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Abstract
Adenosine triphosphate (ATP) is the energy currency within all living cells and is involved in many vital 
biochemical reactions, including cell viability, metabolic status, cell death, intracellular signaling, DNA and RNA 
synthesis, purinergic signaling, synaptic signaling, active transport, and muscle contraction. Consequently, altered 
ATP production is frequently viewed as a contributor to both disease pathogenesis and subsequent progression of 
organ failure. Barth syndrome (BTHS) is an X-linked mitochondrial disease characterized by fatigue, skeletal 
muscle weakness, cardiomyopathy, neutropenia, and growth delay due to inherited TAFAZZIN enzyme mutations. 
BTHS is widely hypothesized in the literature to be a model of defective mitochondrial ATP production leading to 
energy deficits. Prior patient data have linked both impaired ATP production and reduced phosphocreatine to ATP 
ratios (PCr/ATP) in BTHS children and adult hearts and muscles, suggesting a primary role for perturbed 
energetics. Moreover, although only limited direct measurements of ATP content and ADP/ATP ratio (an indicator 
of the energy available from ATP hydrolysis) have so far been carried out, analysis of divergent BTHS animal 
models, cultured cell types, and diverse organs has failed to uncover a unifying understanding of the molecular 
mechanisms linking TAFAZZIN deficiency to perturbed muscle energetics. This review mainly focuses on the 
energetics of striated muscle in BTHS mitochondriopathy.
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INTRODUCTION
Barth syndrome
Barth syndrome (BTHS; OMIM #302060) is a rare X-linked disorder affecting mainly males and is caused 
by mutations in the phospholipid-lysophospholipid TAFAZZIN transacylase (HGNC:11577) gene[1]. The 
Tafazzin protein is mitochondrially located and plays an important role in both mitochondrial formation 
and function[2]. BTHS is characterized by dilated cardiomyopathy, neutropenia, growth restriction, growth 
delay, and skeletal myopathy[3-7]. As with most mitochondriopathies, there is no cure for BTHS, and patients 
often succumb to premature death. BTHS patient mortality is thought to be primarily due to 
cardiomyopathy, which can progress to heart failure and arrythmias[3,7]. Additionally, BTHS skeletal 
myopathy is detectable from birth and causes low muscle tone (hypotonia), as well as muscle weakness 
leading to motor skill delay (crawling, walking)[8]. BTHS boys and men exhibit muscle weakness, extreme 
fatigue during strenuous physical activity, and eating difficulties[8-11]. Despite myopathy being a cardinal 
feature of BTHS[12] and mitochondrial dysfunction being well described in BTHS, very little is known about 
the bioenergetic state of muscle in BTHS. Relevant to this literature review, BTHS animal models are 
considered models for defective mitochondrial ATP production and, thus, for understanding energy 
deficits.

Bioenergetics of ATP
The transfer of energy is central to cell survival. Arguably, the most important intracellular energetic 
intermediate is ATP[13]. This is due, at least in part, to the direct transfer of energy from ATP hydrolysis to 
drive essential cellular functions such as protein synthesis and degradation, active ion transport, and muscle 
contractions. The amount of available energy from ATP hydrolysis (DGATP) is defined by the Gibb’s free 
energy equation:

where DG°ATP is the free energy of ATP hydrolysis under standard conditions of temperature, pressure, and 
substrate/product concentrations in solution, R is the gas constant, and T is the temperature in °K[14].  An 
important aspect of this is that the amount of available energy does not depend solely on the concentration 
of ATP but, instead, is dependent on the ratio of the ATP to ADP and inorganic phosphate (Pi). Said 
another way, ATP alone is not a sensitive measure of energetic state nor of mitochondrial function[15].

In extracts from non-contracting skeletal muscle, consensus levels for total ATP are ~5-6 mmol/g, for ADP 
~0.5 mmol/g, and for AMP ~0.1 mmol/g, although values differ between muscles with different fiber 
types[16,17]. During periods of substantial energy supply/demand mismatch, such as initial stages of intense 
contractions or hypoxia, ATP changes little while ADP and especially AMP increase substantially in part 
because of buffering by the near-equilibrium creatine kinase (PCr + ADP ↔ Cr + ATP) and adenylate 
kinase (ADP + ADP ↔ ATP + AMP) reactions. Prolonged mismatch between energy supply and demand 
would lead to continuous ATP decline and cell death.

When steady-state changes in ATP are detected, results could be interpreted in two ways. First, a reduction 
in ATP with an increase in the degradation products ADP, AMP and/or IMP is an indication of severe and/
or prolonged mismatch in ATP supply and demand[18]. This can occur with intense muscle contractions[17,19] 
or hypoxia[20]. Second, decreases in ATP with a concomitant decrease in ADP and AMP, i.e., a decrease in 
the total pool of adenine nucleotides (ATP + ADP + AMP), is an indication of a cellular or phenotypic 
change without a mismatch in energy supply and demand. As examples of ATP differences without 
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mismatch between energy supply and demand, the total pool of adenine nucleotides differs between 
different cell types[21] and between muscle fiber types[16,17]. Further, acceleration of adenine nucleotide 
degradation by increased AMP deamination in skeletal muscle is sufficient to decrease ATP without 
changing the ATP/ADP ratio[22,23]. Indeed, it is clear that these two measures, the ATP content and ATP/
ADP ratio, are regulated independently[24].

Measuring adenine nucleotides
Quantifying the energetic state in tissues or cells presents several challenges. First, ATP is rather labile and 
can be quickly degraded during collection or processing[25-27]. Second, a single assay (e.g., simply measuring 
ATP) is not sufficient, given that both ATP and ADP define the energetic state. Third, the measures of ATP 
and ADP must be quantified in an absolute term (e.g., mmol/g or mM) and cannot be simply normalized to 
arbitrary values, because arbitrary units would make the calculation of ATP/ADP meaningless.

ATP in muscle can be measured using a variety of assays, including magnetic resonance spectroscopy 
(MRS)[28], f luorescent reporters[29], luciferase assays[30,31], and high or ultra performance liquid 
chromatography (HPLC or UPLC)[32,33]. These methods have been used for decades, but each has 
limitations. MRS and fluorescent reporters are generally used in vivo, which avoids tissue collection 
artifacts. However, they are not amenable to absolute quantification measures (only relative) and generally 
cannot measure ADP directly in tissue[28], which makes validation across studies impossible and may even 
be misleading. Luciferase assays can be used to quantify ATP directly and are generally performed on 
extracts. However, ADP cannot be measured directly. UPLC assays are performed on tissue extracts, can 
measure ATP and ADP (as well as NAD+, NADH, and adenine nucleotide degradation products such as 
AMP and IMP) simultaneously, and are highly quantitative.  Both luciferase and UPLC assays can only be 
performed on tissue/cell extracts.

Tafazzin protein and interactions
TAFAZZIN protein contains mitochondrial localization and membrane anchoring domains, as well as a 
unique hydrophilic domain that may serve as an exposed loop interacting with additional unidentified 
proteins[6]. Tafazzin can also sense mitochondrial membrane curvature and play a direct role in cristae 
reorganization and stability[34,35]. However, Tafazzin is primarily known for the synthesis of mature 
cardiolipin via promoting cardiolipin acyl chain remodeling, and is the characteristic lipid found in 
mitochondrial inner membranes. Cardiolipin is associated with many of the complexes of oxidative 
phosphorylation (OxPhos) and mitochondrial enzymes involved in ATP production, thereby stabilizing 
OxPhos supercomplexes. Mitochondrial supercomplexes are assemblies of individual respiratory chain 
complexes colocalized with cardiolipin found on the inner mitochondrial membrane[36], and increased 
content of supercomplexes facilitates ATP synthesis[2,37-40]. Consistent with this, loss of cardiolipin in patients 
or in models of BTHS leads to mitochondrial shape irregularities (e.g., swollen, collapsed cristae, 
honeycomb-like formations, aggregates)[3,4,41-46], decreased mitochondrial maximal oxygen consumption/
ATP generating capacity[8,9,47-57], decreased mitochondrial efficiency as defined as phosphate-to-oxygen 
ratio[45,56], increased apoptosis, and either no change[48,51,58] or increase[48,52,53,57,59,60] in superoxide production. 
Moreover, in addition to cardiolipin-deficient impairment of OxPhos, several BTHS models also exhibit 
defects relating to the intermediary metabolism of fatty acids, carbohydrates, ketones, and amino acids[61]. 
Thus, as these alternative fuel substrates are less efficient, ATP production may also be indirectly 
compromised via upstream metabolic disturbances.

In addition to direct effects on OxPhos enzymes, cardiolipin may also affect the energetic state by its ability 
to bind with high affinity to the nucleotide metabolism enzymes nucleotide diphosphate kinase (NDPK-D 
or nme23-H4 or NME4) and creatine kinase (CK). NME4 has a mitochondrial targeting sequence[62] and is 
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found on the inner mitochondrial membrane tightly bound to cardiolipin[63]. NME4 catalyzes the phospho-
transfer between guanines and adenines (ATP + GDP ↔ ADP + GTP). CK is abundant within mitochondria 
and the cytosol, and functions as a spatial and temporal buffer of ATP[64]. The octameric mitochondrial 
isoform of CK binds tightly to cardiolipin[65]. CK catalyzes the phospho-transfer of ATP to creatine (ATP + 
Cr ↔ ADP + PCr). Both NME4 and CK may also transfer cardiolipin between the inner and outer 
mitochondrial membranes, particularly when affecting apoptosis[66,67].

ENERGETIC STATE OF BARTH SYNDROME
Note
References chosen for this section were initially identified in PubMed or Scopus with a search for Tafazzin 
and ATP. We selected all those studies that performed measures of ATP in cells/tissues with mutated 
Tafazzin or decreased Tafazzin protein amounts.

Cell studies
Numerous groups have measured ATP and/or ADP in cell culture models of cardiolipin insufficiency, 
mimicking the BTHS condition. Significantly, using immortalized lymphoblasts from BTHS patients, ATP, 
ADP, and AMP levels were all increased, which is thought to result from a compensatory increase in 
mitochondrial content[68]. Likewise, ATP is increased when wild-type TAFAZZIN is knocked down in 
cultured cardiomyocytes or knocked out in mouse embryonic fibroblasts[53]. In contrast, ATP levels are 
decreased in fibroblasts[44], lymphocytes[69], and inducible pluripotent stem cell-derived cardiomyocytes[70] 
from BTHS patients. Further, ATP is also decreased with shRNA knock-down of Tafazzin in rat neonatal 
ventricular myocytes[60,71,72] and in HeLA cells[50], as illustrated in Table 1. Because loss of cardiolipin has clear 
inhibitory effects on mitochondrial ATP production, it may be surprising that ATP content is not 
consistently lower across cell types. Potential explanations could be the different metabolic substrates (often 
very high glucose in vitro), very low energy demand, lack of cross-talk between cell types, and the ability of 
many cells to vary ATP production between glycolysis and OxPhos. Indeed, since ATP is necessary for cell 
survival, it must be true that the steady-state ATP production rate must match the ATP use rate. Thus, 
although ATP is often used as a surrogate marker for mitochondrial dysfunction in BTHS, care should be 
exercised as there may be many ways that energetics can be disassociated.

Mouse models: In mouse models, it remains unclear whether the doxycycline-inducible Tafazzin knock-
down (TazKD) or knock-out (TazKO) mice mutant models exhibit ATP content anomalies, but ATP synthesis 
(mitochondrial F0F1-ATP synthase) and ADP-ATP carrier abundance are both decreased[76,77]. In a patient-
tailored point mutant knock-in (TazD75H) mouse model of BTHS that expresses a stable mutant protein, ATP 
is lower in the adult heart tissue, with no change in ADP or AMP levels; therefore, the ADP/ATP ratio is 
higher in adult point-mutant knock-ins. However, no differences were seen in juveniles, demonstrating that 
the energetic state becomes unstable with disease progression[42]. Moreover, despite TazD75H mutants 
exhibiting total infertility, there was no decrease in ATP, ADP or AMP in mutant testis[78], suggesting that 
not all knock-in mutant organs are equally energetically challenged. In a different model of cardiolipin 
deficiency, knock-out of 3-hydroxyacyl-coenzyme A dehydratase (HACD), ATP content was much lower 
after an exercise bout in the HACD knock-outs versus the wild-type controls[45], suggesting that 
mitochondrial generation was relatively slowed. Similarly, when CL biosynthesis was interrupted via 
targeted mitochondrial PTPMT1 phosphatase deletion in hearts, ATP synthesis was impaired, resulting in 
abnormal heart development and neonatal lethality[79]. However, no direct measures of the non-contracted 
skeletal muscle energetic state (e.g., ATP and ADP) have been reported in any of the mouse models of 
BTHS.
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Table 1. Variance of ATP levels and ADP/ATP ratio measurements in diverse BTHS model systems

Species ATP level ADP/ATP Genetic alteration Tafazzin protein Cell type/organ Reference

In vitro cell culture models

Human Down NR TAZ517delG, TAZ328T>C patients NR iPSC-derived CMs [70]

Human Up Unchanged TAZG197E, TAZI209D patients None lymphoblasts [68]

Human Down NR BTHS patients None lymphocytes [69]

Human Down NR shTAZ knock-down Reduced wt TAZ HeLa cervical cancer [50]

Human Down NR TAZ170G>T, TAZ140-152del13 NR Fibroblasts [73]

Mouse Down NR TazKD knock-down Reduced wt TAZ C2C12 skeletal muscle [60]

Mouse Up NR TazG193V knock-in None CMs [53]

Mouse Up NR TazKO knock-out None MEFs [53]

Rat Down NR shTaz knock-down Reduced wt Taz Neonatal ventricle CMs [60,71] 

Rat Down NR shTaz knock-down Reduced wt Taz Neonatal ventricle fibroblasts [72]

Rat Unchanged NR Taz knock-out None C6 glioma cells [74]

Yeast Unchanged NR Δtaz1 knock-out None S. cerevisiae [75]

In vivo organs

Human NR Up* BTHS (n = 6-14) patients NR Adult, juvenile hearts [8]

Human NR Down* BTHS (n = 6-14) patients NR Adult, juvenile calf muscle [8]

Mouse Unchanged Unchanged TazD57H knock-in Mutant Taz present Juvenile ventricles [42]

Mouse Down Up TazD57H knock-in Mutant Taz present Adult ventricles [42]

NR: Not reported; wt: wild-type; *Calculated from PCr/ATP ratio in vivo.

BTHS patients
Given there is only a small number of BTHS patients, the difficulty in obtaining tissue samples from 
patients with growth insufficiency, and the high incidence of stillbirths and prenatal loss that are associated 
with BTHS[80], it is not surprising there are no direct measures of the energetic state in heart or skeletal 
muscle of BTHS patients. However, non-invasive MRS has been used to measure PCr and Pi in heart and 
skeletal muscle[8,81]. This technique does not provide absolute quantification; instead, ADP and Pi are 
calculated using the CK equilibrium constant[14], assuming that ATP content is normal. In the hearts of both 
children and adults with BTHS, the [PCr]/[ATP] ratio is lower, suggesting that the ADP/ATP ratio is 
increased, i.e., a worse energetic state[8,81]. In resting skeletal muscle, in children (and a trend in adults), the 
relative [PCr]/[ATP] was greater, suggesting that the ADP/ATP ratio is decreased, i.e., an improved 
energetic state[8]. The finding of opposite directional changes in the ADP/ATP ratio in heart and skeletal 
muscle of the same BTHS patients supports the notion that loss of cardiolipin does not result in a 
predictable change in energetic state. Instead, it depends on other factors influencing cellular energetics, 
such as substrate supply, tissue type, oxygenation, and energy demand (e.g., muscle contractions).

Clinically, this might be important given the recent targeting of BTHS mitochondria with elamipretide[82]. It 
has been shown that in vivo mitochondrial ATP production is improved in older adult skeletal muscle after 
a single dose of elamipretide in a randomized trial[83]. Elamipretide, an aromatic, cationic tetrapeptide, 
works by localizing to the inner membrane, where it binds to cardiolipin to enhance membrane stability and 
ATP synthesis in several organs, including the heart[84]. Encouraging clinical results observed that 
elamipretide increases mitochondrial respiration, improves electron transport chain function and ATP 
production, and reduces pathogenic ROS production. Currently, it is unclear whether functional benefit is 
achieved through an improvement of ATP or ADP/ATP ratio, an interruption of damaging oxidative stress, 
or other unidentified factors. Since elamipretide binds to and stabilizes cardiolipin, it would be intriguing to 
test whether elamipretide may function through other mechanisms by comparing treatment in the patient-
tailored point mutant TazD75H knock-in[42] versus a TazKO knock-out[77] mice. Taken together, further studies 
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are required to determine the effect of cardiolipin loss on the energetic state in the muscles of individuals 
with BTHS. While ATP levels are decreased in some instances, it does seem clear from cell models that 
despite a well-described and severe decrement in maximal mitochondrial oxygen consumption/ATP 
generating capacity when cardiolipin is reduced, ATP depletion or a decrease in the energetic state is not 
obligatory in BTHS. Therefore, despite ongoing pathology, a near-normal energetic status may be 
maintained, likely due to cellular compensations such as an increase in mitochondrial number or alternative 
pathways. Of course, this assumes that some basal rate of ATP production can be maintained, as if ATP 
production is too low to meet basal ATP needs, then ATP levels will rapidly decrease, and the cell will die.

ENERGETIC STATE IN OTHER MITOCHONDRIOPATHIES
To determine whether the lack of a consistent link between mitochondrial ATP production capacity and 
cellular ATP content is unique to loss of cardiolipin, we investigated whether other models of 
mitochondriopathies showed changes in cellular ATP content. Induced pluripotent stem cell (iPSC)-derived 
neurons from patients with DNA polymerase gamma, catalytic subunit (POLG)-related mitochondrial DNA 
depletion syndrome exhibit decreased mitochondrial content and ATP[85]. However, in McArdle’s disease 
patients with different defects in mitochondrial DNA, ATP levels were not different in skeletal muscle[86]. In 
a mouse model of Succinate-CoA ligase ADP-forming subunit beta (an enzyme of the TCA cycle) deficiency, 
which results in muscle atrophy and muscle weakness in a subset of skeletal muscles, ATP, ADP, and AMP 
content are normal in those muscles[87]. In cell models with pathogenic mitochondrial DNA mutations in 
ATP synthase or mitochondrial-null cells, cytosolic levels of ATP measured by luciferase constructs were no 
different from wild-type cells[88]. Therefore, while impaired OxPhos is an important mediator of ATP 
production, it is not the sole determinant of steady-state ATP content.

OUTLOOK
BTHS is a devastating genetic condition caused by mutations in TAFAZZIN, which result in limited 
capacity for mitochondria to produce ATP from ADP. ATP content varies depending on the energetic state 
of the cell, and the specific cell types and organs being examined, as well as temporal disease progression. 
Therefore, direct organ-specific measures of ATP are critically important. Many cell models of BTHS and 
cells from patients with BTHS demonstrate a decrease in relative ATP amount, but others reveal an increase 
or no change. Unfortunately, most of these studies do not provide ADP measures, which makes it 
impossible to determine whether the free energy of ATP has indeed been changed or whether the cell/tissue 
has undergone a phenotypic change that has remodeled the entire adenine nucleotide pool. Therefore, 
measures of ATP are required, but alone are not sufficient to fully understand the energetic state and thus 
may limit sweeping interpretations. Further, BTHS and other mitochondrial myopathies are not necessarily 
characterized by ATP depletion. It is recommended that a more comprehensive approach be used with 
simultaneous measures of ATP, ADP, and AMP.
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