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Abstract
This paper reviews the application of distributed model predictive control (DMPC) for autonomous intelligent sys-
tems (AIS) with unmanned aerial vehicles (UAVs) and vehicle platoon systems. DMPC is an optimal control method
that formulates and solves optimization problems to adjust control strategies by predicting future states based on sys-
tem models while managing constraints, and this technique has been applied to an increasing number of industrial
areas. As the essential parts of AIS, UAVs and vehicle platoon systems have received extensive attention in the civil,
industrial, and military fields. DMPC has the ability to quickly solve optimization problems in real-time while taking
into account the prediction of the future state of the system, which fits in well with the ability of AIS to predict the
environment when making decisions, so the application of DMPC in AIS has a natural advantage. This paper first in-
troduces the basic principles of DMPC and the theoretical results in multi-agent systems (MASs). It then reviews the
application of DMPC methods to UAVs and vehicle platoon systems. Finally, the challenges of the existing methods
are summarized to offer insights to advance the future development of DMPC in practical applications.
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1. INTRODUCTION
With the rapid development of communication technology and computer science, the deep integration of
complex systems and sensing decision-making has gained unprecedented development [1,2]. Autonomous in-
telligent systems (AIS) are capable of environmental sensing, target detection, and cooperative control through
the integration of advanced control, communication modules, and sensing technologies. They have the ability
to autonomously plan actions, share resources, and operate remotely to complete tasks [3]. AIS is increasingly
being used in civil and industrial fields, such as logistics and transportation [4], power system inspection, and
ocean exploration, as well as military fields [5], including demining and blasting, battlefield surveillance, and
combat confrontation. Their unique capability to replace humans in complex and high-risk environments
renders them invaluable tools. However, as task demands grow in difficulty and complexity, single unmanned
systems face limitations in information access and problem-solving capacity. It is necessary for AIS to deal
with current difficulties through a distributed approach, which offers advantages such as spatial distribution,
parallel task execution, and fault tolerance. AIS has become a new trend in future research due to its com-
prehensive information acquisition and ability to realize intelligent interaction and processing in response to
mission requirements, compared to single-unmanned systems.

The AIS must perceive the environment to perform autonomous planning, and the prediction part of plan-
ning can be realized by optimizing the future state through the distributed model predictive control (DMPC)
method. As an optimal control algorithm based on an optimization problem that can handle constraints effi-
ciently, DMPC is widely used in power systems [6], chemical processes [7], urban transportation [8], and man-
ufacturing systems [9]. As a distributed online rolling computation algorithm, DMPC allows AIS to navigate
physical and environmental constraints, making it increasingly popular in AIS applications.

As the crucial components of AIS, the cooperative control of unmanned aerial vehicles (UAVs) and vehicle
platoon systems has received much attention. UAVs play a vital role in several fields, such as disaster relief,
environmental monitoring, logistics, transportation, and military surveillance. Through cooperative control,
UAVs can quickly and efficiently cover large areas, perform complex missions, and enhance the response
speed and success rates of missions [10–12], and vehicle platooning systems achieve efficient fleet management,
reduce traffic congestion, and save energy consumption in various scenarios such as freight transportation,
autonomous driving, and traffic management in modern urban environments, thus improving transportation
efficiency and road safety [13–15]. The difference between UAVs and vehicle platoon systems is that UAVs op-
erate in a three-dimensional airspace, relying on technologies such as GPS, inertial navigation systems, and
radar. In contrast, vehicle platoons operate in a two-dimensional road network, responding to traffic regu-
lations, road conditions, and other vehicles, often using vehicle-to-everything (V2X) communications and
light detection and ranging (LiDAR) technologies. UAVs have a more limited range due to battery limitations,
while vehicle platoons are more accessible to refuel or recharge and have a longer range. However, UAVs
and vehicle platoon systems are similar in several ways, e.g., both involve cooperative control of multiple in-
dependent units and require real-time decision-making and communication to achieve common goals; both
require real-time control in a dynamic and uncertain environment to ensure efficient operation and safety;
both need to consider physical and network security. Despite some differences, UAVs and vehicle platoon sys-
tems share commonalities in core technologies such as cooperative control, multi-subsystems communication
and path optimization, all of which can be effectively handled under the framework of DMPC. Meanwhile,
considering the significance of the cooperative operation between UAVs and vehicle platoon systems in both
civil and military fields, an overview of the two systems can help to promote the integration of the two fields,
inspire researchers to explore the cooperative operation of these two systems and promote the development of
integrated solutions in AIS.

Although existing review articles have covered a wide range of research on DMPC in different application
scenarios, such as smart grids [16–18], networked control systems [19], autonomous ground vehicles (AGVs) [20],
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each has specific focuses and limitations. For example, Arauz et al. concentrated on the application of DMPC
in network control problems, with special emphasis on its vulnerabilities and defense mechanisms in network
security [19]. On the other hand, Yu et al. comprehensively reviewed the application ofmodel predictive control
(MPC) in single and multiple AGVs [20]. Notably, Negenborn et al. surveyed and categorized a wide range of
DMPC methods, offering insights into the historical development and research trends of these methods [21].
However, none of these reviews have specifically addressed the application of DMPC to two critical domains -
UAVs and vehicle platoon systems nor have they discussed the unique challenges and future research directions
for DMPC within these systems.

In contrast to existing reviews, this review systematically introduces the basic fundamentals of DMPC and its
theoretical achievements in multi-agent systems (MASs), with a unique focus on the application of DMPC in
two AIS subsystems: UAVs and vehicle platoon systems. It also highlights the shortcomings and challenges of
the existing methods in practical applications and discusses the direction of future research to promote DMPC
in UAVs and vehicle platoon systems. This review presents the basics of DMPC with theoretical foundations
in MASs in Section 2. Sections 3 and 4 review the DMPC applications in UAVs and vehicle platoon systems,
respectively. Section 5 discusses the existing shortcomings and challenges of the DMPC approach for AIS.
Finally, the conclusion is provided in Section 6.

2. PRELIMINARY FOR DMPC
Before introducing the application of DMPC in UAVs and vehicle platoon systems, this section will introduce
the basics of DMPC and the advances of its theoretical research in MASs.

2.1 MPC
MPC is derived from optimal control, which computes for a sequence of control inputs by optimizing a cost
function containing information about the system’s states and control inputs at a future time and explicitly
handling the constraints imposed on the system [22]. MPC employs a rolling optimization strategy, which
optimizes over a finite time horizon. Considering a discrete-time system 𝑥(𝑡+1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)) as an example,
where the system is sampled at a specific sampling instant 𝑡, and the currently sampled state information 𝑥(𝑡)
is used as the initial state based on the model of the system to predict the state of the system in the prediction
horizon [𝑡, 𝑡 +𝑁]. Simultaneously, a constrained open-loop optimization problem is solved for a given system
cost function to obtain a set of control input sequences. The first control input in this sequence is then applied
to the actual controlled system. The new state of the system is obtained by sampling at the next sampling
instant 𝑡 + 1, and this process is performed repeatedly. The specific process is shown in Figure 1.

MPC has been widely used in linear systems [23,24] and nonlinear systems [25,26], but it is not the focus of this
paper. There are quite a few foundations for MPC research, such as robust MPC methods to cope with exter-
nal disturbances [27–29], trackingMPCmethods to achieve the designed control objectives [30,31], and economic
model predictive control (EMPC) methods considering economic costs in the actual production process [32].
Recently, the data-driven MPC methods were proposed by Berberich et al., and a rigorous theoretical anal-
ysis was given [31,33,34]. For more information about the advances in theoretical research on MPC and the
application of MPC methods in robotics, UAVs, and other systems, readers can refer to Ref. [35–39].

2.2 DMPC
As the scale of engineering systems increases, the applicability of traditional MPC methods diminishes. In-
stead, the DMPCmethod has received more attention for its excellent capability of dealing with complex large-
scale systems characterized by high dimensionality, multiple subsystems, constraints, and targets. Unlike the
centralized architecture of traditional MPC methods, DMPC decomposes the global system into several sub-
systems and formulates a local optimization problem for each subsystem, allowing the complex optimization
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Figure 1. MPC strategy. MPC: Model predictive control.

Figure 2. Quantitative comparison of key performances between centralized MPC and DMPC. MPC: Model predictive control; DMPC:
distributed model predictive control.

problem of a large-scale system to be divided into simple subproblems. This approach significantly reduces the
scale and computational complexity of individual optimization problems [40]. A quantitative comparison of
some key performances between centralized MPC and DMPC is shown in Figure 2. With the DMPC strategy,
information can be exchanged between subsystems, and interaction is also allowed between the local model
prediction controllers of each subsystem. The structure of DMPC is schematically illustrated in Figure 3.

In the following, a commonly used DMPC standard framework will be introduced, including the determina-
tion of optimization problem, cost function, and information transmission in DMPC.

2.2.1 Optimization problem
A general discrete system is taken as an example to introduce the optimization problem of DMPC:

𝑥𝑖 (𝑡 + 1) = 𝑓𝑖 (𝑥𝑖 (𝑡), 𝑢𝑖 (𝑡), 𝑥−𝑖 (𝑡)) (1)

where 𝑥𝑖 (𝑡) ∈ R𝑛𝑖 , 𝑢𝑖 (𝑡) ∈ R𝑚𝑖 denote the state and control input vector of the subsystem 𝑖, respectively, and
𝑥−𝑖 (𝑡) represents the state of the subsystem that has information interaction with subsystem 𝑖. Furthermore,
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Figure 3. DMPC structure. DMPC: Distributed model predictive control.

the system states and the control inputs must satisfy the constraints: 𝑥𝑖 (𝑡) ∈ X𝑖 and 𝑢𝑖 (𝑡) ∈ U𝑖 , respectively,
where X𝑖 and U𝑖 are convex sets containing the origin.

In DMPC, each subsystem optimizes only its local cost function, and its local optimization problem is given
as:

min
𝑢𝑖 (𝑡+𝑠 |𝑡)

𝐽𝑖 (𝑥𝑖 , 𝑢𝑖 , 𝑥−𝑖) (2)

𝑠.𝑡. 𝑥𝑖 (𝑡 + 𝑠 + 1|𝑡) = 𝑓𝑖 (𝑥𝑖 (𝑡 + 𝑠 |𝑡), 𝑢𝑖 (𝑡 + 𝑠 |𝑡), 𝑥−𝑖 (𝑡 + 𝑠 |𝑡)) (2a)
𝑥𝑖 (𝑡 |𝑡) = 𝑥𝑖 (𝑡) (2b)
𝑥𝑖 (𝑡 + 𝑠 |𝑡) ∈ X𝑖 (2c)
𝑢𝑖 (𝑡 + 𝑠 |𝑡) ∈ U𝑖 (2d)
𝑥𝑖 (𝑡 + 𝑁 |𝑡) ∈ X𝑖

𝑓 (2e)

where 𝑠 = 1, ..., 𝑁 − 1, 𝐽𝑖 (𝑥𝑖 , 𝑢𝑖 , 𝑥−𝑖) is the objective cost function of the problem, and 𝑥𝑖 (𝑡 + 𝑠 |𝑡) is the state
predicted at instant 𝑡 for the instant 𝑡+ 𝑠. The terminal term 𝑥𝑖 (𝑡+𝑁 |𝑡) ∈ X𝑖

𝑓 is often used to ensure the stability
of the system.

2.2.2 Cost function
The cost function 𝐽𝑖 defines the control objectives of the system and guides the direction of the optimization
process. However, since different tasks have varying requirements, the design of the cost function must be
adapted to specific application scenarios. For instance, in UAV formation control, the cost function may prior-
itize maintaining formation shape and avoiding collisions, whereas in vehicle platooning, it might emphasize
speed coordination and fuel efficiency. Therefore, the formulation of the cost function should not only be
consistent with the overall objectives of the control system but should also accurately reflect the specific de-
mands of a given task, thereby enabling efficient and cooperative control in a complex system. The following
is a common form of DMPC cost function:

𝐽𝑖 =
𝑁−1∑
𝑠=0

𝑙 (𝑥𝑖 (𝑡 + 𝑠 |𝑡), 𝑢𝑖 (𝑡 + 𝑠 |𝑡)) +𝑉𝑐 (𝑥𝑖 (𝑡 + 𝑠 |𝑡), 𝑥−𝑖 (𝑡 + 𝑠 |𝑡)) +𝑉 𝑓 (𝑥𝑖 (𝑡 + 𝑁 |𝑡)) (3)

Here, 𝑙 (𝑥𝑖 (𝑡 + 𝑠 |𝑡), 𝑢𝑖 (𝑡 + 𝑠 |𝑡) represents the stage cost at the instant 𝑡 + 𝑠, and𝑉𝑐 (𝑥𝑖 (𝑡 + 𝑠 |𝑡), 𝑥−𝑖 (𝑡 + 𝑠 |𝑡)) denotes
the coupling cost term that containing the state of both subsystem 𝑖 and its neighbors. Additionally, in DMPC,
it is often necessary to include a coupling cost that incorporates information about neighboring subsystems
in the cost function. The information transmission between the neighbors will be introduced in the following
sections.
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Figure 4. Information interaction between subsystems and the sequence of solving optimization problems. (A) sequential solving and
transmission; (B) synchronous solving and transmission; (C) asynchronous solving and transmission.

2.2.3 Information transmission
In DMPC, the interaction of information between subsystems and the sequence of solving the optimization
problem is critical for achieving efficient cooperative control. Typically, the sequence of optimization problem
solving and transmission can be categorized into three approaches: The first is sequential solving and trans-
mission, where each subsystem sequentially solves the problem in a predetermined order and transmits the
results to other related subsystems. The advantage of this approach lies in its clear flow and easy-to-implement
sequence control, but it may lead to delays in the overall system. The second approach is synchronous solv-
ing and transmission, where all the subsystems start solving simultaneously and transmit the information at
the same instant, which minimizes the latency but requires high communication and computational resources.
The third approach is asynchronous solving and transmission, where each subsystem independently completes
the solving and transmission on its own time scale, allowing for a certain degree of non-simultaneity and thus
increasing system flexibility. To illustrate the different characteristics of these approaches more intuitively,
Figure 4 presents the sequences of optimization problem-solving and information transmission in the DMPC
strategy for a MAS with three agents as an example.

In DMPC, subsystems usually need predictive state information of their neighbors at the current moment in
the length of the prediction horizon 𝑁 to construct the optimization problem. There are generally twomain ap-
proaches to constructing this predicted state information. The first method is that the neighbor first constructs
a complete sequence of predicted states that satisfies the required length of the current subsystem, and then
transmits this information to the needed subsystem. The advantage of this approach is that the subsystem can
directly utilize the complete information for computation, although it may impose a significant data transmis-
sion burden. The second approach is that the neighbor transmits only a part of the necessary state information
while the receiver subsystem performs specific calculations based on the received data to construct the neces-
sary neighboring state sequence. This approach can reduce the burden of data transmission, but may require
additional computational resources and more complex algorithm design to ensure that the constructed state
information can satisfy the requirements of control accuracy. These two methods of information construction
enable DMPC to achieve efficient and accurate information interaction and cooperative control in complex
systems.

Moreover, existing DMPC algorithms can be classified based on the topology of the transmission network, the
information exchange protocols used among local controllers, and the type of cost function considered in the
local optimization problem. Depending on whether or not the performance metrics of other subsystems are
included in the local cost function, DMPC algorithms can be categorized into coordinated and uncoordinated
approaches. Specifically, if each local controller holds global information and minimizes the global cost func-
tion, it is referred to as coordinated DMPC [41–43]. Conversely, if each local predictive controller possesses local
information, considers the information of its neighbors in the network topology, and uses the information of
its neighbors as useful information for its local optimization problem and minimizes the local cost function, it
is referred to as uncoordinated DMPC [44–48]. Compared with coordinated DMPC, in uncoordinated DMPC,
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each local controller only needs to exchange information with its associated subsystems, which have lower
network requirements. Since uncoordinated DMPC only improves its performance during the optimization
process, the overall performance of the system is weaker than that of the coordination algorithm based on
the global cost function, but it has more flexibility for the control of each subsystem. In most uncoordinated
DMPC, local controllers generally use parallel computation to solve the optimization problems of each subsys-
tem simultaneously [46]. When controllers operate asynchronously, a corresponding communication strategy
for asynchronous transmission is necessary [47,48]. In the UAVs and vehicle platoon systems targeted in this
paper, most of the studies are based on uncoordinated DMPC.

2.2.4 Computational complexity
To analyze the computational complexity of DMPC, it is first necessary to distinguish between linear and non-
linear systems. In linear systems, the computational complexity ofDMPC is relatively low due to the availability
of efficient solution methods, such as linear programming (LP) or quadratic programming (QP), which have
polynomial-time computational complexity. In contrast, DMPC problems for nonlinear systems necessitate
the utilization of nonlinear programming (NLP) methodologies, which are inherently more intricate since
the solution process entails a greater number of iterative procedures and possesses a higher computational
complexity. Furthermore, as the system state dimension increases and the prediction horizon lengthens, the
computational complexity rises. An increase in state dimension results in a larger state space, necessitating
greater computational resources for state prediction and optimization at each time step. Additionally, a longer
prediction horizon expands the size of the optimization problem, as computations must be performed over
a more extended prediction horizon, significantly increasing the computational burden. However, a longer
prediction horizon also offers enhanced control performance. Therefore, it is necessary to balance control ac-
curacy and computational complexity to ensure that the system can be optimized and controlled in real-time
within a reasonable timeframe.

2.2.5 Scalability
The scalability of coordinated and uncoordinated DMPC schemes, as discussed in the previous section, will
be analyzed in the following. For coordinated DMPC, each local controller needs to optimize the local cost
function and consider the global information. This implies that as the number of subsystems increases, the
computational burden of the controller will increase with the global information. In contrast, most uncoordi-
nated DMPC schemes exhibit better scalability. In uncoordinated DMPC, each local controller only optimizes
its local cost function, so the increase in the number of subsystems does not directly affect the computational
complexity of each controller. However, although the computational burden does not increase, the rise in the
number of subsystems may result in each subsystem interacting with more neighboring systems, increasing
the frequency of information exchange and the amount of communication. As the system grows in size, more
complex communication networks may introduce additional burdens, such as delayed information delivery
and data loss. Therefore, in the application of large-scale systems, despite the superior performance of unco-
ordinated DMPC in terms of computational complexity, it is still necessary to address the challenges posed
by increasingly complex communication topologies to ensure the overall performance and reliability of the
system.

Since DMPC methods vary considerably when applied to different physical systems and task requirements,
this paper will first briefly review the theoretical results of DMPC to MASs in the following subsection. These
results can be utilized in the control of UAVs and vehicle platoon systems, as discussed in this paper.

2.3 DMPC in MASs
This section provides a brief review of the theoretical research on DMPC in MASs, dividing the research prob-
lems into three key aspects: the existence of disturbances, limited communication and computing resources,
and network unreliability.



Page 300 Peng et al. Intell Robot 2024;4(3):293-317 I http://dx.doi.org/10.20517/ir.2024.19

2.3.1 The existence of disturbances
In MASs, different agents collaborate through communication to achieve the given task objectives. As the
system becomes larger and more complex, deviations from the actual system during modeling and identi-
fication become inevitable. Simultaneously, the complex system is increasingly influenced by the external
environment, and these disturbances can be classified as external disturbances. A key research direction in
this context is the development of robust DMPC strategies to counter external disturbances. The min-max
MPC method, which generates optimal control sequences for the system under the “worst-case” disturbance
scenario to ensure robust stability, was first proposed by Campo et al. [49]. Jia et al. later extended this method
to closed-loop DMPC systems by taking feedback control information into account [50]. Wei et al. proposed
the min-max DMPCmethod with a self-triggered scheme for the case of multiple parameter uncertainties and
external disturbances to achieve robust control under communication delays [47].

In addition, the robust MPC based on “tube” proposed by Mayne is also a classical approach to deal with
disturbance [51]. In MASs, for instance, Li et al. utilized the tube method to satisfy local robust constraints
and applied a modified alternating direction method of multipliers (ADMM) to solve the optimization prob-
lem [52]. For disturbed leader-follower systems, Li et al. proposed a fully inclusive control algorithm based on
tube-DMPC to deal with the problem that the follower may break away from the convex packet under distur-
bance [53]. Based on the DMPC method and the tube-based auxiliary controller, Li et al. realized the robust
control of the MASs [54].

2.3.2 Limited communication and computing resources
In the communication process of MASs, communication resources are usually limited due to network band-
width constraints. Additionally, the computational ability of subsystems in distributed architectures is gener-
ally weak, and their computational resources are valuable. While event-triggered control is a better choice in
terms of reducing the number of communications and optimization problem solving, for perturbed systems,
achieving better control while saving computational resources is a direction of great interest. Zou et al. pro-
posed an event-triggered scheme using the information of neighbors to achieve a balance between resource
usage and control performance for MASs subject to bounded disturbance [48]. Yang et al. also proposed a sim-
ilar adaptive event-triggered DMPC scheme [55]. In addition, self-triggered DMPC schemes have gradually
received attention due to the reduction of the number of samples in the system. Zhan et al. studied the appli-
cation of a self-triggered scheme in linear MAS consensus [56], and Mi et al. solved the dynamically decoupled
MAS collaboration problem [57]. Both Wei et al. and Wang et al. applied the self-triggered scheme to non-
linear MASs [47,58]. Based on the disturbance observer and self-triggered DMPC scheme, Yang et al. similarly
achieved the collaborative control of nonlinear MASs [59].

2.3.3 Network unreliability
The agents interact with the physical environment, communicate local information, and update the informa-
tion of their neighbors, which requires connectivity, reliability, and security of the communication networks.
DMPC-based control methods also need to take network security issues into account. Velarde et al. proposed
a resilient DMPC control strategy that considers insider attacks [60]. Ananduta et al. introduced an iterative
DMPC strategy to mitigate the effects of false data injection attacks [61]. Many studies regard denial of service
(DOS) attacks as a data loss problem for MASs. For example, Dai et al. proposed a resilient robust DMPC
scheme based on an extended sequence transmission strategy to eliminate the adverse effects under DOS at-
tacks [62], and Chen et al. designed a similar event-triggered DMPC scheme [63]. Wei et al. proposed a novel
scheme for detecting distributed attacks using the DMPC method to achieve consensus of linear MASs under
adversarial attacks [64].

To address the vulnerability of network communication, Hahn et al. designed a robust DMPC scheme for affine
dynamical subsystems under communication delays [65]. Su et al. addressed the tracking consistency problem
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Table 1. Research of DMPC-based UAVs considering multi-mission scenarios

Research Trajectory optimization Formation control Collision avoidance Communication Disturbance
restrictions and fault

Bo et al. [74] ✓ ✓

Qi et al. [75] ✓ ✓ ✓

Yang et al. [76] ✓ ✓

Hu et al. [77] ✓ ✓

Yu et al. [78] ✓ ✓

Gräfe et al. [79] ✓ ✓ ✓

Li et al. [80] ✓ ✓

Zheng et al. [81] ✓ ✓

Chai et al. [82] ✓ ✓ ✓

Richards et al. [83] ✓ ✓

Zhang et al. [84] ✓ ✓

Chi et al. [85] ✓ ✓

Zhou et al. [86] ✓ ✓ ✓ ✓

Chen et al. [87] ✓ ✓ ✓

Wen et al. [88] ✓ ✓

Yuan et al. [89] ✓ ✓ ✓

Li et al. [90] ✓ ✓ ✓

Niu et al. [91] ✓ ✓ ✓

Sun et al. [92] ✓ ✓

Jiang et al. [93] ✓ ✓

DMPC: Distributed model predictive control; UAVs: unmanned aerial vehicles.

by designing a DMPC strategy for linear MASs affected by disturbance and time-varying communication
delays [66]. Wang et al. designed an event-triggered DMPC scheme to solve the cooperative control problem
for MASs with disturbance, input delays, and communication delays [67]. Franzè et al. used the concept of
reachability analysis to solve the leader-follower formation control problem under the data loss conditions in
MASs [68]. Yang et al. utilized Bernoulli distribution to describe the packet loss phenomenon and selected the
prediction horizon of MASs based on an event-triggered scheme to achieve cooperative control [69].

3. DMPC FOR UAVS
UAVs have been widely adopted as an emerging technology due to their high flexibility, mobility, and ease of
deployment [10]. Given the uncertainty of UAV application scenarios and the complexity of target missions, it
is often challenging for an individual UAV to meet evolving mission requirements. UAVs can be controlled in
a distributed way, thus realizing that individuals collaborate to perceive the surrounding environment together
and complete multiple complex tasks as a whole through information sharing, intelligent collaboration, and
autonomous decision-making [70,71]. Current research demonstrates that, based on the communication links
between UAVs, UAVs can rapidly and accurately perform complex tasks such as cooperative path planning,
target exploration, and formation control. Additionally, in the military domain, UAVs play a crucial role in
essential tasks such as reconnaissance and strikes [72]. For instance, the U.S. Air Force announced the Small
UAV System Flight Plan in 2016, strategically confirming the future value of small UAVs and clarifying the
concept of UAV swarm operations [73], the importance of UAVs continues to grow.

The DMPC method has recently received much attention due to its excellent ability to handle constrained
optimization problems and fast computational capability. However, the research on the application of DMPC
to UAVs still needs to be completed. The following sections provide an overview of the application of DMPC
to UAVs in three key areas: trajectory optimization, formation control, and collision avoidance. In addition,
Table 1 summarizes the existing research on DMPC-based UAVs considering multi-mission scenarios.

3.1 Trajectory optimization
When UAVs operate in coordination, optimizing their generated paths to enhance mission efficiency while
reducing overall energy consumption is crucial. The DMPC method can find the optimal paths under envi-
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ronmental constraints based on its ability to minimize the cost function and deal with the constraints, so the
use of the DMPC method to provide real-time solutions for UAVs has received more and more attention.

Bo et al. considered UAV kinematics and collision avoidance constraints to develop a trajectory planning strat-
egy based on DMPC, which achieved better real-time performance and more optimal trajectories compared
to traditional trajectory optimization methods [74]. Qi et al. utilized the DMPC method as a framework to
design tracking trajectory optimization for ground targets, and introduced the Nash game method in the op-
timization solution process, then verified the feasibility of the proposed scheme by simulation [75]. Similarly,
Yang et al. also designed an online trajectory planning strategy based on the DMPC method [76], and Lun et
al. investigated the application of UAVs as communication relay nodes for maritime vessels, and simulations
verified that the designed DMPC algorithm was able to optimize energy costs while achieving UAVs trajectory
planning [94]. The optimization problem designed by Ao et al. combined the A* algorithmwith Nash optimiza-
tion, significantly reducing the solution size of the optimization problem while ensuring high accuracy of the
generated trajectories [95].

Most of the aforementioned DMPCmethods focus on basic trajectory optimization, but more complex trajec-
tory planning tasks must account for obstacles, dynamic target tracking, and other challenging scenarios. Hu
et al. considered the movement of the target, obstacles obstructing the line of sight, and energy constraints of
the UAVs, and designed a DMPC strategy that balances optimization and prioritization, and experimentally
verified the effectiveness of the UAVs in tracking targets in urban environments [77]. Yu et al. also considered
real-time target tracking and combined the adaptive difference algorithm with Nash optimization, and the
DMPC was globally optimized with the help of Nash optimization, which improved the accuracy of target
tracking [78]. Gräfe et al. reduced the computational complexity and network traffic required for the DMPC
method based on an event-triggered scheme while ensuring the safety and reliability of the generated trajec-
tories [79]. Yin et al. used a DMPC method to generate trajectories to achieve a stable network connection
between the UAVs and the ground control stations [96]. Notably, Luis et al. utilized online DMPC to generate
trajectories of small UAV swarms in real-time and efficiently compute non-collision trajectories in mission sce-
narios through an on-demand collision avoidance method. The proposed method was shown to reduce flight
time by approximately 50% on average in UAV point-to-point transition missions compared to the buffered
voronoi cells (BVC)-based collision avoidance method. Meanwhile, the activation function was designed to
detect any interference to the UAV, and an event-triggered replanning-based strategy was also devised. The al-
gorithms involved were finally applied to a range of solid UAVs, from 2 to 20, and simulations were conducted
to verify the effectiveness of the algorithms under a variety of scenarios, including obstacle-free transitions
and transition tasks with static obstacles [97]. Another key research on DMPC is the aerial robot swarms de-
signed by Soria et al., whose objective functions included separation, propulsion, direction, and control. The
quadrotor adjusted its flight trajectory based on interactive information, and the practical experiments with
five quadrotors successfully demonstrated the safe flight of multiple drones in complex environments [98].

The search task, as a critical operation often performed by UAVs, is closely related to trajectory optimization.
It is essential to ensure that the generated trajectories can effectively cover search areas while reducing energy
consumption to meet various mission requirements in real-time. The DMPC-based search trajectory genera-
tion has been studied in some literature. Du et al. and Yao et al. developed UAV search trajectory optimization
strategies by combining graph theory [99] and target probabilistic graph [100] under the DMPC framework, re-
spectively. Trajectory optimization becomes particularly challenging in complex environments with unknown
obstacles and communication interference. Hence, Li et al. proposed an adaptive guidance DMPC method to
reduce exploration loss and improve exploration efficiency [80]. Chai et al. used Voronoi diagrams to replan
the search trajectory in real-time, avoiding the collision between repeated search and UAVs, and still achieved
better performance in communication-constrained environments [82]. It is worth mentioning that Zheng et
al. applied DMPC to UAV collaborative area search by taking the neighbor prediction path as a parameter
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and distributing the overall search objective function in the constraints between UAVs [81]. Simulation results
demonstrated that their algorithm effectively improves search efficiency and verifies the scalability as the num-
ber of UAVs increased from 8 to 20.

3.2 Formation control
The importance of UAV formation control lies in its ability to enhance mission efficiency and execute tasks
such as search, surveillance, and rescue through coordinated formation. Maintaining formation also ensures
safe distances between UAVs, safeguarding their operational safety. Research on UAV formation control using
the DMPCmethod began with Richards et al. in 2004, who proposed a robust DMPC scheme for cooperative
UAVs that avoided collisions by satisfying robust constraints. This strategy was significantly less computa-
tionally expensive than centralized algorithms and achieved superior tracking control performance [83]. Sub-
sequently, Ru et al. achieved formation reconfiguration control based on UAVs with different missions, using
multi-objective game theory combined with the DMPC method to realize autonomous formation reconfig-
uration [101]. Based on the DMPC framework, Bian et al. proposed an algorithm for fast formation control
of UAVs on circular trajectories, effectively improving the convergence ability of the formation with lower
computational consumption [102].

In addition, formation flight in complex situations is widely concerned; considering the different tasks of het-
erogeneous UAV formation and collision avoidance in formation movement, Zhang et al. designed a DMPC
scheme based on adaptive differential evolution [84]; Jiang et al. designed cost functions for leader, coordi-
nator and follower UAVs, respectively, in heterogeneous UAVs, and simulations verified the feasibility of the
designed DMPC strategies under the tasks of formation and retention, and insertion of new UAVs into the
formation [103]. Chi et al. achieved safe UAV formations using the particle swarm optimization (PSO) algo-
rithm combined with the DMPC method [85], while Liu et al. realized rapid formation and maintenance of
UAVs based on the DMPCmethod, demonstrating both stability and feasibility [104]. For military applications,
formation reconfiguration plays an essential role in performingmilitary missions, such as attacking enemymil-
itary targets and searching for targets; Zhou et al. used the DMPC method while considering communication
constraints to achieve UAVs that break through defenses under stealthy conditions [86]. Another related and
intriguing issue is collaborative payload transportation. For instance, Wehbeh et al. designed a system model
connecting quadcopters with payloads and compared centralized MPC and DMPC schemes [105]. Simulation
experiments proved the effectiveness of the designed algorithm.

Recently, as DMPC has been more widely utilized in UAV formation control, existing studies have begun to
consider the constraints of objective factors previously neglected in the literature, such as the limitations of the
communication network, external disturbance, and errors due to model inaccuracies. Considering the actual
situations of communication failure, Chen et al. designed a formation control algorithm based on relative po-
sition information about the relative distances and angles between UAVs, and then realized formation control
based on the DMPCmethod in the presence of communication disturbances and information inaccuracies [87].
Wen et al. designed a two-layer MPC scheme for UAVs, where the outer layer used a DMPC strategy to gener-
ate optimal control vectors, which combined with the inner layer’s tube-based MPC, reduced control errors in
UAV formation subjected to disturbance [88]. Yuan et al. proposed a DMPC-based data transmission structure
to accelerate the convergence of a six-degree-of-freedom UAV formation, with simulations employing data
transmission delays following a Gaussian distribution [89]. The designed unidirectional structure was shown to
play a crucial role in system convergence, demonstrating the applicability of the proposed DMPC algorithm.

Encirclement is a tactic used to restrict a target by changing the formation of a group of UAVs. Its purpose
is to maintain surveillance and prevent enemy targets from escaping or to protect friendly targets [106], and
the process of encirclement can be viewed as a process of formation change and maintenance. Marasco et al.
developed a strategy to encircle both moving and static targets using a circular formation based on the DMPC
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method [107]. Based on the designed DMPC algorithm, Hafez et al. first considered the task allocation strategy
in the UAVs in the simulation by estimating the trajectory cost of the target and minimizing the task time.
The encirclement effect demonstrated the effectiveness of two UAV teams in encircling stationary and moving
targets [108].

3.3 Collision avoidance
When UAVs perform trajectory optimization and formation control, constructing a safe flight trajectory is
fundamental to achieving cooperative control. Effective collision avoidance strategies can ensure that UAVs
do not collide with obstacles and other aircraft, thus ensuring the integrity of the equipment, reducing the
probability of accidents, and improving mission efficiency [109].

In previous research, such as that by Richards et al. [83], Bo et al. [74], and Zhang et al. [84], when optimizing
trajectories and maintaining UAV formations based on the DMPC method, the safety of the formation was
ensured by imposing safety or collision avoidance constraints. In addition, Li et al. addressed the collision
problem at a low cost by designing a collision management unit and designing cooperative collision avoidance
rules based on angle changes [90]. It is worth mentioning that D’Amato et al. designed an MPC-based collision
avoidance system and incorporated the right-of-way rules from the International Civil Aviation Organization
(ICAO) to make UAV behavior predictable and compatible with human decision-making. The prediction unit
was designed to predict potential collisions and calculate the required constraints, and the simulation results
verify the effectiveness and scalability of their scheme [110].

Niu et al. designed UAVs to predict the motion trajectories of their neighbors to avoid collisions in situations
where communication was impossible, demonstrating the effectiveness of the proposed scheme in scenarios
involving no communication and multiple obstacles [91], Sun et al. also adopted a similar approach and em-
ployed the improved Quatre algorithm to enhance the stability of UAV formation [92]. Jiang et al. developed
a terminal condition to satisfy the collision avoidance algorithm for DMPC-based UAV formation control,
aiming to reduce the conservatism of collision-free safe trajectories [93].

4. DMPC FOR VEHICLE PLATOONS
Ground vehicles are common tools of transportation and play a significant role in people’s lives. With the rapid
development of sensors, control systems, and computer technology, expectations for vehicle performance have
risen. Research on ground vehicles has focused on AGV platoons due to their potential to reduce traffic con-
gestion, improve traffic efficiency, enhance vehicle safety, and save energy [20,111]. The effectiveness of vehicle
platoons in maintaining safety and saving fuel has been experimentally demonstrated by the PATH program
in California [112], the Energy ITS program in Japan [113], and the GCDC program in the Netherlands [114].

The primary objective of a vehicle platoon is to synchronize the movement of a group of vehicles by assigning
a control role to each vehicle and exchanging information between vehicles to ensure that appropriate safety
distances are maintained between adjacent vehicles [111]. However, this method has limitations that make it
challenging to maintain a stable platoon. The advancement of communication technology enables vehicles in
a platoon to communicate through wireless or self-organizing networks. This facilitates the design of effective
collaborative control strategies, improving the stability and efficiency of the platoon while ensuring smooth
cooperative control and operation. Figure 5 shows four typical communication methods used in vehicle pla-
toons of a front vehicle 0 and 𝑁 rear vehicles [115]. In addition, all of these communication topologies shown
in Figure 5 can be converted to unidirectional communication.

Considering a vehicle platoon with a leader, the objective of the platooning is for each following vehicle 𝑖 to
maintain an appropriate distance from the follower vehicles and the leader vehicle while following the leader
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Figure 5. The directed communication topologies used in vehicle platoon. (A) PF topology; (B) PLF topology; (C) TPF topology; (D) TPLF
topology. PF: Predecessor-following; PLF: predecessor-leader following; TPF: two-predecessor following; TPLF: two-predecessor-leader
following.

at a speed of 𝑣0. This objective can be given mathematically as:
lim𝑡→∞ | |𝑣𝑖 (𝑡) − 𝑣0(𝑡) | | = 0
lim𝑡→∞ | |𝑠𝑖−1(𝑡) − 𝑠𝑖 (𝑡) − 𝑑𝑖−1,𝑖 | | = 0
lim𝑡→∞ | |𝑠𝑖 (𝑡) − 𝑠0(𝑡) − 𝑑0 | | = 0

(4)

where 𝑑𝑖−1,𝑖 is the desired distance between neighboring vehicles, and 𝑑0 is the desired distance between a
follower vehicle and the leader vehicle. To control vehicle platoon using the DMPC scheme, local informa-
tion interaction at each vehicle node is required. This approach achieves collaborative motion globally while
adhering to the constraints outlined in Equation (4).

4.1 Strategy for platooning
In the DMPC scheme, distributed controllers are deployed in each vehicle to collaborate in solving the con-
strained optimal control problem (COCP) for platooning over a finite time horizon and to exchange informa-
tion via vehicle-to-vehicle communication links.

Maxim et al. set the constant speed of the leader and established the control strategy for the remaining vehicles;
each vehicle was controlled by the DMPC method [116]. Lu et al. demonstrated the stability of vehicle platoon
under unidirectional communication topology for heterogeneous vehicles by designing a cost function based
on the difference between the states of a vehicle and its neighboring vehicles [117]. Similarly, Ma et al. achieved
stable control of heterogeneous vehicles using an output feedback-based DMPC strategy [118]. Zheng et al. pre-
sented the trajectory error-based cost functions for heterogeneous vehicles with dynamic coupling; this design
ensured stability through equality-based terminal constraints subject to spatial geometric constraints [115]; sim-
ilar studies have appeared in the research of Qiang et al., they designed a two-layer control architecture, using
vehicles with odd numbers as the first layer, sending information to vehicles with even numbers, and ensuring
the distance and same speed of vehicles through sequential calculation [119]. In addition, Yu et al. considered
using the Nash optimal DMPC algorithm for platooning, which employed the Nash optimal algorithm to solve
the decentralized problem and achieve Nash equilibrium for all vehicles [120]. To keep the required control rate
at the same level as the communication rate, Liu et al. proposed a non-iterative DMPC scheme for vehicle pla-
tooning, which ensured the stability of the closed-loop system through the linear matrix inequality technique
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and had compatibility constraints between the neighboring vehicles [121]. The simulation verified the effective
control of the vehicle platooning in the presence of joining and leaving vehicles.

Similar to the factors to be considered by DMPC in UAVs, computational resources and computational speed
determine the ability of the vehicle platoon to deal with emergencies quickly. To solve the problem of shortage
of computational resources, Bai et al. designed a parallel DMPCmethod based on the ADMM, which used the
Lagrange multiplier method and the dual decomposition technique [122]. For a mixed fleet of autonomous ve-
hicles and human-driven vehicles, Zhan et al. proposed the ADMM-based DMPCmethod to obtain the global
optimal solution of the local controller for the sub-platoons, which significantly reduced the computational
consumption [123].

To operate vehicle platoons on real roads, it is essential to account for the fact that the speed of the leader
vehicle is time-varying to adapt to the road conditions. To address this problem, Maxim et al. proposed a
DMPC method for tracking the leader vehicle [124]. On the other hand, Yan et al. analyzed the stability and
feasibility of the DMPC method for vehicle platooning systems [125]. Qiang et al. addressed the problem of
coupled state vehicles with distance constraints and cost functions, which computed the state-coupled set for
decoupling constraints and solved theDMPCoptimization problemwhen the information of the leader vehicle
is unknown [126]. Simulation results demonstrated that the proposed algorithm can ensure stable tracking
between vehicles even when the lead vehicle has variable inputs.

4.2 Robustness of platooning
Most research on DMPC-based vehicle platoon control assumes an accurate model. However, model uncer-
tainty, sensor noise, and environmental disturbances can adversely affect the accuracy of the DMPC scheme.
Additionally, communication delays and data transmission losses during vehicle-to-vehicle information ex-
change can further degrade platooning performance. Therefore, robust DMPC schemes should be developed
to maintain system stability under these uncertainties.

Luo et al. addressed the problemof disturbances andmodeling errors in vehicle platoon systems, employing the
proportional multiple integral (PMI) observer techniques with unknown inputs to limit the deviation between
the actual systems and nominal systems [127]. For the same situation, Ju et al. also proposed a stochastic DMPC
scheme and verified the effectiveness of the control scheme in the presence of model uncertainties [128]; Yin et
al. combined Taguchi’s robustness with stochastic DMPC scheme to reduce the negative impact of uncertainty
on the performance of platooning [129]. For the vehicle platoon systems subjected only to additive disturbances,
Luo et al. proposed a robust DMPC scheme for tracking virtual time-varying trajectories for non-complete
vehicle platoon systems [130], and Chen et al. utilized local and neighbor uncertainty distribution information
to collaboratively handle coupled probabilistic constraints in vehicle platoon systems. Based on the designed
self-triggered mechanism, a constraint tightening strategy was implemented in the optimization problem to
ensure the stability of the systems at the triggering moment. Simulation experiments were also conducted
in a vehicle platoon system with five vehicles to verify the effectiveness of the algorithm in the case of queue
control and emergency braking [131]. In addition, Mousavi et al. considered uncertain resources in dynamic
environments, incorporating the evolution of vehicles and the environment into the planning strategy, resulting
in a general framework consisting of estimation, prediction, and planning [132].

In recent years, research has increasingly focused on data-driven approaches to effectively address inaccuracies
in modeling heterogeneous vehicle platoon systems. The basic principle of data-driven modeling is to use the
input and output data of the system to construct the system model, and data-driven DMPC methods have
been recently investigated by Huang et al. [133], Zheng et al. [134] and Kohler et al [135]. The basic principle of
data-drivenmodeling is to use the input and output data of the system to construct the systemmodel, and data-
driven DMPCmethods have been recently investigated by Zheng et al. [134] and Kohler et al. [135]. Based on this
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method, Huang et al. added a variable for estimating the global consensus distributed across each agent in the
optimization problem and actively compensated for the communication delay based on input-output data. The
simulation results demonstrated the convergence of the auxiliary variables with the systemoutput, verifying the
effectiveness of the designed algorithm under communication delay [133]. Wu et al. established a data-driven
model using subspace identification for a heterogeneous vehicle platoon to achieve stability under the DMPC
method [136]. It is worth mentioning that Zhan et al. mapped the nonlinear model to a high-dimensional
linear space based on the theory of the Koopman operator, and designed a neural network framework based
on extended dynamic mode decomposition (EDMD) to approximate the Koopman operator. The simulation
experiment used 25 vehicles, and the centralizedMPC andDMPCmethods were used, respectively. The results
showed that DMPC can reduce the computational cost. The method has a faster convergence speed than the
traditional nonlinear DMPC method [137].

When data losses occur during the communication of vehicle platoons, such as packet losses and communica-
tion delays, it is crucial for vehicle platoon control to estimate the lost data and accurately continue the mission.
Wang et al. addressed data estimation under packet loss by designing a DMPC scheme that solves invariant
sets and feedback control laws [67]. Pauca et al. used the information received by the vehicle at the previous
moment to alleviate packet losses caused by wireless communication networks that exchanged information
between vehicles [138]. In scenarios where inter-vehicle communication is limited and communication delays
exist, Xu et al. used buffers and delay compensators to reduce the interference caused by non-ideal commu-
nication [139]. Wang et al. designed an event-triggered scheme based on state errors and input delays and
proposed a compensation scheme for input and communication delays [67]. Similarly, Maxim et al. and Yan
et al. designed DMPC schemes to achieve stable control of vehicle platoons in the presence of time-varying
communication delays [124,125].

4.3 Security of platooning
When a vehicle platoon is traveling on a roadway, preventing collisions is paramount to ensuring passenger
safety, and recent research has focused on enhancing the safety of vehicle platoons. Mohseni et al. consid-
ered the non-holonomic property of the vehicle platoons while predicting the behavior of other vehicles, and
designed a cooperative DMPC scheme with predictive collision avoidance features to ensure collision avoid-
ance even when the vehicle deviates from the desired trajectory [140]. Liu et al. considered the interactions
between vehicles and their neighbors, and by analyzing the data of expressway naturalistic driving, the authors
summarized the characteristics from aggressive driving behaviors to cautious driving behaviors, and designed
collaborative strategies for different driving behaviors. Notably, the proposed DMPC scheme was validated
through hardware-in-the-loop simulation, demonstrating its ability to safely perform tasks such as following
a vehicle and changing lanes in high-risk situations [141]. In addition, the safe merging problem of heteroge-
neous vehicle platoons is studied by Liu et al. [141]. By designing the collision safety constraints, Gratzer et al.
ensured the stability of the vehicle platoon during sudden braking maneuvers [142]. In the research of Franzè
et al., vehicle platoons could flexibly adjust their topologies in the presence of obstacles, thus ensuring the safe
operation of the systems [143].

Ensuring network security is also crucial for vehicle platoons, as vehicle-to-vehicle information transmission is
vulnerable to malicious intrusions and cyber-attacks, which can threaten the stability of the platoon and poten-
tially lead to human injury and property loss. Chen et al. established a dynamic event triggering scheme with
DoS attack sensing capability, where the event triggering threshold was adjusted according to the DoS attack
duration and vehicle states. The evolution of vehicle positions, spacing, and speeds in the formation under dif-
ferent event-triggering parameters and DoS attack durations were verified through simulation, demonstrating
the resilience and reliability of the designed DMPC algorithm in addressing security challenges [144]. Lyu et al.
designed a communication topology safety response system that incorporates the DMPCmethod and demon-
strates that it can effectively ensure the stability and security of the vehicle platoons under cyber-attacks [145].



Page 308 Peng et al. Intell Robot 2024;4(3):293-317 I http://dx.doi.org/10.20517/ir.2024.19

Zeng et al. developed a resilient DMPC framework for vehicle platoons under Byzantine attacks, which de-
tected unreliable information based on the resilient set and previously transmitted information, and achieved
excellent performance with guaranteed safety [146].

5. CHALLENGES AND FUTURE
The previous sections reviewed the application of DMPC methods in UAVs and vehicle platoon systems, but
significant theoretical and implementation challenges remain. This section summarizes the challenges and
future of DMPC methods in practical application.

5.1 Security control
TheDMPCmethod has shown great potential in UAVs and vehicle platoon systems, but its safety issues cannot
be ignored. Due to the dependence of DMPC on network physical systems, there is a risk of nonmalicious
failures, such as communication delays and data loss, which may lead to system instability. In addition, the
distributed nature of DMPC makes it vulnerable to network attacks, especially deception attacks [147,148] and
interrupt attacks [149]. Attackers can tamper with control signals or disrupt communication networks, seriously
affecting system performance and potentially causing recursive feasibility and stability issues.

To address these security challenges, researchers have proposed various network security control methods
and fault tolerant control (FTC) technologies. These approaches are designed to maintain system stability by
detecting, identifying, and mitigating the effects of network attacks. For example, a design based on robust
DMPC can improve the security margin of the system in the face of network attacks, ensuring the integrity
of input signals [144]. In addition, the FTC method mitigates security issues caused by malicious agents by
actively isolating faulty subsystems [150]. In Section 4.3 of the previous text, a brief statement was made re-
garding the network communication security control issues of vehicle platoon systems. However, the security
control issues of UAVs and vehicle platoon systems based on DMPC still require further research. In recent
years, emerging technologies such as cloud computing and blockchain have also demonstrated the potential to
enhance the security of DMPC [151,152]. The cloud-based MPC framework can utilize encryption technology
to keep data encrypted during transmission and processing, thereby preventing data leakage and attacks [153].
Meanwhile, blockchain technology has the potential to provide a secure distributed information exchange
platform for MASs, thereby further enhancing the ability of the system to resist attacks [154]. In the future, the
development of DMPC methods will rely on the combination of stronger network defense mechanisms and
FTC methods. The incorporation of cutting-edge technologies such as cloud computing and blockchain will
be critical in developing more secure and resilient distributed control systems, particularly for applications
with stringent security requirements, such as UAVs and vehicle platoon systems.

5.2 Data-driven control
Most of the existing DMPCmethods are based on accurate systemmodels, but considering the difficulty in ob-
taining models in actual systems or the use of imprecise and unstable models, there are significant differences
between theoretical and actual results. Data-driven control, by contrast, is a method that does not depend on
an exact system model. It generates control inputs through a designed algorithm based on data obtained by
the system over a period of historical time, which can solve the current problem of DMPC relying on an exact
model. Kohler et al. designed a linear data-driven DMPC scheme with dynamic coupling features based on
Willems’ Fundamental Lemma [135,155]. Additionally, researchers have proposed scalable data-driven DMPC
schemes [156] for large-scale systems, dissipative behavior-based data-driven DMPC schemes [157], and data-
driven DMPC schemes for direct current (DC) microgrids [158] and complex traffic network management [159].
In addition, Fawcett et al. successfully achieved robust motion control of quadruped robots in complex en-
vironments by combining behavioral system theory with distributed data-driven predictive control technol-
ogy [160], which demonstrated the effectiveness of data-driven methods in different systems. As noted earlier,



Peng et al. Intell Robot 2024;4(3):293-317 I http://dx.doi.org/10.20517/ir.2024.19 Page 309

the application of data-driven DMPC in vehicle exhaust systems to handle solutions with uncertain dynamics
has gained significant attention [136,137]. In summary, data-driven DMPC has shown outstanding performance
in handling dynamic responses and optimizing control of unknown complex systems, demonstrating its exten-
sive potential and development prospects in multiple fields. However, in current data-driven DMPC research,
how to ensure that robust data-drivenDMPCmethods can be obtained even if the data is unreliable or partially
missing still needs to be studied.

In addition to traditional data-driven DMPC control schemes, there is growing interest in data-driven DMPC
approaches based on learning methods. Gros et al. demonstrated that reinforcement learning (RL) could
achieve stable MPC control under model uncertainty and also studied the presence of disturbances [161,162].
Mallick et al. extended this work to MASs, implementing RL and deployment of DMPC as a function ap-
proximator [163]. Similarly, Liu et al. designed a neural network-based DMPC approximator that successfully
reduced the computational burden of DMPC in large-scale systems [164]. Another learning-based approach
utilizes deep learning, such as combining long short-term memory (LSTM) units with MPC schemes to re-
duce energy consumption [165], using deep belief networks to find the optimal control list for MPC for sewage
treatment [166], and combining autoencoders with MPC for automatic power generation control [167]. Notably,
Salzmann et al. implemented real-time onboard tracking control for quadcopters using deep learning and
MPC [168]. However, there have been limited achievements in combining DMPC schemes with deep learning.
Yin et al. combined LSTM units with convolutional neural networks (CNN) for feature extraction and predic-
tion of offshore wind farms, and then used DMPC for control [169]. D’Alfonso et al. used deep RL combined
with DMPC to achieve vehicle exhaust control [170]. Given the powerful ability of deep learning to capture
system features, especially in complex nonlinear and large-scale systems, its combination with DMPC can sig-
nificantly enhance the dynamic modeling capability of the system. In the future, it is essential to focus on the
computational efficiency and dynamic adaptability of data-driven DMPC solutions to enable their application
in a broader range of scenarios, such as UAVs and vehicle platoon systems.

5.3 Practical limitations
In addition to considering the theoretical challenges of DMPC, it is also crucial to address the practical chal-
lenges that arise during the implementation of DMPC in UAVs and vehicle exhaust systems. A primary
challenge is hardware limitations, as actual system models are often nonlinear, requiring nonlinear model
predictive control (NMPC) methods instead of linear MPC calculations in most cases. Compared to the
most advanced non-predictive methods, NMPC imposes significantly higher computational demands, mak-
ing it difficult to deal with the nonlinear optimization problems on vehicles and UAVs with limited processing
power [171]. This issue is more prominent in UAVs with more limited memory and computing resources. Ad-
ditionally, some hardware components may impose further constraints on the construction of MPC problems,
thereby affecting the feasibility of these problems. Some constraints require the design of DMPC strategies
with higher computational efficiency and lower power consumption. With further development of hardware
and nonlinear optimization solvers [172,173], as well as computational research based on field programmable
gate arrays (FPGA) [174,175] and microprocessors [176], running NMPC algorithm with nonlinear fully dynamic
models on embedded computers has become easier to compute. However, obtaining more efficient solutions
to reduce hardware limitations remains an open problem.

Communication delay presents another critical challenge. In distributed control systems, particularly in UAVs
and vehicle platoon systems, effective communication is essential for coordination. Sections 2.4 and 4.2 in
the previous text have discussed some situations where communication delays and packet loss occur in UAVs
and vehicle platoon systems. Due to factors such as signal attenuation, channel congestion, and external radio
interference, data transmission may be delayed or lost, which can degrade the performance of DMPC, leading
to suboptimal control actions or even system instability, thereby jeopardizing the safety of the systems. There-
fore, it is crucial to incorporate robust communication protocols and consider delay compensation techniques
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within the DMPC framework, and there have been numerous theoretical studies that have taken into account
communication delays or packet loss situations [66,67,177,178]. However, in practical implementation, due to
the limitations of hardware to some extent, few studies have verified the practical effectiveness of theoretical
DMPC schemes through hardware-in-the-loop simulations [179]. This issue merits further consideration in
future research.

Environmental factors also play an essential role in the practical deployment of DMPC. Uncertain dynamic en-
vironments, such as constantly changing weather conditions, obstacles in forests or complex terrains, sudden
road accidents, and occasional pedestrians in UAVs and vehicle platoon systems, present significant challenges
to the safety and robustness ofDMPC strategies. TheDMPC strategymust be adaptable and resilient to possible
uncertain situations to ensure safe and reliable operation in real-world scenarios. For MPC-based approaches,
Lindqvist et al. proposed a method for UAVs to quickly handle dynamic obstacles. However, there are still
limitations in relying on motion capture systems to detect obstacles clearly [180]. Batkovic et al. designed
the auto drive system for cycling based on the model predictive flexible trajectory tracking control (MPFTC)
framework to deal with unforeseen road emergencies [181]. In a distributed scenario, obstacle avoidance trajec-
tory planning in complex environments for UAVs has been proposed [98]. Additionally, scenario-based MPC
methods have emerged as a potential solution to the challenges posed by changing environments [182], which
can introduce factors such as terrain into the prediction range and adjust the control strategy in advance to
maintain the system performance in changeable environment [183]. Furthermore, methods based on machine
learning [168,184] or RL [161,185] can make the system robust to dynamic environments through online learning
and adaptive strategies, and also have the potential to be applied to participate in designing DMPC strategies
in dynamic environments.

The design of DMPC performance parameters, such as the state weight matrix and control weight matrix,
plays a crucial role in determining the effectiveness and efficiency of control strategies. These parameters
significantly influence the behavior of the system, affecting its stability, robustness, and convergence speed.
However, traditional methods for designing these parameters often rely on human expertise and intuition,
introducing a degree of randomness and subjectivity into the algorithm implementation process. Although
RL-based parameter update methods have demonstrated the ability to achieve desired control effects even with
imprecise parameters [161], designing an adaptive parameter adjustment scheme suitable for different systems
or using learning-based methods such as RL and neural networks to find better parameters and apply them
well to practical systems is still worth further research.

6. CONCLUSIONS
This paper reviews the application of DMPC methods in UAVs and vehicle platoon systems. These systems
rely on communication to exchange information and coordinate tasks such as trajectory planning, formation
control, and platoon control through DMPC methods. Additionally, considering the robustness and security
of AIS, DMPC methods must address complex environmental constraints, external disturbances, and cyber-
attacks. While there is a foundation of research on these issues, further investigation is needed to address more
practical and complex mission scenarios. This paper also summarizes the challenges faced by existing DMPC
methods in AIS. However, the work presented here has its limitations. The application examples provided in
this paper aim to help readers understand current research directions and challenges, and to inform future
work.
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