL/6 mice IM After 
injection

Busato et al.[45]

 
(2016)

Human umbilical vein 
endothelial cells

UC 99mTc-AnnV 2.0 ± 0.5 × 106 
LEVs/2.0 ± 0.4 
MBq/150 µL

BALB/c mice IV 30 min Giraud et
al.[48]

(2022)

Plasma UC 99mTc-
HYNICDuramycin

12 ± 3 MBq/100 
μL

C57BL/6 IV 1 h Németh et
al.[49] (2021)

HCT116 cells, ASCs UC 99mTc-TEx-
Cy7,99mTc-AEx-
Cy7

37 MBq/200 µL 
PBS

Tumor-bearing 
mice

IV 1 h, 6 h, 
12 h, 18 
h, 24 h

Jing et al.[50] 
(2021)

Melanoma cells(B16F10) Sucrose 
density 
cushion/UC

111Indium 1 × 1011 
particles/mouse

C57BL/6 
mice,NSG mice

IV 1 h, 4 h 
,24 h

Faruqu et al.[51]

(2019)

Erythrocyte UC 99mTc-tricarbonyl 15 ± 2 
MBq/200 μL 
volume

BALB/c mice IV 1 h Varga et al.[52]

(2016)

SPECT

Raw 264.7 cells, HB1.F3 cells Iodixanol 
gradient/UC

99mTc-HMPAO 7.4-14.8 MBq, 
11.1 MBq of 29-
64 μg cells

BALB/c mice IV After 
injection

Hwang et al.[53]

(2015)

PET 4T1 cells UC 64Cu--NOTA,64

Cu--NOTA-PEG
50 μCi/mouse, 
200 μL

BALB/c mice IV 1 h, 4 h, 
24 h

Shi et al.[54] 
(2019)

MIA-PaCa-2 cells UC Ce6-R 100 μg/mL 
exosomal 
protein and 38.4 
μg/ml Ce6

BALB/c mice IV 6 h Jang et al.[58] 
(2021)

China 
RIBOBIO 

PAI

Tumor cells Au Nanostars and 
TDSP

200 μg/mL in 
100 μl PBS

BALB/c mice IV 24 h Zhu et al.[59] 
(2020)
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Biotechnology 
Co., Ltd. 

NIH3T3 cells,CNE-2 cells Facile 
chemical 
oxidation and 
exfoliation 
method 

DiR 100 μg/mL in 
100 μL volume

BALB/c nude 
mice 

IV 2 h, 4 h, 
8 h

Ding et al.[60] 
(2019)

4T1 cells, HeLa cells,  Raw 
264.7 

UC CDs:Gd,Dy-TAT 30 mg·kg-1·wt BALB/c mice IV 6 h, 12 h, 
24 h

Yang et al.[64]

(2021)

HepG2 cells, L02 cells UC Ag ,Fe3O4 20 μg /mL - - 12 h Tayyaba et
al.[65] (2020)

Expi293F cells, HepG2 cells Iodixanol
gradient/UC DiR,mCherry, 111

indium-DTPA
1 × 1011 cells in 
200μL PBS; 5-10 
MBq; in 200 μL 

BALB/c mice IV 24 h; 0-
30 min, 
4 h, 24 h 

Lázaro-Ibá
ez et al.[66] 

(2021)

Multimodal 
imaging

293T cells, C3H strain HCA1 
cells

Sucrose 
density 
cushion/UC

PalmGRET 100 µg C3H/HeNCrNarl 
mice

IV 5 min, 10 
min, 20 
min, 30 
min

Wu et al.[67] 
(2020)

BLI: Bioluminescence imaging; TFF: Tangential flow filtration; MSC: mesenchymal stromal cell; NMRI: Naval Medical Research Institute; SEC: size 
exclusion chromatography; IV:  intravenous; IP: Intraperitoneal injection; FI: Fluorescence imaging; MRI: Magnetic resonance imaging; UC: 
ultracentrifugation; CESC: cartilage endplate stem cell; CEP: cartilage endplate; IVDD: intervertebral disc degeneration; MSC: Mesenchymal stem 
cell; DiD and DiR: near-infrared dyes; SPECT: Single photon emission computed tomography imaging; IM: intramuscular injection; ASCs: adipose 
stem cells; USPIO: ultrasmall superparamagnetic iron oxide nanoparticles; PET: Positron emission tomography; PAI: Photoacoustic imaging; 
NOTA: bifunctional chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid; PEG: polyethylene glycol; Ce6-R: Chlorin e6-loaded R; TDSP: Tumor cell-
derived stellate plasmonic.

Figure 1. Strategies for tracking extracellular vesicles in vivo. Extracellular vesicles (EVs) can be extracted from the culture medium of 
donor cells or genetically modified cells by centrifugation. EVs can be modified to contain luciferase (NanoLuc, GFP, mCherry), 
fluorescent dyes (PKH67, DiD, DiR, MEMGlow, CSFE), and radionuclide labeling (99mTc-HMPAO, 99mTc-AnnV, 111Indium) for injection 
into animals for easy tracking. There are many imaging methods that can be used to track EVs in vivo, such as bioluminescence imaging 
(BLI), fluorescence imaging (FI), magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission 
computed tomography (SPECT), and photoacoustic imaging (PAI). Therefore, the in vivo tracing strategy of EVs is a key means to 
elucidate the biological mechanism of EV therapy. Created By Biorender.

Bioluminescence belongs to self-luminescence and does not require external light source excitation, thus 
avoiding the interference of natural fluorescent substances[32]. At the same time, because there is almost no 
endogenous light source in mammalian cells and tissues, BLI has extremely high sensitivity, specificity, and 
good signal-to-noise ratio. In addition, the bioluminescence system has good biocompatibility, and has 
non-phototoxicity caused by the excitation light during the imaging process, and it can be non-invasive, 
continuous and dynamic monitoring of various biological processes in the living body in real time[33-35]. 
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However, BLI also has its own shortcomings: for example, the emitted fluorescence will be scattered and 
absorbed when propagating in the tissue, photons will be refracted when they meet the cell membrane and 
cytoplasm, and different types of cells and tissues have different ability to absorb photons. Therefore, the 
resolution of BLI will decrease.

FLUORESCENCE IMAGING
Fluorescence imaging (FI) refers to the implantation of experimental materials (such as nanoparticles, 
drugs, genes, etc.) labeled with fluorescent dyes into animals, and then use external excitation light to excite 
the materials with fluorescence. The in vivo imaging system collects the emitted light signals generated by 
the fluorescent dyes in the body.

There are two main types of fluorescent dyes commonly used for tracking EVs in vivo. One type is lipid 
dyes (such as PKH67, DiD, DiR, MEMGlow, etc.), which have different excitation and emission wavelengths 
and can effectively label EVs[33-35]. The other type of fluorescent dye is a membrane-permeable compound, 
such as carboxyfluorescein succinimidyl ester (CFSE), which is a lipophilic fluorescent dye that can be 
passively diffused into cells[36,37]. It is colorless itself, but after entering the cell, it removes the acetate group 
to generate carboxyfluorescein succinimidyl ester (green fluorescence), which is also a commonly used 
method for effectively tracking EVs[37].

González et al. documented that the secure attachment of commercially available fluorescent dyes to 
exosomes derived from both milk and cancer cells (specifically U87 and B16F10 cancer cells) surfaces, 
facilitated by covalent binding, did not alter the inherent physicochemical characteristics of the 
exosomes[38]. The exosomes, now fluorescently labeled, were effectively visualized using in vivo optical 
imaging[39]. Xu et al. engineered exosomes derived from mesenchymal stem cells (MSC-EXOs) by 
incorporating DiR, followed by intravenous injection into mice experiencing ischemic stroke. The near-
infrared fluorescence (NIRF) images obtained indicated the migration of MSC-EXOs into the brains of mice 
with ischemic stroke, showcasing their ability to elicit therapeutic effects against this condition[40]. Song et 
al. developed exosomes labeled with DBCO-Cy5 (Cy5-Exo) derived from cancer cells. The donor cancer 
cells were subjected to treatment with tetraacetylated N-azidoacetyl-D-mannosamine (Ac4ManNAz), and 
the resulting azide groups were labeled using near-infrared fluorescent dye-conjugated dibenzylcyclooctyne 
(DBCO-Cy5). Subsequently, non-invasive tracking and imaging of Cy5-Exo were conducted through near-
infrared fluorescence (NIRF) imaging in mice with tumors[41].

The advantage of FI is that it has more selectivity of fluorescent probes, flexible labeling methods, and wide 
wavelength selectivity of fluorescent probes[29-31]. However, due to the scattering and absorption of light in 
biological tissues, coupled with the significant interference of tissue autofluorescence, the resolution and 
contrast of in vivo fluorescence imaging of the visible light spectrum (wavelength 400-700 nm) will decrease 
as the depth of the tissue increases, and resulting in a low signal-to-background ratio (SBR), and affecting 
the sensitivity and depth of detection.

MAGNETIC RESONANCE IMAGING
Magnetic resonance imaging (MRI), commonly known as spin imaging, is an advanced diagnostic modality 
that utilizes the principles of nuclear magnetic resonance to intricately visualize the internal structures 
within the body. The principle of MRI is that when there is an external magnetic field, radio frequency 
waves will act on the protons rotating around the magnetic field to increase its precession angle. When the 
radio frequency waves stop running, the protons will release the same signals, which are processed by a 
computer and converted into two-dimensional images to help the staff analyze the state of the target. Using 
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special contrast agents or molecular probes, MRI is used to study cell activities in organisms, including 
proliferation, differentiation, migration, and aggregation. Superparamagnetic iron oxide (SPIO) 
nanoparticles exhibit biocompatibility and have demonstrated enhanced targeting capabilities when 
incorporated into EVs. Notably, ultrasmall SPIO (USPIO), with a size of less than 50 nm, is particularly 
advantageous for labeling nanoscale EVs owing to their diminutive size[42].

Luo et al. conducted an assessment of in vivo exosomes derived from normal cartilage endplate stem cells 
(CESC), differentiating between normal (N-Exos) and degraded exosomes (D-Exos). This evaluation was 
performed under the influence of intervertebral disc degeneration (IVDD) and apoptosis of nucleus 
pulposus cells (NPC), utilizing MRI as the diagnostic tool. The results indicated that N-Exos was more 
conducive to autophagy activation than D-Exos[43]. Liu et al. engineered a hybrid protein that combined the 
ferritin heavy chain (FTH1) with a truncated lactadherin. Utilizing FTH1 as an MRI reporter, their 
investigation revealed that exosomes labeled with FTH1 were observable both in vitro and in vivo through 
MR imaging[44]. Busato et al. introduced an innovative technique for tagging EVs derived from adipose stem 
cells (ASCs) using USPIO. The MRI detection limit for EVs was determined to be 3 µg in vitro and 5 µg in 
vivo, showcasing the effectiveness of this labeling approach[45].

Leveraging MRI for monitoring EVs offers numerous advantages, including its non-destructive, non-
invasive, and non-ionizing radiation nature. MRI provides high soft tissue contrast, exceptional spatial 
resolution (sub-millimeter scale), and overcomes penetration depth limitations, presenting a wealth of 
information in the resulting images. MRI can be used not only to display the anatomical structure and 
morphology of tissues and organs, but also to analyze the physiology and biochemistry, tissue metabolism, 
organ function, etc. in the organism in a multi-dimensional and all-round way[46,47]. MRI also has some 
limitations of its own. A low signal-noise ratio (SNR) generally requires signal accumulation to increase 
SNR, which further reduces the imaging speed. Slow imaging speed can also cause problems such as 
insufficient time resolution of functional imaging in applications and easy to be affected by motion artifacts.

SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY
Single photon emission computed tomography imaging (SPECT) uses single-photon radionuclides as the 
detection object. The principle of SPECT imaging is to label exosomes with radioisotopes with a short half-
life. After the exosomes are injected into the body and reach the expected position, they will emit gamma 
photons due to their own radioactive decay, which are located on the outer gamma camera probe. The 
sensitive point of the photon will detect the incoming photons, which will be converted into electrical 
signals by the photomultiplier tube and amplified at the same time. The amplified signals will form pulse 
signals. Combined with computer processing, the distribution of exosomes can be displayed in different 
gray scales or color scales. The probes used for tracing in living cells are mainly labeled with two 
radionuclides: 111In and 99mTc.

Giraud et al. used microSPECT/CT imaging to track radiolabeled endothelial EVs and quantify their whole-
body distribution in vivo[48]. Németh et al. used SPECT/CT to analyze the biodistribution of Tc-HYNIC-
Duramycin labeled EVs in mice, and detected an elevated circulating EV number after the high-fat diet[49]. 
Jing et al. employed 99mTc labeling to create radioactive exosomes derived from adipose stem cells, known as 
Tc-TEx-Cy7, utilizing a hydrophobic insertion mechanism. SPECT imaging results demonstrated that, in 
comparison to radio-labeled exosomes from adipose stem cells (Tc-AEx-Cy7), Tc-TEx-Cy7 exhibited 
notably enhanced tumor accumulation in mice with tumors[50]. Faruqu et al. employed two distinct methods 
for radiolabeling B16F10-derived exosomes (Exo): intraluminal labeling involving the entrapment of 
Indium tropolone shuttling, and membrane labeling through chelation of Indium covalently attached to the 
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bifunctional chelator DTPA-anhydride. The results obtained from whole-body SPECT-CT imaging 
indicated that membrane-labeled Exo exhibited superior radiolabeling efficiency and radiochemical stability 
compared to intraluminal-labeled exosomes[51]. Varga et al. used the 99mTc-tricarbonyl complex labeling 
erythrocyte-derived EVs. The result of SPECT imaging showed that intravenously injected 99mTc-labeled 
EVs mainly accumulate in the liver and spleen[52]. Hwang et al. labeled nanovesicles mimicking 
macrophage-derived exosomes (ENVs) with 99mTc-HMPAO. Upon examining SPECT/CT images of mice 
injected with 99mTc-HMPAO-ENVs, noticeable higher uptake was observed in the liver, while there was no 
discernible uptake in the brain[53].

POSITRON EMISSION TOMOGRAPHY
Positron emission tomography (PET) uses radionuclides as imaging agents to label exosomes, and then uses 
detectors to accept photons released during the decay of the positron tracer nuclide to form tracer 
distribution images, thereby reflecting the presence of exosomes in the body Distribution.

Shi et al. employed in vivo PET to non-invasively monitor copper-64Cu-radiolabeled polyethylene glycol 
(PEG)-modified exosomes. This approach resulted in outstanding imaging quality and facilitated 
quantitative measurements of both blood residence and tumor retention[54].

SPECT and PET have high specificity in the monitoring of exosomes, and are easy to operate, can quickly 
obtain semi-quantitative data, and have good accuracy[55,56]. Compared with SPECT, PET imaging has higher 
sensitivity and resolution. However, it also has disadvantages, such as the need to inject radionuclides and 
the large radiation dose during the inspection.

PHOTOACOUSTIC IMAGING
Photoacoustic imaging (PAI) is an emerging low-cost, non-invasive imaging technology based on the 
absorption of light by biological tissues. This method involves capturing images by detecting acoustic 
signals generated from light absorption, making it an economical and minimally intrusive approach to 
imaging. Upon exposure to a pulsed laser, biological tissues absorb energy, undergo expansion, and 
generate pressure changes, thereby initiating the photoacoustic effect. This phenomenon involves the 
conversion of absorbed light energy into acoustic waves, contributing to a nuanced understanding of 
biological structures through photoacoustic imaging. The acoustic signal generated by the photoacoustic 
effect is called the photoacoustic signal. Under the condition of the same light source parameters, the 
intensity and frequency spectrum of the photoacoustic signal are closely related to the optical, thermal, and 
elastic properties of the tissue. Photoacoustic imaging technology obtains tissue structure and biochemical 
information by detecting photoacoustic signals, and realizes functional imaging while reconstructing the 
image of tissue structure for disease diagnosis and tissue evaluation.

Nguyen et al. successfully implemented a pH-responsive PAI-guided chemo-acoustic kinetic combination 
therapy. This was accomplished by incorporating indocyanine green (ICG), paclitaxel (PTX), and sodium 
bicarbonate (SBC) into EVs. High-resolution PA imaging showed that SBC-EVs (ICG/PTX) preferentially 
accumulated in tumor-bearing mice[57]. Jang et al. engineered re-assembled exosomes derived from tumors 
(R-Exo) by combining them with a chlorin e6 photosensitizer. The resulting chlorin e6-loaded re-assembled 
exosomes (Ce6-R-Exo) were observable through photoacoustic imaging and demonstrated the efficient 
generation of reactive oxygen species within tumor cells when subjected to laser irradiation[58]. Zhu et al. 
presented stellate plasmonic exosomes derived from tumor cells (TDSP-Exos). These specialized exosomes 
were created through the incubation of tumor cells with gold nanostars. Notably, TDSP-Exos demonstrated 
significant accumulation within deep tumor tissues and displayed impressive performance in the realm of 
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PAI[59]. Ding et al. engineered nanozyme vesicles with an exosome-like structure through the biomimetic 
functionalization of GQDzyme/ABTS nanoparticles. The outcomes underscored the potential of 
GQDzyme/ABTS-based exosome-like nanozyme vesicles as an optimal nanoplatform for advancing in vivo 
deep-tissue tumor-targeted catalytic PAI[60].

Photoacoustic imaging technology combines optical and acoustic imaging with complementary advantages. 
Photoacoustic imaging has good spatial resolution. Only a very low electromagnetic radiation energy 
density is required to obtain a photoacoustic signal with a higher signal-to-noise ratio, thereby avoiding the 
ionization damage caused by high-intensity electromagnetic radiation to biological tissues[60-63]. At present, 
the photoacoustic imaging technology still has certain limitations. First of all, photoacoustic imaging 
technology uses sound waves as a carrier for imaging. Therefore, it is urgent to improve the imaging effect 
of bones, air-containing cavities, and other tissues where the transmission of sound waves is blocked. 
Thirdly, the sensitivity of the ultrasonic transducer needs to be improved to strengthen the detection of 
deep tissue signals and increase the imaging depth. At the same time, it is also necessary to further improve 
the imaging resolution.

MULTIMODAL IMAGING
There are different advantages and disadvantages in tracing in vivo cells for different molecular imaging 
technologies. The single imaging technology to trace EVs in vivo has some shortcomings, such as low 
labeling efficiency, loss of imaging probes, large signal monitoring errors, etc. Therefore, the development of 
new multi-functional probes and the use of multi-modal imaging technology can overcome the 
shortcomings of a single imaging technology, trace the EVs in the body from multiple aspects, and provide 
more information.

Yang et al. developed a multifaceted engineered nanoplatform using rare earth element Gd and Dy-doped 
carbon dots (CDs:Gd,Dy) modified with TAT peptide. These were encapsulated into exosomes engineered 
with RGD peptide (Exo-RGD). The application of this nanoplatform enabled the detection of tumor sites 
through MRI/CT imaging in mice bearing tumors[64]. Tayyaba et al. employed HepG2 cancer cells to 
facilitate the in situ biosynthesis of nanoclusters (NCs) composed of silver and iron oxide derived from their 
respective salts (AgNO3 and FeCl2). The self-assembled, biosynthesized silver and iron NCs were efficiently 
loaded onto exosomes as cargo. These silver NCs displayed potential as a fluorescent probe, while the iron 
oxide (Fe3O4) NCs served as a contrast agent for both CT and MRI[65]. Lázaro-Ibáñez et al. conducted an 
assessment of the impact of five distinct optical and nuclear tracers on the in vivo biodistribution of EVs. 
They presented a comprehensive comparison encompassing fluorescent, bioluminescent, and radioactivity 
methodologies. Dual labeling of EVs from Expi293F cells can be achieved by noncovalent fluorescent dyes 
(DiR), covalent modification of 111 indium-DTPA, or bioengineering of fluorescent (mCherry) fused with 
EVs-tagged CD63 or bioluminescent proteins (Firefly and NanoLuc luciferase). The outcomes highlighted 
that radioactivity emerged as the most precise approach for tracking EVs[66]. Wu et al. developed 
PalmGRET, a reporter based on BRET. This innovative creation enables the visualization, tracking, and 
quantification of EVs across a spectrum of resolutions, from whole-animal to nanoscopic levels, through 
diverse imaging modalities, including bioluminescence, BRET, and fluorescence[67].

The pivotal aspect for tracing the in vivo biological behavior of EVs lies in the development of a quantitative 
analysis method that boasts high sensitivity and specificity. Combining multiple detection markers into one 
molecule can provide complementary imaging information. Multimodal imaging-specific molecular 
markers have attracted the attention of researchers because they can integrate the advantages of multiple 
imaging methods. Targeted multimodal imaging and theoretical methods are gradually becoming research 
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monitoring methods for the tracing of EVs in vivo. The development of multimodal imaging and specific 
molecular markers will be the future research direction.

CONCLUSION
The continuous and non-invasive labeling of EVs helps us to understand the biological characteristics of 
EVs after entering the organism, such as migration, distribution, and survival, as well as the mechanism by 
which EVs mediate the recovery of cell or tissue function. The development of EV therapy for these diseases 
has long-term guiding significance. Efficiently monitoring EVs within living organisms poses a challenge 
that demands reliable techniques ensuring the preservation of membrane integrity and biological activity 
post-labeling with exogenous probes. Currently, various non-invasive imaging methods are at our disposal 
for tracking EVs within living organisms, each carrying its unique set of advantages and drawbacks. Table 2 
summarizes the advantages and limitations of each method. MRI has a high spatial resolution, but its 
labeling specificity is still lacking, and the signal intensity may decrease as the cells proliferate. BLI/FI has a 
lower cost and higher sensitivity than MRI, and can support long-term real-time tracking of cells, but its 
spatial resolution is not as good as MRI. As the depth of the tissue increases, the intensity of the light signal 
decreases. SPECT/PET also has a high degree of sensitivity and can continue to detect signals during cell 
division. However, if researchers are exposed to radioactive internal radiation, the safety needs to be further 
explored and studied.

Table 2. Comparison of various in vivo imaging techniques for EVs

Imaging 
technology

Emission 
source Detection probe Spatial 

resolution
Time 
resolution

Depth of 
imaging Sensitivity Costs of 

experiments

BLI near-infrared 
light source

Fluorescent protein reporter 
genes

Low High Low High Low

FI laser Fluorescent dyes Low High Low High Low

MRI radio-
frequency 
pulse

Superparamagnetic iron oxide 
(SPIO); ultrasmall SPIO (USPIO, < 
50 nm)

High Low High Low High

SPECT γray radioisotope Low High High High High

PET γray radioisotope Low High High High High

PAI laser nanoparticles Low High High High Low

BLI: Bioluminescence imaging; FI: Fluorescence imaging; MRI: Magnetic resonance imaging; SPECT: Single photon emission computed 
tomography imaging; PET: Positron emission tomography; PAI: Photoacoustic imaging.

At present, there is a scarcity of imaging platforms specifically designed for the dynamic tracking of EVs at 
the in vivo level. The present optical imaging, magnetic resonance imaging, and nuclide imaging platforms 
rely on cellular tracers or medical imaging equipment. Attempts to achieve compatibility with EVs involve 
adjusting parameters, yet this often results in experimental designs constrained by the imaging threshold of 
the instrument. Therefore, it is essential to construct a specialized imaging platform for the dynamic tracing 
of EVs. Due to the lack of imaging platforms dedicated to the dynamic tracing of EVs at the in vivo level, we 
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strongly support the utilization of multimodal imaging techniques that offer a wide array of advantages. 
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resonance imaging or nuclide imaging can simultaneously obtain information on the location, distribution, 
and dynamics of EVs. Such an integrated approach will help us to understand the biology of EVs more 
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we should actively advocate and carry out research on multimodal exosome tracking imaging.
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