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Abstract
A novel optimal trajectory tracking scheme is introduced for nonlinear continuous-time systems in strict feedback
form with uncertain dynamics by using neural networks (NNs). The method employs an actor-critic-based NN back-
stepping technique for minimizing a discounted value function along with an identifier to approximate unknown sys-
tem dynamics that are expressed in augmented form. Novel online weight update laws for the actor and critic NNs
are derived by using both the NN identifier and Hamilton-Jacobi-Bellman residual error. A new continual lifelong
learning technique utilizing the Fisher InformationMatrix via Hamilton-Jacobi-Bellman residual error is introduced to
obtain the significance of weights in an online mode to overcome the issue of catastrophic forgetting for NNs, and
closed-loop stability is analyzed and demonstrated. The effectiveness of the proposedmethod is shown in simulation
by contrasting the proposed with a recent method from the literature on an underactuated unmanned aerial vehicle,
covering both its translational and attitude dynamics.

Keywords: Continual lifelong learning, optimal control, neural networks, unmanned aerial vehicles, strict-feedback
systems

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.comengsys.com

https://creativecommons.org/licenses/by/4.0/
www.comengsys.com
http://crossmark.crossref.org/dialog/?doi=10.20517/ces.2023.35&domain=pdf
OAE
图章



Page 2 of 25 Ganie et al. Complex Eng Syst 2024;4:4 I http://dx.doi.org/10.20517/ces.2023.35

1. INTRODUCTION
Optimal control of nonlinear dynamical systems with known and uncertain dynamics is an important field of
study due to numerous practical applications. Traditional optimal controlmethods [1,2] for nonlinear continuous-
time (CT) systems with known dynamics often require the solution to a partial differential equation, referred
to as Hamilton-Jacobi-Bellman (HJB) equation, which cannot be solved analytically. To address this challenge,
actor-critic designs (ACDs) combined with approximate dynamic programming (ADP) have been proposed
as an online method [3,4]. Numerous optimal adaptive control (OAC) techniques for nonlinear CT systems
using strict-feedback structure have emerged, leveraging backstepping design as outlined in [5,6]. These ap-
proaches, however, require predefined knowledge of the system dynamics. In real-world industrial settings,
where system dynamics might be partially or completely unknown, the application of neural network (NN)-
based optimal tracking for uncertain nonlinear CT systems in strict feedback form has been demonstrated
in [5,7], utilizing the policy/value iterations associated with ADP. However, these policy/value iteration meth-
ods often require an extensive number of iterations within each sampling period to solve the HJB equation
and ascertain the optimal control input, leading to a significant computational challenge.

The optimal trajectory tracking of nonlinear CT systems involves obtaining a time-varying feedforward term
to ensure precise tracking and a feedback term to stabilize the system dynamics. Recent optimal tracking ef-
forts [7,8], have utilized a backstepping-based approach with completely known or partially unknown system
dynamics, but the design of feedforward term while minimizing a cost function has not been addressed. In-
stead, a linear term is used to design the control input. A more recent study [8,9] employed a positive function
for obtaining simple weight update laws of the actor and critic NN, which also relaxes the persistency of exci-
tation (PE) condition. However, finding such a function for the time-varying trajectory tracking problem of
a nonlinear CT system will be challenging by using an explicit time-dependent value function and HJB equa-
tion at each stage of backstepping design since the Hamiltonian is nonzero along the optimal trajectory [10]. In
simplified and optimized backstepping control schemes were developed for a class of nonlinear strict feedback
systems [8,11,12]. These approaches are different from the one proposed in [5]. However, they either require com-
plete knowledge of the system dynamics or do not assume that the system dynamics are completely unknown.

Moreover, all control techniques rooted in NN-based learning, whether aimed at regulation or tracking, rou-
tinely face the issues of catastrophic forgetting [13]. This is understood as the system’s ability to lose previously
acquired knowledge while assimilating new information [13,14]. Continual lifelong learning (CLL) is conceived
as the sustained ability of a nonlinear system to acquire, assimilate, and retain knowledge over prolonged pe-
riods without the interference of catastrophic forgetting. This concept is particularly critical when delving
into the realm of online NN control strategies for nonlinear CT systems, as these systems are often tasked
with navigating and managing complex processes within dynamic and varying environments and conditions.
Nonetheless, the lifelong learning (LL) methodologies shown in [13,15] operate in an offline mode and have
not been applied to real-time NN control scenarios yet. This scenario offers a promising direction to leverage
the advantage of LL in online control systems, addressing catastrophic forgetting and thus enhancing the ef-
ficacy of the control system progressively. Implementing LL-oriented strategies in online NN control enables
persistent learning and adaptation without discarding prior knowledge, thereby improving its overall perfor-
mance. By developing an LL-based NN trajectory tracking scheme, it is possible to continuously learn and
track trajectories of interest without losing information about previous tasks.

This paper presents an optimal backstepping control approach that incorporates reinforcement learning (RL)
to design the controller. The proposed method utilizes an augmented system to address the tracking problem,
incorporating both feedforward and feedback controls, which sets it apart from prior work such as [8,16]. This
approach uses a trajectory generator to generate the trajectories and hence deals with the non-stationary condi-
tion in the HJB equation that arises in optimal tracking problems due to the time-varying reference trajectory.
In addition, the proposed weight update laws are direct error driven based, obtained using Hamiltonian and
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control input error, in contrast to where the weight update laws are obtained using some positive functions [8,16].
Furthermore, the control scheme incorporates an identifier where the approximation error is bounded above
by system states to approximate the unknown system dynamics, as opposed to prior work, such as [8,16], where
the system dynamics are either completely known or partially known. Additionally, the utilization of an HJB
equation at each step of the backstepping process is intended to ensure that the entire sequence of steps is
optimized.

The paper also examines the impacts of LL and catastrophic forgetting on control systems and proposes strate-
gies for addressing these challenges in control system-based applications. Specifically, the proposed method
employs a weight velocity attenuation (WVA)-based LL scheme in an online manner, in contrast to prior work,
such as [13,15], which utilizes offline learning. Additionally, the proposed method demonstrates the stability of
the LL scheme via Lyapunov analysis in contrast to offline-based learning [13,15], where the weight convergence
is not addressed. To validate the effectiveness of the proposed method, an unmanned aerial vehicle (UAV)
application is considered, and the proposed method is contrasted with the existing approach. Lyapunov sta-
bility shows the uniform ultimate boundedness (UUB) of the overall closed-loop continual lifelong RL (LRL)
scheme.

The contributions include

(1) A novel optimal trajectory tracking control formulation is presented, utilizing an augmented system ap-
proach for nonlinear strict-feedback systems within an ADP-based framework, offering a novel perspective.

(2) An NN-based identifier is employed, wherein the reconstruction error is presumed to be upper-bounded
by the norm of the state vector, providing an enhanced approximation of the system dynamics. The newweight
update laws are introduced, incorporatingHamiltonian and theNN identifier within an actor-critic framework
at each step of the backstepping process.

(3) An online LL method is developed in the critic NN weight update law, mitigating both catastrophic forget-
ting and gradient explosion, with the significance of weights for NN layers obtained using Fisher Information
Matrix (FIM) determined by the Bellman error, as opposed to offline LL-based methods with targets.

(4) Lyapunov stability analysis is undertaken for the entire closed-loop tracking system, involving the identifier
NN and the LL-based actor-critic NN framework to show the UUB of the closed-loop system.

2.CONTINUAL LIFELONG OPTIMAL CONTROL FORMULATION
In this section, we provide the problem formulation and the development of our proposed LRL approach for
uncertain nonlinear CT systems in strict feedback form.

2.1 System description
Consider the following strict feedback system

¤𝑥1(𝑡) = 𝑓1 (𝑥1) + 𝑔1(𝑥1)𝑥2,

¤𝑥2(𝑡) = 𝑓2 (𝑥2) + 𝑔2(𝑥2)𝑢,
(1)

where 𝑥2(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡)]> ∈ R2 is the system state, 𝑢 ∈ R is the control input, and 𝑓𝑖 (.) , 𝑔𝑖 (.), 𝑖 = 1, 2
are unknown yet Lipschitz continuous functions on Ω𝑥 and satisfying 𝑓𝑖 (0) = 0. The standard following
assumptions are stated to proceed.

Assumption 1 ( [17]) The nonlinear CT system is controllable and observable. In addition, the control coefficient
matrix satisfies ‖𝑔𝑖 (.)‖ ≤ 𝑔𝑖𝑀 , where 𝑔𝑖𝑀 is an unknown positive constant.
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Assumption 2 ( [4]) Thestate vector is consideredmeasurable. The desired trajectory 𝜉𝑟 ∈ R is bounded, and there
exists a Lipschitz continuous command generator function ℎ𝑑 (𝜉𝑟 (𝑡)) such that ¤𝜉𝑟 (𝑡) = ℎ𝑑 (𝜉𝑟 (𝑡)) and ℎ𝑑 (0) = 0.

Next, the LRL control design is introduced. The goal of the LRL control scheme is to achieve satisfactory
tracking and maintain the boundedness of all closed-loop system signals while minimizing the control effort
and addressing the issue of catastrophic forgetting.

The design of the control system begins by implementing an optimal backstepping approach using augmented
system-based actor-critic architecture and then using an online LL to mitigate catastrophic forgetting.

2.2 Optimal backstepping control
To develop optimal control using the backstepping technique, first, a new augmented system is expressed in
terms of tracking error as follows. Define the tracking error as 𝑒𝑡𝑟1(𝑡) = 𝑥1(𝑡)−𝜉𝑟 (𝑡). Taking the time derivative
and using the value of ¤𝑥1 to obtain

¤𝑒𝑡𝑟1(𝑡) = 𝑓1(𝑥1) + 𝑔1(𝑥1)𝑥2 − ℎ𝑑 (𝜉𝑟 (𝑡)), (2)

where 𝑥2(𝑡) is the virtual control.

In order to get both the feedforward and feedback part of the controller, the tracking problem is changed to a
regulation problem by defining a new augmented state as 𝑧1 =

[
𝑒>𝑡𝑟1 𝜉>𝑟

]>. Then, we can write

¤𝑧1(𝑡) = F𝑠1(𝑧1) + G𝑠1(𝑧1)𝛼1, (3)

where F𝑠1(𝑧1) =
[
𝑓1 (𝑥1) − ℎ𝑑 (𝜉𝑟 (𝑡))

ℎ𝑑 (𝜉𝑟 (𝑡))

]
and G𝑠1(𝑧1) =

[
𝑔1(𝑥1)

0

]
, with 𝑧1(0) =

[
𝑒>𝑡𝑟1(0) 𝜉>𝑟 (0)

]> and 𝛼1

is virtual control. From Assumption 1, it follows that 0 < ‖G𝑠𝑖 (.)‖ ≤ 𝐺̄𝑖 , where 𝐺̄𝑖 > 0 for 𝑖 = 1, 2. The design
is presented in two steps.

Step 1: For the first backstepping step, let 𝛼1 and 𝛼∗1 be the virtual and optimal virtual control inputs, respec-
tively. The optimal performance index function 𝐽∗1 (𝑧1) is defined as

𝐽∗1 (𝑧1) = min
𝛼1∈Ψ(Ω𝑧1)

(∫ ∞

𝑡
𝑒−𝛾1 (𝑠−𝑡)ℎ1 (𝑧1, 𝛼1) 𝑑𝑠

)
=
∫ ∞

𝑡
𝑒−𝛾1 (𝑠−𝑡)ℎ1

(
𝑧1, 𝛼

∗
1
)
𝑑𝑠, (4)

whereΨ (Ω𝑧1) denotes the set of admissible control policies over a compact setΩ𝑧1, 𝐽1(𝑧1) =
(∫ ∞
𝑡
𝑒−𝛾1 (𝑠−𝑡)ℎ1 (𝑧1, 𝛼1) 𝑑𝑠

)
,

and ℎ1(𝑧1, 𝛼1) = 𝑧1(𝑠)>𝑞1𝑧1(𝑠) + 𝛼1(𝑧1)>𝑟1𝛼1(𝑧1) with , 𝑞1 is a positive definite, 𝑟1 > 0, 𝛾1 is the discount
factor, 𝛾1 > 0.

Remark 1 Generally, addressing trajectory tracking control problems poses considerable challenges, particularly
when dealing with a system characterized by nonlinear dynamics and a trajectory that evolves over time. In such
instances, a prevalent approach is to employ a discounted cost function, denoted as (4), to render the cost index,
𝐽∗1 , finite. The control input, consisting of both feedforward and feedback components, is obtained simultaneously
by minimizing the performance function (4) along the trajectories of the augmented system (3). In addition, the
performance function is not explicitly dependent on time.

By taking the time derivative on both sides of the optimal performance function (4), the tracking Bellman
equation is obtained as
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¤𝐽∗1 (𝑧1) =
∫ ∞

𝑡

𝜕

𝜕𝑡
𝑒−𝛾1 (𝑠−𝑡)ℎ1

(
𝑧1, 𝛼

∗
1
)
)𝑑𝑠 − ℎ1(𝑧1, 𝛼∗1) (5)

By noting that the first term of (5) is 𝛾1𝐽1, therefore, (5) can be rewritten as

ℎ1
(
𝑧1, 𝛼

∗
1
)
+
𝑑𝐽∗>1 (𝑧1)
𝑑𝑧1

¤𝑧1(𝑡) − 𝛾1𝐽
∗
1 = 0. (6)

Therefore, the tracking HJB equation is generated as

𝐻1

(
𝑧1, 𝛼

∗
1,
𝑑𝐽∗1
𝑑𝑧1

)
= ℎ1

(
𝑧1, 𝛼

∗
1
)
+
𝑑𝐽∗>1 (𝑧1)
𝑑𝑧1

¤𝑧1(𝑡) − 𝛾1𝐽
∗
1

=
𝑑𝐽∗>1 (𝑧1)
𝑑𝑧1

(
F𝑠1 (𝑧1) + G𝑠1(𝑧1)𝛼∗1

)
+𝑄1 + 𝛼̄1 − 𝛾1𝐽

∗
1 = 0.

(7)

where𝐻1

(
𝑧1, 𝛼

∗
1,

𝑑𝐽∗1
𝑑𝑧1

)
is theHamiltonian function for the first step,𝑄1 = 𝑧1(𝑠)>𝑞1𝑧1(𝑠), 𝛼̄1 = 𝛼∗1 (𝑧1)>𝑟1𝛼

∗
1 (𝑧1).

The optimal control solution 𝛼∗1 can be obtained by solving 𝜕𝐻1
𝜕𝛼∗1

= 0. This equation represents the condition
for finding the optimal control that minimizes the performance index and satisfies the HJB equation as

𝛼∗1 = −1
2
𝑟−1

1 G>
𝑠1(𝑧1)

𝑑𝐽∗1 (𝑧1)
𝑑𝑧1

. (8)

It is well known that NNs have universal function approximation abilities and can approximate a nonlinear
continuous functionH(𝑧) : R𝑛 → R𝑚 on a compact setΩ𝑧 asH(𝑧) = 𝑊>𝜎(𝑧), where𝑊 ∈ R𝑝×𝑚 is the weight
matrix, 𝑝 is the number of neurons, and 𝜎(𝑧) is the basis function vector.

Since 𝐽∗1 is unknown, an NN and its derivative will be used to approximate it on a compact set as

𝐽∗1 = 𝑊∗>
𝑐1 𝜎𝑐1(𝑧1) + 𝜀𝑐1(𝑧1) (9)

𝑑𝐽∗1 (𝑧1)
𝑑𝑧1

= ∇𝜎>
𝑐1(𝑧1)𝑊∗

𝑐1 + ∇𝜀>𝑐1(𝑧1), (10)

where𝑊∗
𝑐1, 𝜎𝑐1, and 𝜀𝑐1 are the target weights, basis function vector, and the NN reconstruction error, respec-

tively, ∇𝜎𝑐1 and∇𝜀𝑐1 are the partial derivative of𝜎𝑐1 and 𝜀𝑐1, respectively, with respect to input 𝑧1. Substituting
(8) and (9) into the HJB equation (6) to get

𝐻∗
1 =

1
4
(𝑊∗>

𝑐1 ∇𝜎𝑐1 + ∇𝜀𝑐1) ∧1 (∇𝜎>
𝑐1𝑊

∗
𝑐1 + ∇𝜀>𝑐1) − 𝛾1 (𝑊∗>

𝑐1 𝜎𝑐1 (𝑧1) + 𝜀𝑐1)

+
(
𝑊∗>

𝑐1 ∇𝜎𝑐1 (𝑧1) + ∇𝜀𝑐1
)
×
(
F𝑠1 (𝑧1) − ( 1

2
∧1 (∇𝜎>

𝑐1 (𝑧1)𝑊∗
𝑐1 + ∇𝜀>𝑐1)

)
+𝑄1,

(11)

where optimal Hamiltonian function 𝐻∗
1 = 𝐻1

(
𝑧1, 𝛼

∗
1,

𝑑𝐽∗1
𝑑𝑧1

)
, and ∧1 = G𝑠1𝑟−1

1 G>
𝑠1. Since the target weight

matrix,𝑊∗
𝑐1, is unknown, an actor-critic NN and its derivative will be designed to find the solution as follows

𝐽1 = 𝑊̂>
𝑐1(𝑡)𝜎𝑐1 (𝑧1)

𝑑𝐽1(𝑧1)
𝑑𝑧1

= ∇𝜎>
𝑐1(𝑧1)𝑊̂𝑐1,

(12)
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where 𝑊̂𝑐1 is the estimate of the weight matrices for critic NN, and 𝜎𝑐1(𝑧1) is the basis function vector. Next,
using (12), we can rewrite (11) as

𝐻̂1 =
1
4
𝑊̂>

𝑐1∇𝜎𝑐1∧̂1∇𝜎>
𝑐1𝑊̂𝑐1 − 𝛾1𝑊̂

>
𝑐1𝜎𝑐1 (𝑧1) +

(
𝑊̂>

𝑐1∇𝜎𝑐1
) (

F̂𝑠1 (𝑧1) − ( 1
2
∧̂1∇𝜎>

𝑐1𝑊̂𝑐1 )
)
+𝑄1, (13)

where the estimated Hamiltonian function 𝐻̂1 = 𝐻1

(
𝑧1, 𝛼̂1,

𝑑𝐽1
𝑑𝑧1

)
, ∧̂1 = Ĝ𝑠1𝑟−1

1 Ĝ>
𝑠1 and F̂𝑠1(𝑧1), Ĝ𝑠1 are the

estimate of augmented internal dynamics and input dynamics to be generated in the subsequent section by
using an NN identifier. From (8), 𝛼1 is unknown, continuous on a compact set Ω𝑧1, and an NN is used to
approximate it over a compact set, as shown in the subsequent steps. We can write

−1
2
𝑟−1

1 G>
𝑠1(𝑧1)

𝑑𝐽∗1 (𝑧1)
𝑑𝑧1

= −1
2
V∗

1 (𝑧1), (14)

where V∗
1 (𝑧1) = 𝑟−1

1 G>
𝑠1(𝑧1)

𝑑𝐽∗1 (𝑧1)
𝑑𝑧1

. where G𝑠1(𝑧1) ∈ R2, and 𝑑𝐽∗1 (𝑧1)
𝑑𝑧1

∈ R2 which makes V∗
1 (𝑧1) a scaler. To

achieve the tracking, decompose the termV∗
1 into following two parts

V∗
1 = 2𝛽1𝑧1 + V0

1 , (15)

whereV0
1 = −2𝛽1𝑧1 + V∗

1 , where 𝛽1 is a [𝛽1, 0] i.e 𝛽1 ∈ R1×2, 𝛽1 > 0, 𝑧1 ∈ R2. The optimal virtual controller
𝛼∗1 can be written as

𝛼∗1 = −𝛽1𝑧1 −
1
2
V0

1 . (16)

Therefore,V0
1 can be approximated using NN,

𝑟−1
1 G>

𝑠1(𝑧1)
𝑑𝐽∗1 (𝑧1)
𝑑𝑧1

= 2𝛽1𝑧1 + (𝑊∗>
𝑎1 𝜎𝑎1 (𝑧1) + 𝜀1), (17)

where𝑊∗
𝑎1 ∈ R𝑝×𝑚 are the target bounded unknownweights, and 𝜀1 ∈ R𝑚 denotes the function reconstruction

error; 𝜎𝑎1(𝑧1) with 𝑧1 ∈ Ω𝑧1 is the basis function vector. Hence, the virtual controller (8) can be written as

𝛼∗1 = −𝛽1𝑧1 −
1
2
(𝑊∗>

𝑎1 𝜎𝑎1 (𝑧1) + 𝜀1 (𝑧1)), (18)

where𝑊∗
𝑎1 ∈ R𝑝×𝑚 are the target bounded unknownweights, and 𝜀1 ∈ R𝑚 denotes the function reconstruction

error; 𝜎𝑎1(𝑧1) with 𝑧1 ∈ Ω𝑧1 is the basis function vector. Since the target weights are unknown, the actor NN
will be designed to estimate the optimal virtual control as

𝛼̂1 = −𝛽1𝑧1 −
1
2
𝑊̂>
𝑎1𝜎𝑎1 (𝑧1) , (19)

where 𝑊̂𝑎1, 𝜎𝑎1(𝑧1), 𝑧1 ∈ Ω𝑧1 are the estimated weights and the basis function of actor NN. According to the
HJB equation (11) and its approximation (13), define the HJB residual error 𝑒1(𝑡) as

𝑒1(𝑡) = 𝐻̂1 − 𝐻∗
1 = 𝐻̂1, (20)

since the optimal Hamiltonian value is zero. Notice that the estimated Hamiltonian, 𝐻̂1, requires the estimate
of unknown dynamics from the identifier. The second step is discussed next.

http://dx.doi.org/10.20517/ces.2023.35
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Remark 2 The subsequent section will leverage the HJB residual error (20) to formulate the weight update laws
for the critic NN. Additionally, the control input error 𝑢𝑒 , delineated in Lemma 1, will facilitate the derivation of
the actor NN weight update laws.

Employing the HJB residual error and the control input error for formulating the weight update laws is pivotal
as it enables efficient optimization of the weights in NN. This methodology ensures more accurate and reliable
learning processes, allowing the network to better approximate the desired functions or policies, thereby enhancing
the overall performance and robustness of the system.

Step 2: This is the second step, and the actual controller 𝑢̂ will be derived. Define 𝑒𝑡𝑟2(𝑡) = 𝑥2(𝑡) − 𝛼̂1; then
using (1), the error dynamics are written as

¤𝑒𝑡𝑟2(𝑡) = 𝑓2(𝑥2) + 𝑔2(𝑥2)𝑢 − ¤̂𝛼1. (21)

Since 𝛼̂1 = −𝛽1𝑧1 − 𝑊̂>
𝑎1𝜎𝑧 , on using the values from step 1, ¤̂𝛼1 can be calculated by using a virtual generator

ℎ𝑑 (𝛼̂1). Let 𝑧2 = [𝑒>𝑡𝑟2, 𝛼̂>1 ]> ∈ R2. One can write

¤𝑧2(𝑡) = F𝑠2(𝑧2) + G𝑠2(𝑧2)𝑢, (22)

whereF𝑠2(𝑧2) =
[
𝑓2(𝑥2) − ℎ𝑑 (𝛼̂1)

ℎ𝑑 (𝛼̂1)

]
andG𝑠2(𝑧2) =

[
𝑔2(𝑥2)

0

]
. Letting 𝑢∗ be the optimal control, the optimal

integral cost function is defined as

𝐽∗2 (𝑧2) = min
𝑢∈Ψ(Ω𝑧2)

(∫ ∞

𝑡
𝑒−𝛾2 (𝑠−𝑡)ℎ2 (𝑧2(𝑠), 𝑢 (𝑧2)) 𝑑𝑠

)
=
∫ ∞

𝑡
𝑒−𝛾2 (𝑠−𝑡)ℎ2 (𝑧2(𝑠), 𝑢∗ (𝑧2)) 𝑑𝑠, (23)

where ℎ2 = 𝑧2(𝑠)>𝑞2𝑧2(𝑠) + 𝑢∗(𝑧2)>𝑟2𝑢
∗(𝑧2) is the cost function. The user-defined penalties, 𝑞2 and 𝑟2, are

positive definite and 𝛾2 > 0.

The HJB equation for step 2 is given by

𝐻2

(
𝑧2, 𝑢

∗,
𝑑𝐽∗2
𝑑𝑧2

)
= 𝑄2 + 𝑢̄ +

𝑑𝐽∗>2
𝑑𝑧2

(F𝑠2 (𝑧2) + G𝑠2(𝑧2)𝑢∗) − 𝛾2𝐽
∗
2 = 0, (24)

where𝐻2

(
𝑧2, 𝑢

∗,
𝑑𝐽∗2
𝑑𝑧2

)
is theHamiltonian function for the second step,𝑄2 = 𝑧2(𝑠)>𝑞2𝑧2(𝑠), 𝑢̄ = 𝑢∗(𝑧2)>𝑟2𝑢

∗(𝑧2).
Similar to previous steps, solving (𝜕𝐻2/𝜕𝑢∗) = 0 yields

𝑢∗ = −1
2
𝑟−1

2 G>
𝑠2(𝑧2)

𝑑𝐽∗2
𝑑𝑧2

. (25)

Since 𝐽∗2 is unknown, an NN will be used to approximate it on a compact set given by

𝐽∗2 = 𝑊∗>
𝑐2 𝜎𝑐2(𝑧2) + 𝜀𝑐2(𝑧2). (26)

Therefore, 𝑑𝐽
∗
2 (𝑧2)
𝑑𝑧2

= ∇𝜎>
𝑐2(𝑧2)𝑊∗

𝑐2 + ∇𝜀>𝑐2, where𝑊∗
𝑐2, 𝜎𝑐2, 𝜀𝑐2 are the NN weights, activation function, and the

reconstruction error, respectively. Substituting (25) and (26) into the HJB equation (24) gets

𝐻∗
2 =

1
4
(𝑊∗>

𝑐2 ∇𝜎𝑐2 + ∇𝜀𝑐2) ∧2 (∇𝜎>
𝑐2𝑊

∗
𝑐2 + ∇𝜀>𝑐2) +𝑄2 − 𝛾2 (𝑊∗>

𝑐2 𝜎𝑐2 (𝑧2) + 𝜀𝑐2)

+
(
𝑊∗>

𝑐2 ∇𝜎𝑐2 (𝑧2) + ∇𝜀𝑐2
) (

F𝑠2 (𝑧2) −
1
2
∧2 (∇𝜎>

𝑐2 (𝑧2)𝑊∗
𝑐2 + ∇𝜀>𝑐2)

)
,

(27)

http://dx.doi.org/10.20517/ces.2023.35


Page 8 of 25 Ganie et al. Complex Eng Syst 2024;4:4 I http://dx.doi.org/10.20517/ces.2023.35

where 𝐻∗
2 = 𝐻2

(
𝑧2, 𝛼

∗
2,

𝑑𝐽∗2
𝑑𝑧2

)
is the optimal Hamiltonian for the second step, ∧2 = G𝑠2𝑟−1

2 G>
𝑠2. Since the target

weight matrix,𝑊∗
𝑐2, is unknown, an actor-critic NN will be designed to find the solution as follows

𝐽2 = 𝑊̂>
𝑐2(𝑡)𝜎𝑐2 (𝑧2)

𝑑𝐽2(𝑧2)
𝑑𝑧2

= ∇𝜎>
𝑐2(𝑧2)𝑊̂𝑐2,

(28)

where 𝑊̂𝑐2 is the estimate of the weight matrices for critic NN, and 𝜎𝑐2(𝑧2), 𝑧2 ∈ Ω𝑧2 is the basis function
vector. Next, we can rewrite (27) as follows

𝐻̂2 =
1
4
𝑊̂>
𝑐2∇𝜎𝑐2∧̂2∇𝜎>

𝑐2𝑊̂𝑐2 +𝑄2 − 𝛾2𝑊̂
>
𝑐2𝜎𝑐2(𝑧2) +

(
𝑊̂>
𝑐2∇𝜎𝑐2

) (
F̂𝑠2(𝑧2) − ( 1

2
∧̂2∇𝜎>

𝑐2𝑊̂𝑐2 )
)
, (29)

where 𝐻̂2 = 𝐻2

(
𝑧2, 𝛼̂2,

𝑑𝐽2
𝑑𝑧2

)
is the estimated Hamiltonian, ∧̂2 = Ĝ𝑠2𝑟−1

2 Ĝ>
𝑠2 and F̂𝑠2(𝑧2), Ĝ𝑠2 are the estimate of

augmented internal and input dynamics to be generated in the subsequent section by using the NN identifier.

Since G𝑠2(𝑧2) and
𝑑𝐽∗2 (𝑧2)
𝑑𝑧2

are unknown, continuous on a compact set Ω𝑧2, an NN is used to approximate them
over a compact set, we can write

−1
2
𝑟−1

2 G>
𝑠2(𝑧2)

𝑑𝐽∗2 (𝑧2)
𝑑𝑧2

= −1
2
V∗

2 (𝑧2), (30)

whereV∗
2 (𝑧2) = 𝑟−1

2 G>
𝑠2(𝑧2)

𝑑𝐽∗2 (𝑧2)
𝑑𝑧2

. To achieve tracking, decompose the termV∗
2 into following two parts

V∗
2 = 2𝛽2𝑧2 + V0

2 , (31)

whereV0
2 = −2𝛽2𝑧2 +V∗

2 , 𝛽2 = [𝛽2, 0] i.e 𝛽2 ∈ R1×2, 𝛽2 > 0, 𝑧2 ∈ R2. The optimal controller 𝑢∗ can be written
as 𝑢∗ = −𝛽2𝑧2 − 1

2V0
2 .Therefore, we can write

𝑟−1
2

G>
𝑠2(𝑧2)

2
𝑑𝐽∗2 (𝑧2)
𝑑𝑧2

= 2𝛽2𝑧2 + (𝑊∗>
𝑎2 𝜎 (𝑧2) + 𝜀2), (32)

where𝑊∗
𝑎2 ∈ R𝑝×𝑚 are the target bounded unknownweights, and 𝜀2 ∈ R𝑚 denotes the function reconstruction

error; 𝜎(𝑧2) with 𝑧2 ∈ Ω𝑧2 is the basis function vector. Therefore, the actual controller (16) can be written as

𝑢∗ = −𝛽2𝑧2 −
1
2
(𝑊∗>

𝑎2 𝜎𝑎2 (𝑧2) + 𝜀2 (𝑧2)). (33)

Similarly, the actor NN will be designed to estimate the optimal control as

𝑢̂ = −𝛽2𝑧2 −
1
2
𝑊̂>
𝑎2𝜎𝑎2 (𝑧2) , (34)

where 𝑊̂𝑎2, 𝜎𝑎2(𝑧2), 𝑧2 ∈ Ω𝑧2 are the estimated weights and the basis function of actor NN. According to the
HJB equation (27) and its approximation (29), define the HJB residual error 𝑒2(𝑡) as follows

𝑒2(𝑡) = 𝐻̂2 − 𝐻∗
2 = 𝐻̂2, (35)

since the optimal Hamiltonian for the second step is zero, notice that the estimated Hamiltonian, 𝐻̂2, requires
the estimate of unknown dynamics from the identifier. Similar to the two steps, the proposed method can be
extended to 𝑛th order.
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Remark 3 The optimal control input can be obtained by utilizing the gradient of the optimal value function (26)
and an NN identifier. As a result, the critic NN outlined in (26) may be utilized to determine the actor input
without the need for an additional NN. However, for the purpose of simplifying the derivation of weight update
rules and subsequent stability analysis, separate NNs are employed for the actor and critic.

Next, an NN identifier will be used to approximate the unknown dynamics given by (3) and (22).

2.3 NN identifier
A single-layer NN is used to approximate both the nonlinear functions F𝑠 𝑗 and G𝑠 𝑗 where 𝑗 = 1, 2, that
govern the augmented dynamics [17]. Then, by using Ĝ𝑠 𝑗 , which is obtained from the NN identifier, the es-
timated control policy is applied to the nonlinear system. The approximations are represented as F𝑠 𝑗 (𝑧 𝑗 ) =
𝑉𝐹𝑗

>𝜎𝐹𝑗 (𝑧 𝑗 ) + 𝜀𝐹𝑗 (𝑧 𝑗 ) and G𝑠 𝑗 (𝑧 𝑗 ) = 𝑉>
𝐺 𝑗
𝜎𝐺 𝑗 (𝑧 𝑗 ) + 𝜀𝐺 𝑗 (𝑧 𝑗 ), where 𝑉𝐹𝑗 and 𝑉𝐺 𝑗 are the NN’s weight matrices,

𝜎𝐹𝑗 (𝑧 𝑗 ) and 𝜎𝐺 𝑗 (𝑧 𝑗 ) are the activation functions, and 𝜀𝐹𝑗 (𝑧 𝑗 ) and 𝜀𝐺 𝑗 (𝑧 𝑗 ) are the NN’s reconstruction errors
respectively. The estimated values of the internal dynamics and control coefficient matrix of the augmented
system are given by F̂𝑠 𝑗 (𝑧 𝑗 ) = 𝑉̂>

𝐹𝑗
𝜎𝐹𝑗 (𝑧 𝑗 ) and Ĝ𝑠 𝑗 (𝑧 𝑗 ) = 𝑉̂>

𝐺 𝑗
𝜎𝐺 𝑗 (𝑧 𝑗 ), where 𝑉̂𝐹𝑗 and 𝑉̂𝐺 𝑗 are the estimated

NN’s weight matrices. Define

¤𝑧 𝑗 (𝑡) = 𝑍>
𝑗 𝝈(𝝃 𝒋 )𝛼̄ 𝑗 + 𝜀𝐼 (𝑧 𝑗 ), (36)

where 𝛼̄ 𝑗 =
[
1, 𝛼 𝑗

]>
, is the augmented control input, 𝛼 𝑗 is given by (19), (34), 𝑍 𝑗 =

[
𝑉>
𝐹𝑗

𝑉>
𝐺 𝑗

]>
∈ R2𝑙×𝑛

represents the augmented NN identifier weights, and 𝝈(𝝃1) = diag{𝜎𝐹𝑗

(
𝑧 𝑗
)
, 𝜎𝐺 𝑗 (𝑧 𝑗 )} denotes the augmented

activation function for the NN identifier. The reconstruction error of the NN identifier, denoted by 𝜀𝐼 (𝑧 𝑗 ), is
defined as 𝜀𝐼 (𝑧 𝑗 ) = (𝜀𝐹𝑗 (𝑧 𝑗 ) + 𝜀𝐺 𝑗 (𝑧 𝑗 )𝛼 𝑗 ). Next, the following assumption is stated.

Assumption 3 ( [17]) The NN identifier is of single-layer, and its reconstruction error is bounded above such that
‖𝜀𝐼 (𝑧1)‖2 ≤ 𝑏0‖𝑧1‖2 and ‖𝑍1‖ ≤ 𝑍𝑚1 .

Remark 4 Because 𝜀𝐼 (𝑧 𝑗 ) depends on input 𝛼 𝑗 and the system state 𝑧 𝑗 (𝑡), it is assumed to be bounded above by
the norm of the state vector unlike [18], where 𝜀𝐼 (𝑧 𝑗 ) is bounded by a constant value.

Define the dynamics of the NN identifier as

¤̂𝑧 𝑗 (𝑡) = 𝑍̂>
𝑗 𝝈(𝝃 𝑗 )𝛼̄ 𝑗 + 𝐾 (𝑧 𝑗 − 𝑧 𝑗 ), (37)

where 𝑧 𝑗 (𝑡) represents the estimated augmented state vector, 𝐾 is a user defined constant gain matrix, and

𝑍̂ 𝑗 =
[
𝑉̂>
𝐹𝑗

𝑉̂>
𝐺 𝑗

]>
represents the augmented NN identifier estimated weights. The state estimation error is

defined as 𝑒𝑖 𝑗 = 𝑧 𝑗 − 𝑧 𝑗 .The weight update law for the NN identifier is given by

¤̂𝑍 𝑗 = −𝛼𝑣 𝑗 𝑍̂ 𝑗 + 𝜎(𝝃 𝑗 )𝛼̄ 𝑗𝑒>𝑖 𝑗 , (38)

where 𝛼𝑣 𝑗 > 0 is a tuning parameter.

Remark 5 The NN identifier weights are tuned by using both augmented state estimation error and the input
vector. The boundedness of the control input is needed to show the convergence of the NN identifier if proof is
shown separately, whereas this assumption is relaxed when the identifier is combined with the LRL control scheme,
as shown in the next section.

Remark 6 Since the control input error and the HJB error used to tune the actor-critic NN weights require the
system dynamics which are uncertain, the NN identifier is used to approximate the unknown dynamics of an
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augmented system. The estimated values from the identifier are used in the actor-critic weight update laws to tune
the NN weights, as shown in the subsequent section.

2.4 Actor critic NN weight tuning
In this section, the actor-critic weight update laws are obtained using the gradient descent method to the
Hamiltonian-based performance function. The following Lemma is stated.

Lemma 1 Consider a system (1), transformed system (3), NN identifier weight update laws (38), the update laws
for the critic NN (12), (26) and actor NN (19), (34). They can be written as

¤̂𝑊𝑐 𝑗 = 𝛾𝑐 𝑗 𝜓̂ 𝑗 (𝑡)
(
𝑒>𝑗 (𝑡) −

1
4
𝑊̂>
𝑐 𝑗∇𝜎𝑐 𝑗 ∧̂ 𝑗∇𝜎>

𝑐 𝑗𝑊̂𝑐 𝑗 − 𝑊̂>
𝑐 𝑗∇𝜎𝑐 𝑗 F̂𝑠 𝑗

)
− 𝜎1 𝑗𝑊̂𝑐 𝑗 (39)

¤̂𝑊𝑎 𝑗 (𝑡) = 𝛽𝑎 𝑗 (𝑆𝑎 𝑗𝑢>𝑒 𝑗 ) − 𝜎2 𝑗𝑊̂𝑎 𝑗 (40)

where 𝑗 denotes the number of steps in backstepping, 𝛾𝑐 𝑗 = 𝛽𝑐 𝑗 𝜓̂ 𝑗

‖𝜓̂ 𝑗 ‖2+1 , 𝛽𝑐 𝑗 , 𝛽 𝑗 , 𝛽𝑎 𝑗 > 0 are the learning rates, 𝑆𝑎 𝑗 =
𝜎𝑎 𝑗

(
𝑧 𝑗
)
, 𝑆𝑐 𝑗 = 𝜎𝑐 𝑗

(
𝑧 𝑗
)
, and 𝜓̂ 𝑗 (𝑡) = 𝛾 𝑗𝑆𝑐 𝑗 − ∇𝜎𝑐 𝑗 (F̂𝑠 𝑗 + Ĝ𝑠 𝑗 𝛼̂ 𝑗 ), where 𝜎1 𝑗 > 0, 𝜎2 𝑗>0 are the design constants,

𝑢𝑒 𝑗 is the error between estimated control and actual control and is given by 𝑢𝑒 𝑗 = −𝛽 𝑗 𝑧 𝑗 − 1
2𝑊̂

>
𝑎 𝑗𝜎𝑎 𝑗

(
𝑧 𝑗
)
+

1
2𝑟

−1
𝑗 Ĝ>

𝑠 𝑗
𝑑𝐽 𝑗
𝑑𝑧 𝑗

, 𝑒 𝑗 is the HJB error for each step given by (20),(35), ∧̂ 𝑗 = Ĝ𝑠 𝑗𝑟−1
𝑗 Ĝ>

𝑠 𝑗 , and F̂𝑠 𝑗 , Ĝ𝑠 𝑗 are approximated
by using NN identifier.

Proof: The weight update laws for critic NN in step 𝑗 are obtained by defining the performance function as

𝐸 𝑗 =
1
2
𝑒2
𝑗 . (41)

By using the gradient descent algorithm, the weight update law can be obtained as

¤̂𝑊𝑐 𝑗 = −
𝛽𝑐 𝑗 𝜓̂ 𝑗

(1 + 𝜓̂>
𝑗 𝜓̂ 𝑗 )

𝜕𝐸 𝑗 (𝑡)
𝜕𝑊̂𝑐 𝑗

. (42)

On simplifying (42), we will get the weight update law for critic NN, as shown in Lemma. The weight update
law for actor NN is obtained by defining the performance function as

𝐸𝑎 𝑗 =
1
2
𝑢2
𝑒 𝑗 . (43)

By using the gradient descent approach, the weight update law for an actor NN is obtained as

¤̂𝑊𝑎 𝑗 (𝑡) = −
𝜕𝐸𝑎 𝑗 (𝑡)
𝜕𝑊̂𝑎 𝑗

. (44)

On further solving and adding the stabilization terms, we will get the weight update law shown in Lemma 1.

Remark 7 . The weight update laws are obtained using the gradient descent method to the Hamiltonian-based
performance function. Theweight update equations for the critic and actor have additional terms to ensure stability
and facilitate convergence proof. The last term, known as the sigma modification term, relaxes the PE condition
needed to ensure weight convergence. It is important to note that the right-hand side terms in the weight update
equation can be measured.
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The following assumption is stated next.

Assumption 4 ( [4]) It is assumed that the ideal weights exist and are bounded over a compact set by an unknown
positive constant, such that




𝑊∗
𝑐 𝑗




 ≤ 𝑊̄𝑀1 𝑗 ,



𝑊∗

𝑎 𝑗




 ≤ 𝑊̄𝑀2 𝑗 where 𝑊̄𝑀1 𝑗 , 𝑊̄𝑀2 𝑗 are unknown constant values. The
basis function 𝜎(·), function reconstruction error 𝜀 𝑗 (·), and their derivatives with respect to their arguments are
assumed to be bounded over a compact set, with unknown bounds as ‖𝜎‖ ≤ 𝜎̄, ‖ ¤𝜎‖ ≤ ¯̄𝜎, 𝜀 𝑗 (·) ≤ 𝜀𝑚 , ¤𝜀 𝑗 (·) ≤ 𝜀𝑚 .

Next, the following theorem is stated.

Theorem 1 Consider the nonlinear system in strict-feedback form defined by (1). By using the augmented system
(3), consider the optimal virtual control (19) and actual control terms (34), along with the identifier, actor-critic
updating laws (38), (39), and (40). Further, assume that the design parameters are selected as per the conditions
stated and that Assumptions 1 through 4 hold. If the system input is PE and its initial value, 𝑢0, is admissible,
then tracking errors, augmented state 𝑧 𝑗 , the actual state 𝑥 𝑗 and NN weight estimation errors, 𝑍̃ 𝑗 = 𝑍 𝑗 − 𝑍̂ 𝑗 ,
𝑊̃𝑐 𝑗 = 𝑊𝑐 𝑗 − 𝑊̂𝑐 𝑗 , and 𝑊̃𝑎 𝑗 = 𝑊𝑎 𝑗 − 𝑊̂𝑎 𝑗 are guaranteed to be bounded. This, in turn, ensures that the actual
system output tracks the desired trajectory and estimated/actual control inputs are bounded close to their optimal
values.

Proof : See Appendix.

Remark 8 In the proposed optimal backstepping technique, the RL/ADP is employed at every step to obtain the
optimal virtual and actual control inputs. We have derived the backstepping for a two-step process; however, it
can be implemented up to 𝑛 steps using a similar procedure.

Remark 9 The sigma modification term does serve to alleviate the PE condition and assists in the process of
forgetting; however, it does not prove effective in multitasking scenarios to minimize forgetting. Subsequently, a
novel online LL strategy is presented to address the issue of catastrophic forgetting.

Next, an online regularization-based approach to LL is introduced.

2.5 Continual lifelong learning
Tomitigate the issues of catastrophic forgetting [13], a novel technique calledWVAwas proposed [15]. However,
WVA has only been used in an offline manner, which cannot be applied to NN-based online techniques.

In contrast, this study introduces a new online LL technique that can be integrated into an online NN-based
trajectory tracking control scheme by identifying and safeguarding the most critical parameters during the
optimization process. To achieve this, the proposed technique employs a performance function given by

𝐿 𝑗 (𝑊̂𝑐 𝑗 ) ≈ 𝐸𝑏 𝑗 +
𝜆 𝑗

2




𝑊̂𝑐 𝑗 − 𝑊̂∗
𝑐 𝑗 𝑝




2

Ω̄𝑘 𝑗

, (45)

where 𝐸𝑏 𝑗 is the loss function for the current task 𝐵 in step j (41), Ω̄𝑘 𝑗 = 𝑑𝑖𝑎𝑔{ Ω𝑤1
Ω𝑤1+1 . . .

Ω𝑤𝑛

Ω𝑤𝑛+1 },Ω𝑤𝑖 represents
the significance of the 𝑖-th weight, where 𝑖 = 1, . . . , 𝑛, of the NN in step 𝑗 after learning from prior tasks,
the diagonal elements of the FIM Ω̄𝑘 𝑗 , with 𝑘 denoting the task, are estimated using HJB error since targets
are unavailable in online learning, 𝜆 𝑗 is the design parameter controlling the strength of the regularization,


𝑊̂𝑐 𝑗 − 𝑊̂∗

𝑐 𝑗 𝑝





Ω̄𝑘 𝑗

= (𝑊̂𝑐 𝑗 − 𝑊̂∗
𝑐 𝑗 𝑝)Ω̄𝑘 𝑗 (𝑊̂𝑐 𝑗 − 𝑊̂∗

𝑐 𝑗 𝑝)>, 𝑊̂∗
𝑐 𝑗 𝑝 is the optimized bounded weight vector of the

previous task, and 𝑊̂𝑐 𝑗 is the weight vector of the current task that needs to be optimized. The FIM for each
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task is calculated by defining the log-likelihood function as:

ℓ(𝑊̂𝑐 𝑗 𝑝 , 𝑧 𝑗 𝑝) = log 𝑝(𝑒 𝑗 𝑝 |𝑊̂𝑐 𝑗 𝑝 , 𝑧 𝑗 𝑝), (46)

where 𝑒 𝑗 𝑝 represents the HJB residual error, as defined by (20) and (35) from the previous task. The term
𝑝(𝑒 𝑗 𝑝 |𝑊̂𝑐 𝑗 𝑝 , 𝑧 𝑗 𝑝) denotes the probability density function of the HJB error, given the input 𝑧 𝑗 𝑝 from the previ-
ous task and the weights 𝑊̂𝑐 𝑗 𝑝 at step 𝑗 from the previous task. Calculate the Jacobian matrix as

𝐽 (𝑊̂𝑐 𝑗 𝑝 , 𝑧 𝑗 𝑝) =
𝜕ℓ(𝑊̂𝑐 𝑗 𝑝 , 𝑧 𝑗 𝑝)

𝜕𝑊̂𝑐 𝑗 𝑝

, (47)

where 𝜕ℓ(𝑊̂𝑐 𝑗 𝑝 ,𝑧 𝑗 𝑝)
𝜕𝑊̂𝑐 𝑗 𝑝

denotes the partial derivative of the log-likelihood function with respect to the weights from
the previous task. Therefore, the estimation of FIM is obtained as

Ω̄𝑘 𝑗 =
1

𝑡1 − 𝑡0

∫ 𝑡1

𝑡0

𝐽
(
𝑊̂𝑐 𝑗 𝑝 , 𝑧 𝑗 𝑝

)
𝐽
(
𝑊̂𝑐 𝑗 𝑝 , 𝑧 𝑗 𝑝

)>
𝑑𝑡, (48)

where 𝑡0 denotes the task start time, 𝑡1 denotes the task end time. The elements of the FIM illustrate the
extent of information concerning the HJB error that is conveyed by every weight within the network. Sure!
Here’s a clearer and more structured way to convey the information. For the first task, the FIM is zero. When
estimating the FIM for the second task using data from the first task, the estimate remains bounded. This
bounded behavior is due to the fact that the closed-loop system associated with task 1 is also bounded, as
demonstrated in Theorem 1.

Subsequently, leveraging normalized gradient descent allows us to formulate an additional term in the critic
weight update law. This term is derived as follows

− 𝜕

𝜕𝑊̂𝑐 𝑗

(𝐿 𝑗 (𝑊̂𝑐 𝑗 )) = −
𝜕𝐸 𝑗 (𝑡)
𝜕𝑊̂𝑐 𝑗

− 𝜆 𝑗 Ω̄𝑘 𝑗 (𝑊̂𝑐 𝑗 − 𝑊̂∗
𝑐 𝑗 𝑝). (49)

For LL, the terms from (49) are combined with the terms from the previously defined update law that is given
in Theorem 1. Next, the following theorem is stated.

Theorem 2 Consider the hypothesis stated inTheorem 1, and let Assumptions 1 to 4 hold, with the LRL critic NN
tuning law for j step optimal backstepping, given by

¤̂𝑊𝑐 𝑗 = 𝛾𝑐 𝑗 𝜓̂ 𝑗 (𝑡)
(
𝑒 𝑗 (𝑡) −

1
4
𝑊̂>
𝑐 𝑗∇𝜎𝑐 𝑗 ∧̂ 𝑗∇𝜎>

𝑐 𝑗𝑊̂𝑐 𝑗 − 𝑊̂>
𝑐 𝑗∇𝜎𝑐 𝑗 F̂𝑠 𝑗

)
− 𝜎𝑗1𝑊̂𝑐 𝑗 − 𝛼 𝑗𝜆 𝑗 Ω̄𝑘 𝑗 (𝑊̂𝑐 𝑗 − 𝑊̂∗

𝑐 𝑗 𝑝), (50)

where j denotes the number of steps in backstepping, 𝜆 𝑗 is the design parameter, and 𝛼 𝑗 are the NN learning rates;
then, 𝑊̃𝑐 𝑗 and all closed-loop signals, including those in Theorem 1, are UUB.

Proof : See Appendix.

Remark 10 From (49), when the significance of the weights increases, Ω𝑤𝑖 can become infinite; therefore, Ω𝑤𝑖

Ω𝑤𝑖+1
will become 1; hence, the gradient explosion can be avoided.
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Remark 11 The first part of the NN weight update law in Theorem 2 is the same as in Theorem 1, whereas the
second part includes regularization terms resulting from LL. Notice that the tracking and weight estimation error
bounds increase due to the LRL-based control scheme because the bounding constant, 𝐶̄ = 𝐶̄0 𝑗 + 𝛾𝑝𝑒𝑛 𝑗 , includes
additional terms that are obtained from the penalty function from LL, where 𝐶̄0 𝑗 is bound when LL is absent, and
𝛾𝑝𝑒𝑛 𝑗 is because of LL in jth step. The overall stability is unaffected due to LL.

Remark 12 The proposed LL method is scalable to encompass 𝑛 tasks. A third task, 𝐶, aims to maintain network
weights in alignment with the learned weights from the preceding two tasks, implementable via single or dual
penalties, given the quadratic nature of the penalties.

Remark 13 The efficacy of the LL method is pronounced when Tasks 1 and 2 share informational overlap re-
flected in the weights, facilitating the knowledge transfer for Task 2. However, in the absence of shared weights
or knowledge between non-overlapping tasks, the visible enhancement in Task 2 performance might be negligible
with online LL, albeit it mitigates the catastrophic forgetting of Task 1, offering long-term benefits when reverting
to Task 1.

3. UAV TRACKING SIMULATION OUTCOMES
This section delineates the outcomes of optimal tracking control founded on LRL, applied on an underactuated
UAV system.

3.1 Unmanned aerial vehicle (UAV) problem formulation and control design
Consider the UAV model depicted in Figure 1, which is characterized by two reference frames: the inertial
frame 𝐼 = {𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼 } fixed to the earth and the body-fixed frame 𝐴 = {𝑥𝐴, 𝑦𝐴, 𝑧𝐴}. The UAV is steered using
four forces 𝐹𝑗=1,2,3,4, each produced by a respective rotor. To negate the yaw drift due to the reactive torque,
rotors are arranged in two pairs, with (1, 3) spinning clockwise and (2, 4) spinning counterclockwise.

The quadrotor dynamics can be modeled by two unique equations: (1) translational; and (2) rotational. How-
ever, these dynamic equations interrelate via the rotation matrix, rendering them as two cohesive subsystems.
A holistic control strategy involves both outer and inner loop controls, corresponding to the two subsystems.
The outer loop aims to execute positional control by managing the state variables of 𝑥, 𝑦, and 𝑧 while con-
currently generating command inputs for roll and pitch states in the inner loop through a correction block,
dependent on a predefined yaw reference signal. The inner loop’s objective is to achieve attitude control by
managing the state variables of roll, pitch, and yaw.

Define 𝜁1(𝑡) = [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)]> ∈ R3 as the UAV’s positional state and 𝜁2(𝑡) = [ ¤𝑥(𝑡), ¤𝑦(𝑡), ¤𝑧(𝑡)]> ∈ R3 as its
velocity state within the inertial frame 𝐼 . A transformation relation exists: 𝜁2(𝑡) = 𝑅(𝜂1)𝑉 . Consequently, the
translational dynamic equation can be represented as

¤𝜁1(𝑡) = 𝜁2(𝑡)

¤𝜁2(𝑡) = −


0
0
𝑔

 + 𝑅 (𝜂1)


0
0

1/𝑚

 𝑢𝑐 .
Given the underactuated nature of UAV translational dynamics, an intermediate control vector

𝑉 = 𝑅 (𝜂1)


0
0

1/𝑚

 𝑢𝑐
is introduced for optimal position control derivation, and the translational dynamic can thus be reformulated
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Figure 1. Quadrotor UAV.

as
¤𝜁1(𝑡) = 𝜁2(𝑡)

¤𝜁2(𝑡) = −


0
0
𝑔

 +𝑉.
Remark 14 The relation between 𝑉 = [𝑉1, 𝑉2, 𝑉3]> ∈ R3 and 𝑢𝑐 is given by

𝑉1 = (cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓)) 𝑢𝑐
𝑚

𝑉2 = (cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜙) cos(𝜓)) 𝑢𝑐
𝑚

𝑉3 = cos(𝜙) cos(𝜃) 𝑢𝑐
𝑚

Solving yields the control 𝑢𝑐 as

𝑢𝑐 = 𝑚
(
𝑉2

1 +𝑉2
2 +𝑉2

3

) 1
2

Using the reference trajectory vector 𝜁ref(𝑡) = [𝑥ref(𝑡), 𝑦ref(𝑡), 𝑧ref(𝑡)]> ∈ R3, we define the tracking error
variables as 𝑒𝜁1 (𝑡) = 𝜁1(𝑡) − 𝜁ref(𝑡) and 𝑒𝜁2 (𝑡) = 𝜁2(𝑡) − 𝛼𝜁 , where 𝛼𝜁 is the virtual control.

For the coordinate transformation of rotational dynamic, the transformation relationship between rotational
velocity Ω and the Euler angles rate of change 𝜂2(𝑡) = ¤𝜂1(𝑡) = [ ¤𝜙(𝑡), ¤𝜃 (𝑡), ¤𝜓(𝑡)]> ∈ R3 is represented as:

𝜂2(𝑡) = ¤𝜂1(𝑡) = Φ (𝜂1)Ω

with

Φ (𝜂1) =


1 𝑠(𝜙)𝑡 (𝜃) 𝑐(𝜙)𝑡 (𝜃)
0 𝑐(𝜙) −𝑠(𝜙)
0 𝑠(𝜙) sec(𝜃) 𝑐(𝜙) sec(𝜃)

 .
Applying time derivation to both sides yields the attitude dynamic as:

¥𝜂1(𝑡) = −Φ (𝜂1) 𝐼−1
(
Φ−1 (𝜂1) 𝜂2(𝑡) ¤×𝐼Φ−1 (𝜂1) 𝜂2(𝑡)

)
+ ¤Φ (𝜂1)Φ−1 (𝜂1) 𝜂2(𝑡) +Φ (𝜂1) 𝐼−1𝜏.
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The function 𝑓 (𝜂1, 𝜂2) is represented as:

𝑓 (𝜂1, 𝜂2) = −Φ (𝜂1) 𝐼−1
(
Φ−1 (𝜂1) 𝜂2(𝑡) ¤×𝐼Φ−1 (𝜂1) 𝜂2(𝑡)

)
+ ¤Φ (𝜂1)Φ−1 (𝜂1) 𝜂2(𝑡)

So, the attitude dynamic can be rephrased in strict feedback form as

¤𝜂1(𝑡) = 𝜂2(𝑡)
¤𝜂2(𝑡) = 𝑓 (𝜂1, 𝜂2) +Φ (𝜂1) 𝐼−1𝜏.

Reference signals are denoted as 𝜂re(𝑡) = [𝜙re(𝑡), 𝜃re(𝑡), 𝜓re(𝑡)]>. The yaw command element 𝜓re(𝑡) is prede-
fined, and the roll and pitch command angles are derived as

𝜙re(𝑡) = arcsin
(
𝑚
𝑉1 sin (𝜓re) −𝑉2 cos (𝜓re)

𝑢𝑐

)
𝜃re(𝑡) = arctan

(
𝑉1 cos (𝜓re) +𝑉2 sin (𝜓re)

𝑉3

)
.

Tracking error variables are designated as 𝑒𝜂1(𝑡) = 𝜂1(𝑡) − 𝜂re(𝑡) and 𝑒𝜂2(𝑡) = 𝜂2(𝑡) − 𝛼𝜂, where 𝛼𝜂 ∈ R3 is the
virtual control.

Therefore, using the control law (34) and the weight update laws shown in Theorems 1 and 2 for translational
and attitude dynamics will drive the UAV system to track the reference trajectory, as shown in the simulations.

3.2 Simulation parameters and results
The desired position trajectory for 𝜉re(𝑡) = [2𝑡−20, 5, 0]> and, for task 2, is 𝜉re(𝑡) = [5 sin(𝑡), 5 cos(𝑡), 𝑡]>. The
yaw command angle is predefined as 𝜓re = 𝜋/4; then, the roll and pitch command signals 𝜙re and 𝜃re can be
produced. The design parameter 𝛽1 = [6, 0], 𝛽2 = [4.2, 0], 𝑚 = 5, 𝜎1 𝑗 = 0.75 and 𝜎2 𝑗 = 0.82, 𝛽𝑐𝑖 = 0.6, 𝛽𝑎𝑖 =
0.6, 𝜆𝑤 = 2, 𝛼𝑤 = 0.85. The initial values are set as 𝑧1(0) = [1.7, 3.8, 0.41]>, 𝑧2(0) = [2.31, 3, 0.4]>. In
this configuration, the NN is based on a Random Vector Functional Link (RVFL) architecture. The network
is structured with a single layer, where the input layer is directly connected to the output layer, bypassing
traditional hidden layers. The interlayer connections are facilitated by a weight matrix 𝑉 , which is randomly
initialized. Thismatrix𝑉 effectively represents the neurons in the network. Specifically, the network comprises
ten neurons, each corresponding to a column in the 𝑉 matrix. These neurons functionally link the input to
the output through the RVFL mechanism. The transformation from the input to the output layer is given
by 𝑊>𝜎(𝑉>𝑋), where 𝜎 denotes the activation function applied element-wise, and 𝑋 is the input and 𝑊 is
tuned using the weight update laws in Theorems 1 and 2. Similarly, seven neurons are used for the identifier;
sigmoid is used as an activation function, 𝜖0 = 0.65. For attitude control, the initial values are set as 𝑧3(0) =
[𝜋/4, 𝜋/4, 𝜋/4]>, 𝑧4(0) = [𝜋/3, 𝜋/3, 𝜋/3]>.

We consider two task scenarios in which the reference trajectory is changed in each task as if the UAV is
moving in a different path or environment. In the simulations, we have shown task 1 again to demonstrate
that when the UAV returns to task 1, the LL-based control will help mitigate the catastrophic forgetting. The
proposed method is able to drive the UAV to track the reference trajectory accurately, even on changing tasks.
Figure 2 shows the performance of the position and attitude tracking; it indicates that using the proposed LRL
method shown by the blue color, and the UAV position states can accurately follow the reference trajectory
shown by the red color. The attitude tracking performance demonstrates that the UAV attitudes can also follow
the reference attitudes better as compared to recent literature [9] shown by green color. Figure 3 illustrates the
tracking errors, indicating that the tracking performance of the proposed method is superior when compared
with recent literature, referred to as ’r-lit’ [9]. Figure 4 illustrates the position and attitude tracking errors.
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Figure 2. Actual and reference trajectories using the proposed LL-based method.
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Figure 3. Tracking performance of position and attitude subsystems using LRL and recent literature (r-lit) [9] methods.

Both the system state tracking plots and positional error plots in Figure 2 and Figure 3 demonstrate the superior
performance of the proposed LL method, represented by blue lines. However, the recent literature [9] exhibits
higher error, thus showing the need for LL. In contrast, the ’Lit’ method, as shown in green, has a higher
error rate when compared to other methods. Notably, the total average error shown in Figure 4 is low when
the proposed LL method is employed over the ’Lit’ method, indicating a substantial enhancement in tracking
accuracy.

Figure 5 depicts torque inputs and cumulative costs where it can be seen that the cost of using the proposed
method is minimal, and all the closed-loop signals are bounded. The control effort demanded by the ’Lit’
method is higher in comparison to the proposed LL-based method. Figure 5 also showcases the cumulative
cost. It is observed that the cost associated with Lit (shown in green color) is higher compared to the proposed
LL method (represented in blue) during the tasks and as the tasks change.
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Figure 5. Torque inputs and cumulative cost using proposed LRL and recent literature (r-lit) [9] methods.

4. CONCLUSION AND DISCUSSION
This paper proposed an innovative LL tracking control technique for uncertain nonlinear CT systems in strict
feedback form. The method combined the augmented system, trajectory generator, and optimal backstepping
approach to design both feedforward and feedback terms of the tracking scheme. By utilizing a combination
of actor-critic NN and identifier NN, the method effectively approximated the solution to the HJB equations
with unknown nonlinear functions. The use of RL at each step of the backstepping process allows for the
development of virtual and actual optimal controllers that can effectively handle the challenges posed by un-
certain, strict feedback systems. The proposed work highlighted the significance of considering catastrophic
forgetting in online controller design and developed a newmethod to address this issue. Simulation results on
a UAV tracking a desired trajectory show acceptable performance. The proposed approach can be extended
by using deep NNs for better approximation. In addition, the integral RL (IRL)-based approach can relax the
drift dynamics. Dynamic surface control can be included to minimize the number of NNs used.
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APPENDICES
Proof of Theorem 1
Step1: Consider the Lyapunov function as follows

𝐿1 = 𝐽1(𝑧1) +
1
2
𝑒>𝑖1𝑒𝑖1 +

1
2
𝑡𝑟

{
𝑍̃>

1 𝑍̃1
}
+ 1

2
𝑡𝑟{𝑊̃𝑐1𝑊̃

>
𝑐1} +

1
2
𝑡𝑟{𝑊̃𝑎1𝑊̃

>
𝑎1}. (51)

The time derivative of 𝐿1 is

¤𝐿1 = ¤𝐽1(𝑧1) + 𝑡𝑟{𝑒>𝑖1 ¤𝑒𝑖1} + 𝑡𝑟{𝑍̃>
1
¤̃𝑍1} + 𝑡𝑟{𝑊̃>

𝑐1
¤̃𝑊𝑐1} + 𝑡𝑟{𝑊̃>

𝑎1
¤̃𝑊𝑎1}. (52)

Where 𝑡𝑟 denotes the trace operator. Let ¤𝐿1 = ¤𝐿11 + ¤𝐿12 + ¤𝐿13 + ¤𝐿14 + ¤𝐿15. where 𝐿11 = 𝐽1(𝑧1), 𝐿12 =
1
2𝑒

>
𝑖1𝑒𝑖1, 𝐿13 = 1

2 𝑡𝑟
{
𝑍̃>

1 𝑍̃1
}
, 𝐿14 = 1

2 𝑡𝑟{𝑊̃𝑐1𝑊̃
>
𝑐1}, 𝐿15 = 1

2 𝑡𝑟{𝑊̃𝑎1𝑊̃
>
𝑎1}.

Considering the first term of (51), we can write it as ¤𝐽1(𝑧1) = ∇𝐽1 ¤𝑧1.

Substituting (3), (9) in (52) gives

¤𝐽1(𝑧1) = (𝑊>
𝑐1∇𝜎𝑐1 + ∇𝜀𝑐1) (F𝑠1(𝑧1) + G𝑠1(𝑧1)𝛼1). (53)

Substituting the value of 𝛼 from (8) in (53) leads to

¤𝐽1(𝑧1) = (𝑊>
𝑐1∇𝜎𝑐1 + ∇𝜀𝑐1)

(
F𝑠1(𝑧1) −

1
2
G𝑠1(𝑧1)𝑟−1Ĝ>

𝑠1(𝑧1) (∇𝜎>
𝑐1𝑊̂𝑐1)

)
. (54)

Using 𝑊̂𝑐1 = 𝑊𝑐1 − 𝑊̃𝑐1 in (54), and simplifying, one will get

¤𝐽1(𝑧1) = (𝑊>
𝑐1∇𝜎𝑐1 + ∇𝜀𝑐1)

(
F𝑠1(𝑧1) −

1
2
G𝑠1(𝑧1)𝑟−1G>

𝑠1(𝑧1)∇𝜎>
𝑐1(𝑊𝑐1 − 𝑊̃𝑐1)

)
(55)

Separating the terms in (55) w.r.t actual NN weights and the terms w.r.t weight estimation error gives

¤𝐽1(𝑧1) = 𝑊>
𝑐1∇𝜎𝑐1F𝑠1(𝑧1) −

1
2
𝑊>
𝑐1∇𝜎𝑐1G𝑠1(𝑧1)𝑟−1Ĝ>

𝑠1(𝑧1)∇𝜎>
𝑐1𝑊𝑐1

+ 1
2
𝑊>
𝑐1∇𝜎𝑐1G𝑠1(𝑧1)𝑟−1Ĝ>

𝑠1(𝑧1)∇𝜎>
𝑐1𝑊̃𝑐1 + ∇𝜀𝑐1F𝑠1(𝑧1)

− ∇𝜀𝑐1
2

G𝑠1(𝑧1)𝑟−1Ĝ>
𝑠1(𝑧1)∇𝜎>

𝑐1𝑊𝑐1 +
∇𝜀𝑐1

2
G𝑠1(𝑧1)𝑟−1Ĝ>

𝑠1(𝑧1)∇𝜎>
𝑐1𝑊̃𝑐1.

(56)

Substituting Ĝ𝑠1 = G𝑠1 − G̃𝑠1 in (56) leads to

¤𝐽1(𝑧1) = 𝑊>
𝑐1∇𝜎𝑐1F𝑠1(𝑧1) −

1
2
𝑊>
𝑐1∇𝜎𝑐1G𝑠1(𝑧1)𝑟−1(G𝑠1 − G̃𝑠1)>∇𝜎>

𝑐1𝑊𝑐1 +
1
2
𝑊>
𝑐1∇𝜎𝑐1G𝑠1(𝑧1)𝑟−1

(G𝑠1 − G̃𝑠1)>∇𝜎>
𝑐1𝑊̃𝑐1 + ∇𝜀𝑐1F𝑠1(𝑧1) −

∇𝜀𝑐1
2

G𝑠1(𝑧1)𝑟−1(G𝑠1 − G̃𝑠1)>∇𝜎>
𝑐1𝑊𝑐1

+ ∇𝜀𝑐1
2

G𝑠1(𝑧1)𝑟−1(G𝑠1 − G̃𝑠1)>∇𝜎>
𝑐1𝑊̃𝑐1.

(57)
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One can further simplify (57), as follows

¤𝐽1(𝑧1) = 𝑡𝑟{𝑊>
𝑐1∇𝜎𝑐1F𝑠1(𝑧1) −

1
2
𝑊>
𝑐1∇𝜎𝑐1G𝑠1(𝑧1)𝑟−1G>

𝑠1∇𝜎>
𝑐1𝑊𝑐1

+ 1
2
𝑊>
𝑐1∇𝜎𝑐1G𝑠1(𝑧1)𝑟−1G>

𝑠1∇𝜎>
𝑐1𝑊̃𝑐1 + ∇𝜀𝑐1F𝑠1(𝑧1)

− ∇𝜀𝑐1
2

G𝑠1(𝑧1)𝑟−1G>
𝑠1∇𝜎>

𝑐1𝑊𝑐1 +
∇𝜀𝑐1

2
G𝑠1(𝑧1)𝑟−1G>

𝑠1∇𝜎>
𝑐1𝑊̃𝑐1

+ 1
2
𝑊>
𝑐1∇𝜎𝑐1G𝑠1(𝑧1)𝑟−1G̃>

𝑠1∇𝜎>
𝑐1𝑊𝑐1 −

1
2
𝑊>
𝑐1∇𝜎𝑐1G𝑠1(𝑧1)𝑟−1G̃>

𝑠1∇𝜎>
𝑐1𝑊̃𝑐1

+ ∇𝜀𝑐1
2

G𝑠1(𝑧1)𝑟−1G̃>
𝑠1∇𝜎>

𝑐1𝑊𝑐1 −
∇𝜀𝑐1

2
G𝑠1(𝑧1)𝑟−1G̃>

𝑠1∇𝜎>
𝑐1𝑊̃𝑐1}.

(58)

Using (11), we have 𝑊>
𝑐1∇𝜎𝑐1F𝑠1(𝑧1) −

1
2𝑊

>
𝑐1∇𝜎𝑐1G𝑠1(𝑧1)𝑟−1G𝑠1(𝑧1)𝑊𝑐1∇𝜎𝑐1 ≤ −𝑘 ‖𝑧1‖2. Additionally, it is

also assumed that the effect of the NN approximation error in the system dynamics is bounded above, i.e.,
∇𝜀𝑐1F𝑠1(𝑧1) − 1

2∇𝜀𝑐1G𝑠1(𝑧1)𝑟−1G𝑠1(𝑧1)𝑊𝑐1∇𝜎𝑐1 ≤ −𝜖 ‖𝑧1‖2. One can write (58), as follows

¤𝐽1(𝑧1) = −(𝑘 + 𝜖)𝑧21 + 𝑘1𝑊̃𝑐1 + 𝑘2𝑊̃𝑐1 + 𝑘3G̃𝑠1 + 𝑘4G̃𝑠1 + 𝑘5𝑊̃𝑐1G̃𝑠1 + 𝑘6𝑊̃𝑐1G̃𝑠1. (59)

which can be further written as

¤𝐽1(𝑧1) = −𝑘̄1𝑧
2
1 + 𝑘̄2𝑊̃𝑐1 + 𝑘̄3G̃𝑠1 + 𝑘̄4𝑊̃𝑐1G̃𝑠1, (60)

where 1
2𝑊

>
𝑐1∇𝜎G𝑠1(𝑧1)𝑟−1G𝑠1∇𝜎 ≤ 𝑘1, ∇𝜀𝑐1

2 G𝑠1(𝑧1)𝑟−1G𝑠1∇𝜎 ≤ 𝑘2, 1
2𝑊

>
𝑐1∇𝜎G𝑠1(𝑧1)𝑟−1𝑊∇𝜎 ≤ 𝑘3,

∇𝜀𝑐1
2 G𝑠1(𝑧1)𝑟−1𝑊𝑐1∇𝜎 ≤ 𝑘4, 1

2𝑊
>
𝑐1∇𝜎G𝑠1(𝑧1)𝑟−1∇𝜎 ≤ 𝑘5, ∇𝜀𝑐1

𝑐2 G𝑠1(𝑧1)𝑟−1∇𝜎 ≤ 𝑘6. Consider the second and
third term of (52)

¤𝐿12 + ¤𝐿13 = 𝑡𝑟{𝑒>𝑖1 ¤𝑒𝑖1} + 𝑡𝑟{𝑍̃>
1
¤̃𝑍1} (61)

On substituting the value of ¤𝑒𝑖1 and ¤̃𝑍1 fromTheorem 1, one can write RHS of (83) as follows

𝑡𝑟

{
𝑒>𝑖1(−𝐾𝑒𝑖1 + 𝑍̃1𝝈(𝝃) ˆ̄𝑢 + 𝜀𝐼 (𝑧1)) + 𝑍̃>

1
(
−𝛼𝑣 𝑍̃1 − 𝝈(𝝃) ˆ̄𝑢𝑒>𝑖1 + 𝛼𝑣𝑍1

) }
. (62)

which can be further simplified by using the cyclic property of traces as

𝑡𝑟{𝑒>𝑖1(−𝐾𝑒𝑖1 + 𝜀𝐼 (𝑧1)) + 𝑍̃>
1
(
−𝛼𝑣 𝑍̃1 + 𝛼𝑣𝑍1

)
}. (63)

To simplify, we have

¤𝐿12 + ¤𝐿13 ≤ −𝐾 ‖𝑒𝑖1‖2 − 𝛼𝑣 ‖ 𝑍̃1‖2 + ‖𝑒𝑖1‖2 + ‖𝑧1‖2 + ‖𝛼𝑣 𝑍̃>
1 𝑍1‖ (64)

Consider the fourth term of (52),

¤𝐿14 = 𝑡𝑟

{
𝑊̃>
𝑐1

(
𝛾𝑐𝜓̂1(𝑡)(−𝑒1(𝑡) +

1
4
𝑊̂>
𝑐1∇𝜎𝑐1 ∧ ∇𝜎>

𝑐1𝑊̂𝑐1 + 𝑊̂>
𝑐1∇𝜎𝑐1F𝑠1) + 𝜎11𝑊̂𝑐1

)}
(65)

Therefore, one can further simplify (65) by using Young’s inequality in cross-product terms as follows

¤𝐿14 ≤ 𝑐1‖𝑊̃𝑐1‖2 + 𝑐2‖𝑊̃𝑐1‖ + 𝑐3‖ 𝑍̃1‖2 + 𝑐4‖𝑊̃𝑐1‖ − 𝑐5‖𝑊̃𝑐1‖2 (66)
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Consider the fifth term of (52) ¤𝐿15 = 𝑡𝑟{𝑊̃>
𝑎1

¤𝑊𝑎1}. On using the weight update law fromTheorem 2, one can
write

¤𝐿15 = 𝑡𝑟

{
𝑊̃>
𝑎1(𝛽𝑎𝑆3(𝛽1𝑧1 +

1
2
𝑊̂>
𝑎1𝜎𝑎1 (𝑧1) −

1
2
𝑟−1Ĝ>

𝑠1∇𝜎>
𝑐1𝑊̂𝑐1) + 𝜎22𝑊̂𝑎1)

}
(67)

Using 𝑊̃𝑐1 = 𝑊𝑐1 − 𝑊̂𝑐1,𝑊̃𝑎1 = 𝑊𝑎1 − 𝑊̂𝑎1, 𝐺̃𝑠1 = G𝑠1 − Ĝ𝑠1

¤𝐿15 = 𝑡𝑟

{
𝑊̃>

𝑎1 (𝛽𝑎𝑆3 (𝛽1𝑧1 +
1
2
(𝑊𝑎1 − 𝑊̃𝑎1)>𝜎𝑎1 (𝑧1) −

1
2
𝑟−1 (G𝑠1 − G̃𝑠1)>∇𝜎>

𝑐1 (𝑊𝑐1 − 𝑊̃𝑐1) + 𝜎22𝑊̃𝑎1 (𝑊𝑎1 − 𝑊̃𝑎1)
}

(68)

Considering a last term, we can write

𝑊̃𝑎1(𝑊𝑎1 − 𝑊̃𝑎1) = 𝑊̃𝑎1𝑊𝑎1 − 𝑊̃2
𝑎1

Using Young’s inequality in the cross product terms, we can write

¤𝐿15 = 𝑐5‖𝑊̃𝑎1‖2 + 𝑐6‖𝑧1‖2 + 𝑐7‖ 𝑍̃1‖2 + 𝑐8‖𝑊𝑐1‖2 + 𝑐9‖ 𝑍̃1‖ + 𝑐10‖𝑊̃𝑐1‖ + 𝑐11‖𝑊̃𝑎1‖ − 𝑐12‖𝑊̃𝑎1‖2 (69)

Combining (60), (64),(66) and (69) and simplifying, we have

¤𝐿1 ≤ −𝑐1‖𝑧1‖2 + 𝑘̄2‖𝑊̃𝑐1‖ + 𝑘̄3‖ 𝑍̃1‖ − 𝑐2‖𝑊̃𝑐1‖2 − 𝑐3‖ 𝑍̃1‖2 − 𝑐5‖𝑒𝑖1‖2 + 𝑐0‖𝑊̃𝑎1‖ − 𝑐4‖𝑊̃𝑎1‖2, (70)

where 𝑐1 = 𝑘̄1 − 𝑐13, 𝑘̄1 > 𝑐13, 𝑐2 = 𝑐4 − 𝑘̄4, 𝑐4 > 𝑘̄4, 𝑐3 = 𝛼𝑣 − 𝑘4, 𝛼𝑣 > 𝑘̄4, 𝑐4 = 𝑐12 − 𝑐5, 𝑐12 > 𝑐5. We can
simplify it further as follows

¤𝐿1 < −𝑐1‖𝑧1‖2 − 𝑐2(‖𝑊̃𝑐1‖ −
𝑘̄2

𝑐2
)2 − 𝑐3(‖ 𝑍̃1‖ −

𝑘3

𝑐3
)2 − 𝑐4(‖𝑊̃𝑎1‖ −

𝑐0

𝑐4
)2 − 𝑐5‖𝑒𝑖1‖2 + 𝐶̄01, (71)

where 𝐶̄01 =
𝑘2

2
𝑐2

+ 𝑘2
3
𝑐3

+ 𝑐2
0
𝑐4
. Therefore, we can write

‖𝑧1‖ >

√
𝐶̄01

𝑐1
𝑜𝑟 ‖𝑊̃𝑐1‖ >

√
𝐶̄01

𝑐2
+ 𝑘2

𝑐2
𝑜𝑟

‖𝑊̃𝑎1‖ >

√
𝐶̄01

𝑐4
+ 𝑐0

𝑐4
𝑜𝑟 ‖ 𝑍̃1‖ >

√
𝐶̄01

𝑐3
+ 𝑘3

𝑐3
𝑜𝑟 ‖𝑒𝑖1‖ >

√
𝐶̄01

𝑐5
.

(72)

This demonstrates that the overall closed-loop system is bounded. Since 𝐺̃ is a function of the weight estima-
tion error of the NN identifier, or 𝑍̃ , and from (72), 𝑍̃ is bounded; as a consequence, 𝐺̂ is bounded. From (72)
𝑊̃ , identification error and system state are bounded. As a result, the control input error becomes bounded.

Step 2:

This is the final step. Consider the Lyapunov function as follows

𝐿2 = 𝐿1 + 𝐽2(𝑧2) +
1
2
𝑒>𝑖2𝑒𝑖2 +

1
2
𝑡𝑟

{
𝑍̃>

2 𝑍̃2
}
+ 1

2
𝑡𝑟{𝑊̃𝑐2𝑊̃

>
𝑐2} +

1
2
𝑡𝑟{𝑊̃𝑎2𝑊̃

>
𝑎2}. (73)

The time derivative of 𝐿2 is

¤𝐿2 = ¤𝐿1 + ¤𝐽2(𝑧2) + 𝑡𝑟{𝑒>𝑖2 ¤𝑒𝑖2} + 𝑡𝑟{𝑍̃>
2
¤̃𝑍2} + 𝑡𝑟{𝑊̃>

𝑐2
¤̃𝑊𝑐2} + 𝑡𝑟{𝑊̃>

𝑎2
¤̃𝑊𝑎2}. (74)
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Let ¤𝐿2 = 𝐿1 + ¤𝐿21 + ¤𝐿22 + ¤𝐿23 + ¤𝐿24 + ¤𝐿25. where 𝐿21 = 𝐽2(𝑧2), 𝐿22 = 1
2𝑒

>
𝑖2𝑒𝑖2, 𝐿23 = 1

2 𝑡𝑟
{
𝑍̃>

2 𝑍̃2
}
, 𝐿24 =

1
2 𝑡𝑟{𝑊̃𝑐2𝑊̃

>
𝑐2}, 𝐿25 = 1

2 𝑡𝑟{𝑊̃𝑎2𝑊̃
>
𝑎2}.

Considering the second term of (74), substituting (3) in ¤𝐽2(𝑧2), it gives

¤𝐽2(𝑧2) = (𝑊>
𝑐2∇𝜎𝑐2 + ∇𝜀𝑐2)(F𝑠2(𝑧2) + G𝑠2(𝑧2)𝑢). (75)

which on further solving leads to

¤𝐽2(𝑧2) = (𝑊>
𝑐2∇𝜎𝑐2 + ∇𝜀𝑐2) (F𝑠2(𝑧2) −

1
2
G𝑠2(𝑧2)𝑟−1

2 (Ĝ>
𝑠2(𝑧2)

(
∇𝜎>

𝑐2𝑊̂𝑐2)
)
. (76)

Using 𝑊̂𝑐2 = 𝑊𝑐2 − 𝑊̃𝑐2 in (76), and simplifying, one will get

¤𝐽2(𝑧2) = (𝑊>
𝑐2∇𝜎𝑐2 + ∇𝜀𝑐2) (F𝑠2(𝑧2) −

1
2
G𝑠2(𝑧2)𝑟−1

2 G>
𝑠2(𝑧1)∇𝜎>

𝑐2(𝑊𝑐2 − 𝑊̃𝑐2)). (77)

Separating the terms in (77) w.r.t actual NN weights and the terms w.r.t weight estimation error gives

¤𝐽2(𝑧2) = 𝑊>
𝑐2∇𝜎𝑐2F𝑠2(𝑧2) −

1
2
𝑊>
𝑐2∇𝜎𝑐2G𝑠2(𝑧2)𝑟−1

2 Ĝ>
𝑠2(𝑧2)∇𝜎>

𝑐2𝑊𝑐2

+ 1
2
𝑊>
𝑐2∇𝜎𝑐2G𝑠2(𝑧2)𝑟−1

2 Ĝ>
𝑠2(𝑧2)∇𝜎>

𝑐2𝑊̃𝑐2 + ∇𝜀𝑐2F𝑠2(𝑧2)

− ∇𝜀𝑐2
2

G𝑠2(𝑧2)𝑟−1
2 Ĝ>

𝑠2(𝑧2)∇𝜎>
𝑐2𝑊𝑐2 +

∇𝜀𝑐2
2

G𝑠2(𝑧2)𝑟−1
2 Ĝ>

𝑠2(𝑧2)∇𝜎>
𝑐2𝑊̃𝑐2.

(78)

Substituting Ĝ𝑠2 = G𝑠2 − G̃𝑠2 in (78) leads to

¤𝐽2(𝑧2) = 𝑊>
𝑐2∇𝜎𝑐2F𝑠2(𝑧2) −

1
2
𝑊>
𝑐2∇𝜎𝑐2G𝑠2(𝑧2)𝑟−1

2 (G𝑠2 − G̃𝑠2)>∇𝜎>
𝑐2𝑊𝑐2

+ 1
2
𝑊>
𝑐2∇𝜎𝑐2G𝑠2(𝑧2)𝑟−1

2 (G𝑠2 − G̃𝑠2)>∇𝜎>
𝑐2𝑊̃𝑐2 + ∇𝜀𝑐2F𝑠2(𝑧2) −

∇𝜀𝑐2
2

G𝑠2(𝑧2)𝑟−1
2 (G𝑠2 − G̃𝑠2)>∇𝜎>

𝑐2𝑊𝑐2

+ ∇𝜀𝑐2
2

G𝑠2(𝑧2)𝑟−1
2 (G𝑠2 − G̃𝑠2)>∇𝜎>

𝑐2𝑊̃𝑐2.

(79)

One can further simplify (79), as follows

¤𝐽2(𝑧2) = 𝑡𝑟{𝑊>
𝑐2∇𝜎𝑐2F𝑠2(𝑧2) −

1
2
𝑊>
𝑐2∇𝜎𝑐2G𝑠2(𝑧2)𝑟−1

2 G>
𝑠2∇𝜎>

𝑐2𝑊𝑐2

+ 1
2
𝑊>
𝑐2∇𝜎𝑐2G𝑠2(𝑧2)𝑟−1

2 G>
𝑠2∇𝜎>

𝑐2𝑊̃𝑐2 + ∇𝜀𝑐2F𝑠2(𝑧2)

− ∇𝜀𝑐2
2

G𝑠2(𝑧2)𝑟−1
2 G>

𝑠2∇𝜎>
𝑐2𝑊𝑐2 +

∇𝜀𝑐2
2

G𝑠2(𝑧2)𝑟−1
2 G>

𝑠2∇𝜎>
𝑐2𝑊̃𝑐2

+ 1
2
𝑊>
𝑐2∇𝜎𝑐2G𝑠2(𝑧2)𝑟−1

2 G̃>
𝑠2∇𝜎>

𝑐2𝑊𝑐2 −
1
2
𝑊>
𝑐2∇𝜎𝑐2G𝑠2(𝑧2)𝑟−1

2 G̃>
𝑠2∇𝜎>

𝑐2𝑊̃𝑐2

+ ∇𝜀𝑐2
2

G𝑠2(𝑧2)𝑟−1
2 G̃>

𝑠2∇𝜎>
𝑐2𝑊𝑐2 −

∇𝜀𝑐2
2

G𝑠2(𝑧2)𝑟−1
2 G̃>

𝑠2∇𝜎>
𝑐2𝑊̃𝑐2}.

(80)

Using (11), we have 𝑊>
𝑐2∇𝜎𝑐2F𝑠2(𝑧2) −

1
2𝑊

>
𝑐2∇𝜎𝑐2G𝑠2(𝑧2)𝑟−1

2 G𝑠2(𝑧2)𝑊𝑐2∇𝜎𝑐2 ≤ −𝑘 ‖𝑧2‖2. Additionally, it is
also assumed that the effect of the NN approximation error in the system dynamics is bounded above, i.e.,
∇𝜀𝑐2F𝑠2(𝑧2) − 1

2∇𝜀𝑐2G𝑠2(𝑧2)𝑟−1
2 G𝑠2(𝑧2)𝑊𝑐2∇𝜎𝑐2 ≤ −𝜖 ‖𝑧2‖2. One can write (80), as follows

¤𝐽2(𝑧2) = −(𝑘 + 𝜖)𝑧22 + 𝑘1𝑊̃𝑐2 + 𝑘2𝑊̃𝑐2 + 𝑘3G̃𝑠2 + 𝑘4G̃𝑠2 + 𝑘5𝑊̃𝑐2G̃𝑠2 + 𝑘6𝑊̃𝑐2G̃𝑠2. (81)
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which can be further written as

¤𝐽2(𝑧2) = −𝑘̄1𝑧
2
2 + 𝑘̄2𝑊̃𝑐2 + 𝑘̄3G̃𝑠2 + 𝑘̄4𝑊̃𝑐2G̃𝑠2, (82)

where 1
2𝑊

>
𝑐2∇𝜎G𝑠2(𝑧2)𝑟−1

2 G𝑠2∇𝜎 ≤ 𝑘1, ∇𝜀
2 G𝑠2(𝑧2)𝑟−1

2 G𝑠2∇𝜎 ≤ 𝑘2, 1
2𝑊

>
𝑐2∇𝜎G𝑠2(𝑧2)𝑟−1

2 𝑊𝑐2∇𝜎 ≤ 𝑘3,

∇𝜀
2 G𝑠2(𝑧2)𝑟−1

2 𝑊𝑐2∇𝜎 ≤ 𝑘4, 1
2𝑊

>
𝑐2∇𝜎G𝑠2(𝑧2)𝑟−1

2 ∇𝜎 ≤ 𝑘5, ∇𝜀
2 G𝑠2(𝑧2)𝑟−1

2 ∇𝜎 ≤ 𝑘6.

Consider the second and third term of (52)

¤𝐿22 + ¤𝐿23 = 𝑡𝑟{𝑒>𝑖2 ¤𝑒𝑖2} + 𝑡𝑟{𝑍̃>
2
¤̃𝑍2} (83)

On substituting the value of ¤𝑒𝑖2 and ¤̃𝑍2 fromTheorem 1, one can write (83) as follows

¤𝐿22 + ¤𝐿23 = 𝑡𝑟

{
𝑒>𝑖2(−𝐾𝑒𝑖2 + 𝑍̃2𝝈(𝝃) ˆ̄𝑢 + 𝜀𝐼 (𝜁)) + 𝑍̃>

2
(
−𝛼𝑣 𝑍̃2 − 𝝈(𝝃) ˆ̄𝑢𝑒>𝑖2 + 𝛼𝑣𝑍2

) }
. (84)

which can be further simplified by using the cyclic property of traces as

¤𝐿22 + ¤𝐿23 = 𝑡𝑟{𝑒>𝑖2(−𝐾𝑒𝑖2 + 𝜀𝐼 (𝜁)) + 𝑍̃>
2
(
−𝛼𝑣 𝑍̃2 + 𝛼𝑣𝑍2

)
}. (85)

To simplify, we have 𝜀2
𝐼 (𝑧2) ≤ ‖𝑧2‖2. Therefore, on using Young’s inequality in 𝑒𝑖2𝑧2, we have

¤𝐿22 + ¤𝐿23 ≤ −𝐾 ‖𝑒𝑖2‖2 − 𝛼𝑣 ‖ 𝑍̃2‖2 + ‖𝑒𝑖2‖2 + ‖𝑧2‖2 + 𝛼𝑣 ‖ 𝑍̃>
2 𝑍2‖ (86)

Consider the fourth term of (52),

¤𝐿24 = 𝑡𝑟

{
𝑊̃>
𝑐2

(
𝛾𝑐𝜓̂2(𝑡)(−𝑒2(𝑡) +

1
4
𝑊̂>
𝑐2∇𝜎𝑐2 ∧ ∇𝜎>

𝑐2𝑊̂𝑐2 + 𝑊̂>
𝑐2∇𝜎𝑐2F𝑠2) + 𝜎21𝑊̂𝑐2

)}
(87)

Therefore, one can further simplify (87) by using Young’s inequality in cross-product terms as follows

¤𝐿24 ≤ 𝑐1‖𝑊̃𝑐2‖2 + 𝑐2‖𝑊̃𝑐2‖ + 𝑐3‖ 𝑍̃2‖2 + 𝑐4‖𝑊̃𝑐2‖ − 𝑐5‖𝑊̃𝑐2‖2 (88)

Consider the fifth term of (52) ¤𝐿25 = 𝑡𝑟{𝑊̃>
𝑎2

¤𝑊𝑎2}. On using the weight update law fromTheorem 2, one can
write

¤𝐿25 = 𝑡𝑟

{
𝑊̃>
𝑎2(𝛽𝑎𝑆3(𝛽1𝑧2 +

1
2
𝑊̂>
𝑎2𝜎𝑎2 (𝑧2) −

1
2
𝑟−1

2 Ĝ>
𝑠2∇𝜎>

𝑐2𝑊̂𝑐2) + 𝜎22𝑊̂𝑎2)
}

(89)

Using 𝑊̃𝑐2 = 𝑊𝑐2 − 𝑊̂𝑐2, 𝑊̃𝑎2 = 𝑊𝑎2 − 𝑊̂𝑎2, G̃𝑠2 = G𝑠2 − Ĝ𝑠2

¤𝐿25 = 𝑡𝑟

{
𝑊̃>
𝑎2(𝛽𝑎𝑆3(𝛽1𝑧2 +

1
2
(𝑊𝑎2 − 𝑊̃𝑎2)>𝜎𝑎2 (𝑧2) −

1
2
𝑟−1

2 (G𝑠2 − G̃𝑠2)>∇𝜎>
𝑐2(𝑊𝑐2 − 𝑊̃𝑐2) + 𝜎22𝑊̃𝑎2(𝑊𝑎2 − 𝑊̃𝑎2)

}
(90)

Considering a last term, we can write

𝑊̃𝑎2(𝑊𝑎2 − 𝑊̃𝑎2) ≤ ‖𝑊̃𝑎2𝑊𝑎2‖ − ‖𝑊̃𝑎2‖2
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Using Young’s inequality in the cross product terms, we can write

¤𝐿25 ≤ 𝑐5‖𝑊̃𝑎2‖2 + 𝑐6‖𝑧2‖2 + 𝑐7‖ 𝑍̃2‖2 + 𝑐8‖𝑊𝑐2‖2 + 𝑐9‖ 𝑍̃2‖ + 𝑐10‖𝑊̃𝑐2‖ + 𝑐21‖𝑊̃𝑎2‖ − 𝑐22‖𝑊̃𝑎2‖2 (91)

Combining (82), (86),(88) and (91) and simplifying, we have

¤𝐿 ≤ −𝑐𝑧1(‖𝑧1‖ −
𝑘11

𝑐𝑧1
)2 − 𝑐𝑧2(‖𝑧2‖ −

𝑘21

𝑐𝑧2
)2

− 𝐶𝑐1(‖𝑊̃𝑐1‖ −
𝑘12

𝐶𝑐1
)2 − 𝐶𝑐2(‖𝑊̃𝑐2‖ −

𝑘22

𝐶𝑐2
)2

− 𝐶𝑎1(‖𝑊̃𝑎1‖ −
𝑘13

𝐶𝑎1
)2 − 𝐶𝑎2(‖𝑊̃𝑎2‖ −

𝑘23

𝐶𝑎2
)2

− 𝐶 𝑓 1(‖𝑊̃ 𝑓 1‖ −
𝑘 𝑓 1

𝐶 𝑓 1
)2 − 𝐶 𝑓 2(‖𝑊̃ 𝑓 2‖ −

𝑘 𝑓 2

𝐶 𝑓 2
)2 + 𝐶̄02,

(92)

where 𝐶̄02 =
𝑘2

11
𝑐𝑧1

+ 𝑘
2
21
𝑐𝑧2

+ 𝑘2
12
𝐶𝑐1

+ 𝑘2
13
𝐶𝑎1

+ 𝑘2
23
𝐶𝑎2

+
𝑘2
𝑓 1

𝐶 𝑓 1
+
𝑘2
𝑓 2

𝐶 𝑓 2
. Therefore, from (92), the bounds for ‖𝑧𝑘 ‖, ‖𝑊̃𝑐𝑘 ‖, ‖𝑊̃𝑎𝑘 ‖, ‖𝑊̃ 𝑓 𝑘 ‖

can be obtained as 

‖𝑧1‖ >

√
𝐶̄01

𝑐𝑧1
+ 𝑘11

𝑐𝑧𝑘
𝑜𝑟 ‖𝑧2‖ >

√
𝐶̄02

𝑐𝑧2
+ 𝑘21

𝑐𝑧2
𝑜𝑟

‖𝑊̃𝑐1‖ >

√
𝐶̄01

𝐶𝑐1
+ 𝑘12

𝐶𝑐1
𝑜𝑟 ‖𝑊̃𝑐2‖ >

√
𝐶̄02

𝐶𝑐2
+ 𝑘22

𝐶𝑐2
𝑜𝑟

‖𝑊̃𝑎1‖ >

√
𝐶̄01

𝐶𝑎1
+ 𝑘13

𝐶𝑎1
𝑜𝑟 ‖𝑊̃𝑎2‖ >

√
𝐶̄02

𝐶𝑎2
+ 𝑘23

𝐶𝑎2

𝑜𝑟 ‖𝑊̃ 𝑓 1‖ >

√
𝐶̄01

𝐶 𝑓 1
+
𝑘 𝑓 1

𝐶 𝑓 1
𝑜𝑟 ‖𝑊̃ 𝑓 2‖ >

√
𝐶̄02

𝐶 𝑓 2
+
𝑘 𝑓 2

𝐶 𝑓 2
.

(93)

This demonstrates that the overall closed-loop system is bounded. Since G̃𝑠 𝑗 is a function of the weight es-
timation error of the NN identifier, or 𝑍̃ 𝑗 , and from (93), 𝑍̃ 𝑗 is bounded; as a consequence, Ĝ𝑠 𝑗 is bounded.
From (93) 𝑊̃𝑎 𝑗 , 𝑊̃𝑐 𝑗 , identification error and system state are bounded. As a result, the control input error
𝑢𝑒 𝑗 = −𝛽 𝑗 𝑧 𝑗 − 1

2𝑊̂𝑎 𝑗𝜎𝑎 𝑗
(
𝑧 𝑗
)
+ 1

2𝑟
−1
𝑗 G𝑠 𝑗 𝑑𝐽 𝑗𝑑𝑧 𝑗

becomes bounded with bound 𝑒𝑏 which can be obtained by us-
ing the bounds from (93) and Assumption 4. Therefore, the actual control inputs are bounded close to their
optimal values.

Proof of Theorem 2
The convergence of weights for Task 1 remains in alignment with Theorem 1. For Task 2, an additional term
emerges in the Lyapunov proof (92) due to the regularization penalty, denoted as

𝛾pen1 𝑗 = 𝑊̃ 𝑗 (𝑊̂ 𝑗 −𝑊𝐴 𝑗
∗), (94)

where𝑊𝐴 𝑗
∗ is indicative of the optimized weights for the primary task, as verified to be bounded in Theorem

1.

Substituting 𝑊̂ 𝑗 = 𝑊∗
𝑗 − 𝑊̃ 𝑗 , we can rearrange equation (94) to

𝑊̃ 𝑗𝑊
∗
𝑗 − 𝑊̃2

𝑗 − 𝑊̃ 𝑗𝑊𝐴 𝑗
∗ ≤ ‖𝑊̃ 𝑗 ‖‖𝑊∗

𝑗 ‖ − ‖𝑊̃ 𝑗 ‖2 + ‖𝑊̃ 𝑗𝑊
∗
𝐴 𝑗
‖. (95)
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Employing Young’s inequality to the first and third terms of (95), we get

‖𝑊̃ 𝑗 ‖‖𝑊∗
𝑗 ‖ ≤

‖𝑊̃ 𝑗 ‖2

2
+
‖𝑊∗

𝑗 ‖2

2
,

‖𝑊̃ 𝑗𝑊
∗
𝐴 𝑗
‖ ≤

‖𝑊̃ 𝑗 ‖2

2
+
‖𝑊∗

𝐴 𝑗
‖2

2
.

Substituting ‖𝑊̃ 𝑗 ‖‖𝑊∗
𝑗 ‖, ‖𝑊̃ 𝑗𝑊

∗
𝐴 𝑗
‖ back into (95) provides

𝑊̃ 𝑗𝑊
∗
𝑗 − 𝑊̃2

𝑗 − 𝑊̃ 𝑗𝑊𝐴 𝑗
∗ ≤

‖𝑊∗
𝐴 𝑗
‖2

2
+
‖𝑊∗

𝑗 ‖2

2
. (96)

Thus, the integration of this term into the proof solely modifies the error bound to 𝛾pen 𝑗
≤ ‖𝑊∗

𝑗 ‖2

2 +
‖𝑊∗

𝐴 𝑗
‖2

2 ,
without impacting the overarching stability of the system.

The aggregate contribution to the error bounds is calculated by adding 𝛾penj 𝑗 to (92), resulting in a compre-
hensive error bound 𝐶 𝑗 = 𝐶̄0 𝑗 + 𝛾penj 𝑗 . It is, therefore, clear from the derived equations that the error bounds
experience an increase as the weights deviate from their optimal points; however, the comprehensive stability
of the system remains intact.
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