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Abstract
Gastric cancer (GC) is one of the most common causes of cancer-related death worldwide, and gastric cancer 
stem cells (GCSCs) are considered as the major factor for resistance to conventional radio- and chemotherapy. 
Accumulating evidence in recent years implies that GCSCs regulate the drug resistance in GC through multiple 
mechanisms, including dormancy, drug trafficking, drug metabolism and targeting, apoptosis, DNA damage, 
epithelial-mesenchymal transition, and tumor microenvironment. In this review, we summarize current 
advancements regarding the relationship between GCSCs and drug resistance and evaluate the molecular bases of 
GCSCs in drug resistance.
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INTRODUCTION
According to GLOBOCAN estimates in 2020, gastric cancer (GC) is the fifth cause of global cancer 
incidence and the fourth leading cause of cancer mortality[1]. The incidence rates of GC vary widely across 
the world, with the highest rates in East Asia and Eastern Europe[1]. GC, most cases of which are gastric 
adenocarcinoma (GAC), is histologically divided into two subtypes [intestinal and diffuse (Lauren 
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classification)][2] or four subtypes [papillary, tubular, mucinous, and poorly cohesive (WHO 
classification)][3]. Based on genomic and epigenomic alterations, the most well-defined molecular-based 
classification systems include The Cancer Genome Atlas (TCGA) classification [EBV positive (EBV), 
microsatellite instable (MSI), genomically stable (GS), and chromosomal instable (CIN)][4] and the Asian 
Cancer Research Group (ACRG) classification [microsatellite instable (MSI), microsatellite stable TP53 
inactive (MSS/TP53 inactive), MSS TP53 active (MSS/TP53 active), and MSS with epithelial–mesenchymal 
transition (EMT) features (MSS/EMT)][5]. Despite advances in the field of early diagnosis in GC, most cases 
are still diagnosed at an advanced stage[6] with unresectable or metastatic disease. Although current systemic 
treatments, including surgery, chemotherapy, radiotherapy, immunotherapy, and targeted therapy [Table 1] 
for advanced GC patients, have been considerably improved during recent decades, most patients with 
advanced GC die from tumor relapse and metastasis. The prognosis of advanced and metastatic GC remains 
poor, and the 5-year survival rate is < 10%[7].

Early GC patients can be cured with surgery alone. For advanced unresectable patients, chemotherapy 
represents the backbone of systemic therapy, and chemotherapy with or without radiotherapy has been 
integrated into standard-of-care therapies. Cytotoxic chemotherapy has been demonstrated to be effective 
for advanced GC patients, and the common cytotoxic chemotherapy drugs include fluoropyrimidines (e.g., 
fluorouracil, capecitabine, and S-1), platinums (e.g., cisplatin and oxaliplatin), taxanes (e.g., paclitaxel and 
docetaxel), topoisomerase inhibitors (e.g., irinotecan), and anthracyclines (e.g., doxorubicin and epirubicin). 
In patients with human epidermal growth factor 2 (HER2)-negative, advanced gastric adenocarcinoma, the 
current first-line treatment consists of two- or three-drug regimens. Doublet therapies are the combination 
of platinum derivatives (cisplatin and oxaliplatin) and fluoropyrimidine analogs (5-fluorouracil, 
capecitabine, and S-1). Three-drug regimens are the triplet combinations adding taxanes or anthracyclines 
(doxorubicin and epirubicin) to the doublet regimen. Table 2 summarizes the landmark trials for first-line 
treatment of advanced gastric cancer. However, the clinical benefit from these treatments is limited due to 
the toxicity of chemotherapeutic drugs and the development of drug resistance.

More recently, targeted therapies have been developed for gastric cancer patients. These include 
trastuzumab, lapatinib, and margetuximab for epidermal growth factor receptor-2 (HER-2); bevacizumab 
for vascular endothelial growth factor (VEGF); ramucirumab, apatinib, and regorafenib for vascular 
endothelial growth factor receptor (VEGFR); cetuximab and panitumumab for endothelial growth factor 
receptor (EGFR); bemarituzumab for fibroblast growth factor receptor (FGFR); everolimus for mTOR; and 
zolbetuximab for Claudin 18.2. Various targeted therapy approaches have been investigated; however, 
several clinical trials in gastric cancer have failed due to the tumor heterogeneity and the difficulty of 
screening the beneficiary population for targeted therapeutic drugs. Furthermore, immunotherapy is being 
developed to block the binding of ligands to checkpoint receptors and re-activate the human cellular 
immune response. These are immune checkpoint inhibitors (ICIs) including nivolumab and 
pembrolizumab as PD-1 inhibitors, durvalumab and avelumab as PD-L1 inhibitors, and ipilimumab and 
tremelimumab as CTLA-4 inhibitors. Several trials have demonstrated that the benefits of immunotherapy 
only or with cytotoxic chemotherapy are relatively limited[17]. Thus, with relatively low response rates, the 
use of immunotherapy has only led to limited approval in the second-line treatment setting for GC[18]. More 
and more promising targeted therapies and immunotherapies are being investigated, and these will likely 
further improve outcomes for patients. Table 3 summarizes the landmark trials for targeted therapy and 
immunotherapy of advanced gastric cancer.

Drug resistance leads to pharmacological treatment failure and poor outcomes for advanced GC patients. 
The mechanisms of drug resistance of GC are divided into seven groups, according to the previously 
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Table 1. A summary of systemic treatments in gastric cancer

Treatment 
approaches Mechanisms Regimen Efficacy Adverse 

effects

Surgery Surgical resection Open surgery, laparoscopic 
surgery, endoscopic resection, 
robotic surgery 

Primary choice for early-stage 
GC

Low

Chemotherapy Target and kill fast-dividing cells Fluoropyrimidines, platinums, 
taxanes, irinotecan, etc.

The standard-of-care 
treatment for advanced GC

Damage to 
normal and 
healthy tissues

Radiotherapy Ionizing radiation to target and kill 
tumor tissue

Ionizing radiation Curative and palliative 
treatment

Damage to 
normal and 
healthy tissues

Targeted therapy Target the specific molecules (HER2, 
VEGF, VEGFR, etc.)

Monoclonal antibodies and small 
molecule inhibitors

Use in combination with 
chemotherapy in first- and 
second-line settings

Relatively low

Immunotherapy Block the binding of ligands to 
checkpoint receptors and re-activate 
the human cellular immune response

Immune checkpoint inhibitors 
(PD-1, PD-L1, and CTLA-4) 

Use in second- and third-line 
settings

Relatively low

GC: Gastric cancer; HER2: human epidermal growth factor receptor 2; VEGF: vascular endothelial growth factor; VEGFR: vascular endothelial 
growth factor receptor; PD-1: programmed cell death protein 1; PD-L1: programmed cell death 1 ligand 1; CTLA-4: cytotoxic T-lymphocyte-
associated protein 4.

Table 2. Landmark trials in first-line treatment of advanced gastric cancer

Studies Treatment regimen ORR mPFS (mo), P-
value

mOS (mo),  
P-value Reference

MacDonald, 
et al. 1980

Fluorouracil, doxorubicin, mitomycin (FAM) 42% NR 5.5 [8]

Wils, et al. 1991 Fluorouracil , doxorubicin, methotrexate (FAMTX) 
vs. FAM

41%/9% NR 9.7/6.7 [9]

Webb, et al. 
1997

Epirubicin, cisplatin, fluorouracil (ECF) vs. FAMTX 45%/21% 7.4/3.4, P = 
0.00006

8.9/5.7, P = 
0.0009

[10]

Van Cutsem, et 
al. 2006

Cisplatin, fluorouracil (CF) vs. Docetaxel,cisplatin, 
fluorouracil (DCF)

37%/25% 5.6/3.7, P < 
0.001

8.2/9.6, P = 0.02 [11]

Cunningham, et 
al. 2008

Epirubicin, cisplatin, fluorouracil (ECF) vs. 
Epirubicin, cisplatin, capecitabine (ECX) vs. 
Epirubicin, oxaliplatin, fluorouracil (EOF) vs. 
Epirubicin, oxaliplatin, capecitabine (EOX)

41%/46%/42%/48% 6.2/6.7/6.5/7.0 9.9/9.9/9.3/11.2 [12]

Kang, et al. 
2009

Cisplatin, capecitabine (XP) vs. Cisplatin, 
fluorouracil (FP)

41%/29% 5.6/5.0, P < 
0.001

10.5/9.3, P = 
0.008

[13]

Shah, et al. 
2010

DCF, granulocyte stimulating factor (G-CSF) vs. 
modified DCF (mDCF)

33%/49% 6.5/9.7, P = 0.2 12.6/18.8, P = 
0.007

[14]

Koizumi, et al. 
2014

S-1, Docetaxel vs. S-1 38.8%/26.8% 5.3/4.2, P < 
0.001

12.5/10.8, P = 
0.032

[15]

Guimbaud, et 
al. 2014

epirubicin, cisplatin, capecitabine (ECX) vs. Folinic 
acid, Fluorouracil, Irinotecan (FOLFIRI)

39.2%/37.8% 5.3/5.8, P = 0.96 9.5/9.7, P = 0.95 [16]

ORR: Objective response rates; mPFS (mo): median progression-free survival (months); mOS (mo): median overall survival (months); NR: not 
reported.

proposed classification[40]: change in drug intracellular concentration (MOC-1), change in drug metabolism 
(MOC-2), change in drug targets (MOC-3), change in DNA repair (MOC-4), change in apoptosis and 
survival (MOC-5), change in tumor cell microenvironment (MOC-6), and phenotypic transformation 
(MOC-7) [Figure 1]. We summarize the updated knowledge of the molecular mechanisms attributed to 
drug resistance in GC in Figure 2.
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Table 3. Landmark trials in targeted therapy and immunotherapy [immune checkpoint inhibitors (ICIs)] for the treatment of 
advanced GC

Items Drugs Treatment regimen ORR, P-value mPFS (mo), 
P-value

mOS (mo), 
P-value Reference

HER-2

Trastuzumab Capecitabine or 5- FU plus 
cisplatin with Trastuzumab vs. 
Capecitabine 
or 5- FU plus cisplatin

47%/35%, P = 0.0017 6.7/5.5, P = 
0.0002

13.8/11.1, P = 
0.0046

[19]

Trastuzumab TrastuzumabDeruxtecan vs. 
Irinotecan or Paclitaxel

51%/14%, P < 0.001 5.6/3.5, P = 
0.01

12.5/8.4 [20]

Lapatinib Paclitaxel with Lapatinib vs. 
Paclitaxel

27%/9%, P < 0.001 5.4/4.4, NS 11.0/8.9, NS [21]

Lapatinib Capecitabine plus oxaliplatin 
with Lapatinib vs. Capecitabine 
plus oxaliplatin

53%/39%, P = 0.0031 6.0/5.4, P = 
0.0381

12.2/10.5, NS [22]

Margetuximab Margetuximab vs. Trastuzumab 25%/14%, P < 0.001 5.8/4.9, P = 
0.03

21.6/19.8, NS [23]

VEGF

Bevacizumab Capecitabine plus cisplatin with 
Bevacizumab vs. Capecitabine 
plus cisplatin

46%/37.4%, P = 
0.0315

6.7/5.3, P = 
0.0037

12.1/10.1, NS [24]

VEGFR

Ramucirumab Ramucirumab vs. placebo 3%/3%, NS 2.1/1.3, P < 
0.0001

5.3/3.8, P = 
0.047

[25]

Ramucirumab Paclitaxel with Ramucirumab vs. 
Paclitaxel

28%/16%, P = 0.0001 4.4/2.9, P = 
0.0001

9.6/7.4, P = 0.017 [26]

Apatinib Apatinib vs. placebo 2.84%/0%, NS 2.6/1.8, P < 
0.001

6.5/4.7, P = 
0.0149

[27]

Regorafenib Regorafenib vs. placebo NR 2.6/0.9, P < 
0.001

5.8/4.5, NS [28]

EGFR

Cetuximab Capecitabine plus cisplatin with 
Cetuximab vs. Capecitabine 
plus cisplatin

30%/29%, NS 4.4/5.6, NS 9.4/10.7, NS [29]

Panitumumab Epirubicin, oxaliplatin, and 
capecitabine with 
Panitumumab vs. Epirubicin, 
oxaliplatin, and capecitabine

46%/42%, NS 6.0/7.4, NS 8.8/11.3, P = 0.013 [30]

FGFR

Bemarituzumab Modified FOLFOX6 with 
Bemarituzumab vs. modified 
FOLFOX6

47%/33% 9.5/7.4, P = 
0.073

Not reached/12.9, 
P = 0.027

[31]

mTOR

Everolimus Everolimus vs. placebo 4.5%/2.1% 1.7/1.4, P < 
0.001

5.4/4.3, NS [32]

Claudin 18.2

Targeted 
therapies

Zolbetuximab EOX with 
Zolbetuximab vs. EOX

39.0%/25.0%, P = 
0.034

7.5/5.3, P < 
0.0005

13.0/8.3, P < 
0.0005

[33]

PD-1

Nivolumab Nivolumab vs. placebo 11.2%/0%, P = 0.0088 6.1/1.61, P < 
0.0001

11.6/5.26, P < 
0.0001

[34]

Nivolumab CTx (S-1 or capecitabine plus 
oxaliplatin) with Nivolumab vs. 
CTx (S-1 or capecitabine plus 
oxaliplatin)

57.5%/47.8%, P = 
0.0088

10.45/8.34, P 
= 0.0007

17.45/17.15, NS [35]

Pembrolizumab Pembrolizumab vs. paclitaxel 16%/14% 1.5/4.1, P = 
0.0007

9.1/8.3, P = 
0.0421

[36]

PD-L1

Immunotherapy-
Immune 
Checkpoint 
Inhibitors (ICIs)
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Durvalumab Durvalumab plus 
tremelimumab, 2 L vs. 
Durvalumab, 2 L vs. 
Tremelimumab, 2 L vs. 
Durvalumab, tremelimumab, 3 
L vs. Durvalumab, 
tremelimumab, 2 L/3 L

7.4%/0%/8.3%/4.0% 1.8/1.6/1.7/1.8 3.4/3.2/7.7/10.6, [37]

Avelumab Avelumab vs. chemotherapy 
(paclitaxel or irinotecan)

2.2%/4.3% 1.4/2.7, NS 4.6/5.0, NS [38]

CTLA-4

Ipilimumab Ipilimumab vs. first-line 
chemotherapy

1.8%/7.0% 2.72/4.90, P = 
0.034

12.7/12.1 [39]

Tremelimumab Durvalumab plus 
tremelimumab, 2 L vs. 
Durvalumab, 2 L vs. 
Tremelimumab, 2 L & 
Durvalumab, tremelimumab, 3 
L vs. Durvalumab, 
tremelimumab, 2 L/3 L

7.4%/0%/8.3%/4.0% 1.8/1.6/1.7/1.8 3.4/3.2/7.7/10.6, [37]

ORR: Objective response rates; mPFS (mo) : median progression-free survival (months); mOS (mo) : median overall survival (months); HER-2: 
epidermal growth factor receptor-2; VEGF: vascular endothelial growth factor; VEGFR: vascular endothelial growth factor receptor; EGFR: 
endothelial growth factor receptor; FGFR: fibroblast growth factor receptor; mTOR: mammalian target of rapamycin; PD-1: programmed cell death 
protein 1; PD-L1: programmed cell death 1 ligand 1; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; NS: no significant difference; NR: not 
reported.

Figure 1. A schematic diagram depicting the molecular mechanisms accounting for drug resistance in gastric cancer.

Cancer stem cells (CSCs) are a subpopulation of stem cell-like cancer cells that are responsible for cancer 
pathogenesis including initiation, development, drug resistance, metastasis, and cancer recurrence[41-43]. In 
recent years, accumulating evidence indicates the presence of CSCs in various types of cancers, including 
brain[44], breast cancer[45], head and neck cancer[46], renal cancer[47], colon cancer [48-50], pancreatic cancer[51-52], 
liver cancer[53], lung cancer[54], prostate cancer[55], and melanoma[56], and targeting CSCs may be essential to 
prevent tumor relapse and spread[57]. Moreover, growing evidence suggests that there are several signaling 
pathways preferentially associated with CSCs[58-60], including Hedgehog, Notch, WNT/β-catenin, JAK/STAT, 
PI3K/PTEN, and NF-κB pathways, which contribute to the survival, self-renewal, and differentiation 
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Figure 2. Proteins and non-coding RNAs accounting for drug resistance in gastric cancer. This figure is based on the work of Marin 
et al.[40].

properties of CSCs[61].

CSC-targeting therapies are currently being investigated to reverse chemoresistance, including 
chemotherapeutic and biological agents that target stemness pathways including Hedgehog, Notch, 
Hippo/YAP1, JAK/STAT, and Wnt/β-catenin pathways; cancer stem cell surface markers including CD24, 
CD44, CD54, CD71, CD90, CD133, ALDH, CXCR4, EpCAM, LGR5, Sox2, and Oct4; the CSC 
microenvironment; and others[62-64]. However, these current strategies to target CSCs are not specific to 
CSCs, leading to toxic effects on normal tissues.

CSCs in GC were first identified from a panel of human GC cell lines[65]. Cancer stem cells from either 
human GC cell lines or tumor tissues were isolated using cell surface markers such as CD24, CD44, CD54, 
CD71, CD90, CD133, Lgr5, ALDH1, EpCAM, and CXCR4[63, 66-67]. Although studies suggest the presence of 
gastric cancer stem cells (GCSCs), the origin of GCSCs is currently unclear and controversial. Two major 
hypotheses propose that GCSCs are derived from normal gastric stem cells (GSCs) or from bone marrow-
derived mesenchymal stem cells (BM-MSCs)[68, 69].

In recent years, growing evidence shows that GCSCs play important roles in drug resistance in GC. Thus, 
understanding GCSC functions and their roles in drug resistance, as well as defining the molecular 
mechanisms of drug resistance, will help identify potential anticancer drug targets and develop new 
chemotherapeutic drugs and effective therapeutic strategies to improve the clinical outcomes of GC 
patients. In this review, we summarize our current understanding of the roles of GCSCs in GC drug 
resistance, as well as provide a comprehensive analysis of the potential molecular mechanisms by which 
CSCs contribute to drug resistance in GC.
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GCSCS AND DRUG RESISTANCE
Substantial studies have demonstrated that GCSCs are resistant to conventional radio-/chemotherapy. 
Aldehyde dehydrogenase (ALDH) is generally highly expressed in stem cells and considered as a CSC 
marker[70]. Gastric cancer cells with high expression of ALDH showed strong resistance to 5-fluorouracil 
(FU) and cisplatin; thus, high expression of ALDH in GC cell lines is believed to play a key role in resistance 
to chemotherapeutic drugs in GC[71,72]. Similarly, upregulation of LGR5, another GCSC marker, significantly 
enhanced cell stemness and drug resistance in MGC803 cells[73]. Further studies have shown that LGR5+ 
GCSCs are resistant to cisplatin treatment[74]. We recently showed that CD44+/CD54+ GCSCs isolated from 
cancer tissues can survive and expand after treatment with 5-FU and cisplatin[75]. Consistent with our 
results, another study showed that KHDRBS3 plays an important role in the acquisition of 5-FU resistance 
by regulating CD44 variant expression[76]. These results show that GCSCs play a key role in the acquisition 
of drug resistance in GC.

Accumulating evidence suggests the drug resistance capability of GCSCs is significantly higher than that of 
GC cells, and GCSCs can be enriched in GC after chemotherapy. Compared with GC cells, GCSCs showed 
stronger resistance to chemotherapeutic drugs 5-FU and oxaliplatin[77]. CSCs can be isolated or enriched by 
CSC-specific surface markers or through stem cell side population (SP) analysis[78]. Similarly, GCSCs 
isolated from GC cell lines by the SP method showed more resistance to chemotherapy[79]. Further study 
showed that CD44+ GCSCs isolated from tumor tissues were significantly enriched after treatment with 5-
FU[80]. Another study demonstrated that ALDH+ CSCs in GC cell cultures can be enriched after treatment 
with cisplatin and 5-fluorouracil[81]. Meanwhile, clinical studies have revealed that resistance to anticancer 
drugs of GC is mainly associated with GCSCs. Patients with high CD133 expression exhibited stronger drug 
resistance, higher relapse rate, and lower five-year survival rate compared with patients with low CD133 
expression[82]. Similarly, patients with high CD44 and CD133 expression showed worse survival[83]. 
Furthermore, expression of LGR5 and CD133 was identified to be significantly associated with poor clinical 
outcomes, and patients who are LGR5+ and CD133+ showed a lower overall survival rate than those who 
are LGR5- and CD133-[84]. The results from a phase II clinical trial show that GC patients with high 
expression CD44 who received chemotherapy with vismodegib, a hedgehog inhibitor, held a survival 
advantage[85]. Therefore, GCSCs are a major factor in GC resistance to radiation and chemotherapy.

THE UNDERLYING MECHANISMS FOR GCSCS REGULATING THE DRUG RESISTANCE
Drug resistance is a multifactorial phenomenon involving various components and multiple interrelated 
pathways, which work together to contribute to the development of this phenomenon. Various CSC-
associated signaling pathways and molecular mechanisms have been described as implicated in CSC drug 
resistance[86]. To our knowledge, the underlying molecular mechanisms by which GCSCs contribute to 
chemoresistance include dormancy, drug trafficking, drug metabolism and targeting, apoptosis and cell 
death, DNA damage, epithelial-mesenchymal transition (EMT), and tumor microenvironment. The 
molecular mechanisms attributed to drug resistance in GCSCs are described below based on the previously 
proposed classification (MOC-1-7)[40], and a schematic outline is summarized in Figure 3.

Dormancy
Tumor dormancy contributes to the development of chemoresistance, metastasis, and cancer recurrence. 
CSCs are frequently in a quiescent state in which CSCs can remain in the G0/G1 stage with a low 
proliferation rate[87,88]. As most conventional chemotherapeutic drugs target proliferating cells, quiescence 
properties support CSCs to become resistant to radio- and chemotherapy[72,89-90]. Accordingly, 5-FU-resistant 
GC cells with CSC features were found to be mainly quiescent cells, which remained in the G0/1 phase[91]. 
Similarly, IL-17 enhances the proliferative capacity of quiescent gastric stem cells[92], potentially promoting 
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Figure 3. A schematic diagram depicting the molecular mechanisms accounting for chemoresistance in GCSCs. This figure is based on 
the work of Marin et al.[40].

these transformed GCSCs to be sensitive to chemotherapy.

Changes in drug uptake, efflux, metabolism, and targeting
Reduced drug uptake
One of the most studied mechanisms of cancer drug resistance is reducing the uptake of drugs. The uptake 
of drugs into tumor cells can be active transportation mediated by the membrane transporters. Most of 
these membrane transporters are solute carrier (SLC) proteins, which play an essential role in drug uptake. 
The SLC protein family contains more than 300 proteins that mediate the absorption of multiple types of 
substrates, including amino acids, sugars, organic cations, anions, etc., as well as chemotherapeutic drugs[93]. 
Unexpectedly, SLC34A2 was found to be increased in CD44+ GCSCs, and suppression of SLC34A2 in 
GCSCs reduced the effects of chemoresistance[94]. This result is consistent with SLC34A2 potentially having 
an oncogenic role in GC cells[95]. However, the detailed molecular mechanism remains unclear, which 
requires further investigation.

Increased drug efflux
Another mechanism of drug resistance is associated with the increased efflux of cytotoxic drugs by active 
ATP-binding cassette (ABC) transporter proteins, which is known as “drug efflux”. Forty-eight ABC 
transporter members have been identified in humans and are divided into seven distinct subfamilies 
(ABCA-ABCG) with different functions. Only 13 ABC transporters (ABCA2/3, ABCB1/2/5, 
ABCC1/2/3/4/5/6/10, and ABCG2) have been directly associated with chemoresistance[96]. Three major ABC 
transporters, including P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated protein 1 
(MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2), have been found in various drug-
resistant cancer cell lines and tissues and studied extensively for their correlation to multidrug resistance 
(MDR)[97]. These ABC transporters can lower the intracellular drug concentration by pumping out 
chemotherapy-based agents, including vinblastine, vincristine, doxorubicin, daunorubicin, actinomycin-D, 
and taxanes[98,99].
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CSCs express a high number of ABC transporter proteins on their cell surface[64,86], and ABC transporters in 
CSCs have been shown to play an important role in drug resistance[72,100-101]. Therefore, ABC transporters are 
widely used as surface markers for CSC identification and isolation[57].

ABCG2 is a major multidrug resistance pump, which is a downstream target of the sonic hedgehog (SHH)-
glioma-associated oncogene homolog (GLI) signaling pathway[102]. Recent studies have indicated ABCG2 
plays a pivotal role in drug resistance in GCSCs. CD44+/Musashi-1+ GCSCs with increased expression of 
ABCG2 exhibited resistant to doxorubicin[103]. Moreover, the inactivation of SHH-GLI signaling pathways 
decreased ABCG2 expression, rendering GCSCs more chemosensitive to doxorubicin[103]. This result implies 
that ABCG2 is a potential therapeutic target against CSCs to overcome drug resistance. Moreover, 
inhibition of ABCG2 expression by genistein, which is the predominant isoflavone in soy products, could 
inhibit gastric cancer stem cell-like features and reduce the chemoresistance of GCSCs[104]. Another study 
also demonstrated miR-132 could enhance cisplatin resistance in LGR5+ GCSCs via the 
SIRT1/CREB/ABCG2 signaling pathway[74]. However, the roles of other ABC transporter proteins of GCSCs 
in drug resistance are not clearly defined, and further investigations are needed to explore the roles of ABCs 
in cancer therapies against GCSCs.

Altered drug metabolism
Thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) are both key 5-FU metabolic 
enzymes. TS is a target enzyme of 5-FU, and 5-FU exerts an anticancer effect by its conversion into 
fluorodeoxyuridine monophosphate (FdUMP) which can form a ternary complex with TS to cause 
suppression of the de novo synthesis of dTMP. DPD is the initial and rate-limiting enzyme that translates 5-
FU into metabolites without cytotoxicity. TS and DPD, which are representative markers of 5-FU resistance, 
were shown to be significantly upregulated in a 5-FU-resistant CSC-like cell population in GC[76]. Hence, 
metabolic inactivation or alteration of the anticancer drugs in GCSCs enable CSCs to resist therapy and 
strengthen their stemness.

Changed drug targeting
Drug targeting altering by changing the expression and function of drug targets is also one of the major 
causes of drug resistance. Receptors of tyrosine kinase and its downstream signaling pathway play a pivotal 
role in carcinogenesis and tumor development and constitute the targets for tyrosine kinase inhibitors 
(TKIs). For instance, the EGFR signaling pathway is involved in the pathogenesis and progression of 
cancers by activation of either RAS/RAF/MEK/ERK or PI3K/AKT/mTOR cascade[105]. The activation of 
MEK, a component of the EGFR/Ras/RAF/MEK/ERK signaling pathway, caused drug resistance to MEK 
inhibitors[106]. Correspondingly, silencing LINGO2, a GCSC-related marker, reduced AKT, ERK, and MEK 
phosphorylation[107], suggesting that activation of AKT, ERK, and MEK in GCSCs is responsible for 
chemoresistance to the inhibitors targeting these kinases.

Inhibition of apoptosis and cell death
One of the primary goals of most anticancer agents is to cause tumor-selective cell death. The resistance to 
apoptosis, one of the key regulatory events leading to cell death, is the hallmark of cancer. Apoptosis occurs 
through extrinsic and intrinsic pathways that are dependent on caspase activation and mitochondrial outer 
membrane permeabilization (MOMP), respectively. The extrinsic apoptotic pathway is often related to 
ligands such as TNF-α, TNF-α-related apoptosis-inducing ligand (TRAIL), and Fas-ligand (FasL) and cell 
death receptors such as TNFR, TRAILR, FasR, linker proteins, and caspases 3, 6, 7, and 8. The intrinsic 
pathway is triggered by mitochondrial membrane disturbance following various stimuli including DNA 
damage and radio-/chemotherapy. Pro-apoptotic proteins such as Bax and Bak, as well as anti-apoptotic 



Page 803 Xiong et al. Cancer Drug Resist 2022;5:794-813 https://dx.doi.org/10.20517/cdr.2022.11

proteins such as Bcl2 and Bcl-XL are involved. Both intrinsic and extrinsic pathways activate caspases and 
ultimately lead to cell apoptosis. Increasing evidence suggests that disruption of the apoptotic pathway 
impacts resistance to anticancer drugs in GCSCs. Pro-apoptotic proteins including Bax, cytochrome C, 
caspase 9a, cleaved caspase 3, and cleaved caspase 9 were observed to be downregulated, while anti-
apoptotic proteins Bcl-2 and Bcl-XL were upregulated in CD44+ GC cells compared with CD44- GC 
cells[108]. Moreover, in CD44+ GC cells, inhibition of miR-193a-3p can induce apoptosis by activating the 
mitochondrial apoptotic pathway and enhance the chemotherapeutic response of cisplatin[108]. Thus, GCSCs 
can induce resistance to drug-mediated apoptosis by upregulation or activation of anti-apoptotic proteins or 
downregulation or mutation of pro-apoptotic proteins. Similarly, miR-20a could increase cisplatin 
resistance in GC cells via modulating the anti-apoptotic factors livin and survivin[109,110], whereas miRNA-
19b, -20a, and -92a are proven to promote GCSCs properties[111]. miR-20a may also be involved in the 
development of chemoresistance in GCSCs by modulating apoptosis through livin and survivin.

Repair and prevention of DNA damage
The dynamic balance between DNA damage and repair depends on the type of injury and the activity of a 
variety of repair mechanisms: nucleotide-excision repair (NER), base-excision repair (BER), mismatch 
repair (MMR), non-homologous end-joining (NHEJ), and homologous recombination (HR) systems. DNA 
damage-inducing agents are among the most effective treatment regimens in clinical chemotherapy. 
However, GCSCs can be resistant to DNA damage by drug treatment-induced reactive oxygen species 
(ROS) scavenging. Gastrointestinal cancer cells with high CD44 expression exhibited an enhanced capacity 
for GSH synthesis, resulting in defense against ROS[112]. CSC marker ALDH can facilitate detoxification by 
scavenging of ROS, as well as by producing antioxidant compounds such as NADP[113]. Aldehyde 
dehydrogenase 3A1 was found to be upregulated in gastric cancer stem-like cells[114]. Moreover, in multiple 
GC cell lines and hematopoietic malignancies, ALDH is highly expressed in ROS-low cells, and ALDH-
high/ROS-low cells may be cancer-initiating cells (CISs)[115-117], which are also called CSCs. These data 
indicate that ALDH+ GCSCs can enhance the resistance to chemotherapy or radiochemotherapy by 
reducing the level of ROS and avoiding DNA damage.

Epithelial-mesenchymal transition
Epithelial-mesenchymal transition (EMT) is a process of lineage transition whereby epithelial cells lose their 
epithelial traits and acquire mesenchymal cell phenotypes, with corresponding changes in cell morphology 
and expression of surface markers[118]. EMT facilitates tumor cell migration, invasion, metastasis, and drug 
resistance[119]. Several cytokines, chemokines, and growth factors can trigger EMT by activation of a group of 
EMT-inducing transcription factors (EMT-TFs) such as SNAIL, SLUG, ZEB1/2, and TWIST[120]. EMT is 
regulated by a wide, complex, interactive molecular network including exogenous inducers, intracellular 
regulatory miRNA, epigenetic modulators, and cellular signaling pathways including MAPK, ERK, PI3K, 
SMADs, and Wnt/β-catenin[121].

EMT has been shown to regulate the acquisition of stemness in multiple cancer cells[122] and promote CSC 
stemness and quiescence that increase drug resistance[123]. EMT could induce CSC characteristics that 
increase drug resistance through different mechanisms including the hedgehog, Wnt, Notch, and Musashi 
signaling pathways, as well as the epigenetic regulator Bmi1[124,125].

EMT activation confers drug resistance in CSCs through other mechanisms, including promoting drug 
efflux by increased levels of ABC pumps or inhibition of cell apoptosis by elevated expression of anti-
apoptotic proteins such as Bcl-XL[123-124,126]. Correspondingly, NANOGP8, one of the pseudogenes in the 
NANOG gene family, is identified to be the main regulator of GCSCs, which can promote EMT/stemness 
and enhance chemoresistance[127]. NANOGP8 may confer gastric cancer cells with chemoresistance by 
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upregulation of ABCG2[127]. However, the exact molecular mechanisms responsible for EMT and the 
resulting drug resistance in GCSCs remain uncertain.

Adaptation to tumor microenvironment
CSCs are found in a specialized tumor microenvironment (TME), known as the niche, which is mainly 
composed of extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), cancer-associated adipocytes 
(CAAs), and endothelial, mesenchymal, and immune cells, and those conditions promote CSC 
adaptation[128-129]. Reciprocal interactions between CSCs and the niche are critical for CSCs to maintain their 
stemness properties and promote tumor initiation, metastasis, and drug resistance[130].

Increasing evidence highlights that the TME takes part in therapeutic resistance in GCSCs, largely involving 
CAFs, which remarkably influence the TME via the secretion of various growth factors, cytokines, and 
chemokines[131]. The main component secreted by CAFs is TGFβ, which induces EMT[132] and promotes the 
acquisition of GCSC features[133], ultimately leading to drug resistance[134]. Another study showed that CAFs 
can also promote stemness by the secretion of NRG1, which activates the NF-κB signaling in GC[135]. 
Moreover, CAFs can induce drug resistance not only by promoting stem-related signaling pathways in 
GCSCs but also by secreting type I collagen, which contributes to decreasing drug uptake[136]. Additionally, a 
recent study demonstrated that low expression of gastric CAF-derived SPARC (secreted protein acidic and 
rich in cysteine) can promote GCSC transformation and 5-FU resistance[137], suggesting that CAF-secreted 
SPARC may be involved in the regulation of drug resistance of GCSCs. Collectively, this evidence implicates 
an important role of the TME in the development of drug resistance of GC.

Exosomes
Exosomes (about 30-200 nm) are small extracellular vesicles (EVs) that originate from endosomes and are 
secreted by live cells into the extracellular space through the fusion of multivesicular bodies (MVBs) with 
the plasma membrane[138]. They are composed of a transmembrane protein-containing lipid bilayer and cell-
state-specific molecules including DNAs, mRNAs, ncRNAs, and proteins in the vesicle lumen. Exosomes, as 
carriers, mediate cell-to-cell communication and substance exchange via the transfer of donor cell-derived 
contents to recipient cells[139]. Increasing evidence suggests that tumor-derived exosomes play critical roles 
in many aspects of cancer, including tumor growth, metastasis, angiogenesis, immunity, and other 
processes, and can be used as potential diagnostic biomarkers or therapeutic targets for cancer 
patients[140-142]. Recent studies showed exosomes are associated with the transfer of the drug resistance 
phenotype, and cancer cells could develop drug resistance after the incorporation of exosomes from drug-
resistant cancer cells. Studies indicated exosomal PD-L1 promotes chemoresistance via inducing T cell 
exhaustion, by which the T cells cannot be reinvigorated by anti-PD-1 treatment[143]. Inhibition of exosomal 
PD-L1 has also been reported to enhance the efficacy of anti-PD-L1 treatment[143,144]. Furthermore, another 
study showed chemotherapeutic agents stimulated the secretion of ABCB1-enriched exosomes from drug-
resistant cells and increased the transfer of ABCB1 to the recipient cancer cells, thus assisting these sensitive 
cancer cells in developing the resistant phenotype[145]. More recently, it has been shown that exosomal 
transference of wild-type EGFR to EGFR-mutated sensitive cancer cells promotes resistance to the mutant-
selective EGFR inhibitor osimertinib by activating the MAPK and PI3K/AKT signaling pathways[146]. Thus, 
exosomes could be novel therapeutic targets, which could overcome resistance to chemotherapeutic 
drugs[105, 106] or antibody-based approaches[143, 144], and they also might serve as a predictive biomarker for 
clinical responses to anti-PD-1 therapy[144].

Increasing evidence also highlights that exosomes are involved in the drug resistance of CSCs. The 
underlying mechanisms are complex, including cell cycle blockage, increased drug efflux, upregulation of 
detoxifying enzymes, enhanced anti-apoptotic capacity and DNA repair efficiency, inducing EMT process, 
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and immunosuppression[147,148]. However, the physiological and functional properties of exosomes in GCSCs 
are still unknown and need further investigation.

Extrachromosomal circular DNA
Extrachromosomal circular DNA (eccDNA) refers to a type of double-stranded circular DNA that 
originates from but is independent of chromosomes, which is widely present in various eukaryotic cells and 
can be derived from anywhere in a genome with sizes ranging from hundreds of base pairs (bp) to several 
megabases (Mb)[149]. According to the size and origin, eccDNAs can be categorized into organelle eccDNAs 
such as mitochondrial DNAs (mtDNAs) or non-organelle eccDNA such as telomeric circle (t-circles), 
microDNA (100-400 bp), small polydispersed circular DNA (spcDNA) (100 bp-10 kb), episomes, and 
double minutes (DMs) (100 kb-3 Mb)[150]. eccDNAs play important roles in gene regulation, sponging of 
transcription factors, environmental adaptation and evolution, aging, immune response, cell-to-cell 
communications, and tumor development[151,152].

eccDNAs have been shown to help cancer cells develop drug resistance via various mechanisms [Figure 4]. 
(A) Amplification of drug target genes: For instance, DMs, which contain the gene coding for dihydrofolate 
reductase (DHFR), were identified to be amplified and associated with the development of methotrexate 
(MTX) resistance[153]. (B) Amplification of multidrug resistance (MDR) genes: DMs, bearing the multidrug 
resistance 1 (MDR1) gene, were amplified in human epidermoid carcinoma cells and caused resistance to 
various anticancer drugs by upregulation of MDR1[154]. (C) “Hide and seek” mechanism: EGFRvIII, an 
oncogenic variant, can induce tumor cells to be more sensitive to EGFR tyrosine kinase inhibitor (TKI). 
Previous studies have demonstrated that erlotinib resistance in glioblastoma is caused by the elimination of 
DMs containing EGFRvIII[155,156]. However, after erlotinib withdrawal, the mutant EGFR re-emerged on 
DMs, which induced GBM cells to be re-sensitive to erlotinib treatment[156]. Through this “hide and seek” 
mechanism, cancer cells can evade drug therapy by dynamic modulation of drug-targeted oncogenes 
residing on eccDNAs. (D) Increasing intratumoral heterogeneity: eccDNAs can drive heterogeneity among 
daughter tumor cells, thus inducing these cells to obtain survival advantage under drug pressure[150]. (E) 
Increasing homologous recombination activity: Homologous recombination is associated with eccDNA 
biogenesis. Recent studies have shown that homologous recombination activity was increased in DM-
carrying MTX-resistant colon cancer cells, whereas inhibition of homologous recombination activity 
decreased the expression of DM-containing genes and enhanced drug sensitivity in MTX-resistant cells[157].

eccDNAs contribute to a variety of features in cancers and may serve as novel, promising molecular 
markers to shed new insights into the diagnosis, prognosis, and treatment of cancer patients. However, the 
functions and underlying mechanisms of eccDNA in CSCs are still unclear and require further exploration.

Helicobacter pylori infection
Helicobacter pylori (H. pylori) infection remains a main risk factor in the development of GC. In 1994, H. 
pylori was diagnosed as a Group I carcinogen by the WHO (World Health Organization)[158]. The stem cell 
hypothesis of cancer formation is that stem or progenitor cells can acquire CSC characteristics, evade 
homeostatic control, and lead to carcinogenesis. H. pylori has been shown to induce EMT and cancer stem 
cell (CSC)-like properties in gastric epithelial cells[159,160] and gastric cancer cells[161,162]. Data from multiple 
studies show that H. pylori may directly interact with gastric stem/progenitor cells[163-164] or bone marrow-
derived cells (BMDCs)[165] to impact the status and properties of these cells, which could be responsible for 
generating GCSCs. Moreover, H. pylori infection can induce inflammation, impact the local 
microenvironment, and affect gastric stem/progenitor cells and their differentiation by inducing genetic or 
epigenetic alterations[166-168]. H. pylori infection can mediate oncogenic transformation by inducing GCSCs 
generation or affecting gastric stem/progenitor cells. However, the underlying mechanisms leading to GCSC 
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Figure 4. Overview of our current understanding of cancer drug resistance mechanisms induced by eccDNAs.

emergence and the resulting drug resistance in GCSCs in response to H. pylori infection are awaiting further 
investigation.

CONCLUSION
Conventional radio-/chemotherapy provides a limited effect on prolonging the survival of advanced GC 
patients, and, recently, accumulating evidence shows that GCSCs are resistant to conventional 
chemotherapy and play a direct role in tumor metastasis and relapse. Based on the extensive evidence 
presented in this review, it is obvious that GCSCs regulate tumor radio-/chemoresistance via multiple 
intrinsic and extrinsic mechanisms. This review aims to provide an understanding of the precise 
mechanisms underlying GCSC resistance to chemotherapeutic drugs. Identifying the molecules and 
revealing insight into their interaction networks through further investigations may help to discover novel 
targets of anticancer therapy, develop new therapeutic approaches for the prevention of tumor recurrence 
and resistance, and increase the lifespan of GC patients.

However, to date, molecular mechanisms of drug resistance in GCSC remain largely unclear. Many aspects 
are still in need of further clarification: (1) to find more key components or molecules for regulating GCSCs 
resistance to the anticancer agents; (2) to define the precise molecular mechanisms and clarify how GCSCs 
coordinate these different, complex molecular pathways to response the chemotherapeutic drugs; and (3) to 
find the specific GCSC markers related to its response to the anticancer agents, so as to evaluate the 
effectiveness of different drugs and therapeutic strategies. More importantly, many more need to be proven 
to be effective in the clinic. We are at the beginning of understanding drug resistance from gastric cells to 
GCSCs. More basic and clinical studies should be done to increase the knowledge about the mechanisms of 
drug resistance to improve the outcome of advanced GC patients.
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