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Abstract

With the growing demand for sustainable energy, hydrogen is recognized as a key clean energy carrier that can
stabilize renewable sources such as solar and wind. Traditional hydrogen production primarily relies on grey
hydrogen from fossil fuels, which produces significant CO, emissions. In contrast, anion exchange membrane water
electrolysis (AEMWE) offers a promising pathway to green hydrogen, combining the zero-gap design of proton
exchange membrane water electrolysis with the alkaline environment of alkaline water electrolysis. This
configuration allows AEMWE to operate with lower KOH concentrations, enhancing safety and enabling
cost-effective, earth-abundant transition metals as electrocatalysts for hydrogen and oxygen evolution reactions.
Herein, we examine the fundamental principles of AEMWE, including its cell components, reaction mechanisms,
and various in situ characterization methods. Additionally, it explores recent progress in optimizing hydrogen and
oxygen evolution reaction electrocatalysts, focusing on both precious and non-precious metal designs. We also
discuss the prospects for AEMWE in industrial-level applications, underscoring its potential as an efficient, durable,
and economically viable technology for sustainable hydrogen production.

Keywords: AEMWE, in situ characterization, hydrogen evolution reaction (HER) electrocatalyst, oxygen evolution
reaction (OER) electrocatalyst, bifunctional electrocatalyst
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INTRODUCTION

With the rising global energy demand, environmental issues have emerged due to the overuse of fossil fuels
and the associated gas emissions"®. To tackle these energy problems, a variety of alternative energy sources,
including solar”"”, wind"**, and hydropower"”", are being explored. However, they encounter obstacles
including lower energy density than fossil fuels, and stability and reliability issues due to their reliance on
weather conditions””. Hydrogen, capable of functioning as a fuel, offers a viable solution as an energy
carrier for fluctuating renewable sources, thanks to its sustainability, non-toxic properties, high energy

21-27

density, and ease of storage " Nevertheless, most industrial hydrogen production currently relies on grey
hydrogen, which results in significant CO, emissions due to the steam methane reforming process”*". To
produce green hydrogen, water electrolysis technology has been advanced in conjunction with renewable

energy sources, providing the potential for net zero-carbon emissions" "\

Utilizing water electrolysis with intermittent power from renewable energy sources offers an effective
pathway for producing green hydrogen on a large scale”. Low-temperature water electrolysis
technologies are categorized based on the electrolyte type of the electrolyzer, including alkaline water
electrolysis (AWE) and proton exchange membrane water electrolysis (PEMWE). AWE presents several
benefits over PEMWE, including the use of affordable, non-precious metal catalysts that exhibit long-term
durability and excellent electrochemical efficiency in an alkaline environment, along with minimized
corrosion concerns”*’. Owing to these benefits, AWE has recently gained recognition as a promising water

41-43]

electrolysis system, leading to substantial efforts in research and development within this field .

Anion exchange membrane water electrolysis (AEMWE) is a cutting-edge system that merges the zero-gap
configuration of PEMWE with the alkaline conditions employed in AWE, providing both high efficiency
and affordability**’. The AEMWE provides a safety benefit by operating with 1 M or lower KOH
concentrations, in contrast to traditional AWEs, which demand more severe and corrosive conditions with
higher KOH concentrations””. Also, the polymer-based anion exchange membrane (AEM) in the AEMWE,
which acts as both a separator and an ion conductor, is easier to manage and less hazardous than
asbestos-based porous diaphragms used in AWE"**". Additional benefits present improved resistance to
carbonate formation and compact design. A key benefit of AEMWE, due to its operation in alkaline
environments, is the ability to employ inexpensive transition metals as electrocatalysts for the hydrogen
evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode***. While
precious metals such as Pt for HER and Ir for OER demonstrate outstanding activity, they are costly and
limited in supply”**”. Substituting these precious metals with more affordable and abundant transition
metal-based electrocatalysts significantly reduces the production costs of electrolyzers, which is critical for
the commercialization of AEMWE. Most articles on AEMWE systems focus on improving key components
such as electrocatalysts, membranes, and electrolytes, with a particular emphasis on alkaline water-based
systems, which present challenges for industrial applications. While recent efforts have explored the use of
pure water or seawater as alternative electrolytes, these advancements are often overlooked in existing
literature. Similarly, discussions on in situ analysis techniques, essential for understanding AEMWE
mechanisms, remain limited. In this context, this review aims to bridge these gaps by providing an
integrated overview of the recent progress in electrocatalysts, electrolytes, and in situ analysis techniques,
distinguishing itself from previous studies. Figure 1 outlines the scope of this paper, which includes the
types of electrolytes utilized in AEM water electrolyzers, the basic principles and cell structures, in situ
characterization of electrocatalysts, and the latest advancements in water electrolyzer performances over the
past five years, focusing on electrocatalysts for HER, OER, and bifunctional applications. Initially, the
fundamental aspects of AEMWE, including reaction mechanisms and cell components, are briefly
discussed. This is followed by an overview of in situ characterization techniques, such as in situ
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Figure 1. Schematic diagram of electrolyte category, in situ analysis, and electrode design for AEMWE. Reproduced with permission
from[SSJ.Copyright 2023 John Wiley & Sons. AEMWE: Anion exchange membrane water electrolysis.

Fourier-transform infrared spectroscopy (FTIR), in situ Raman spectroscopy, in situ X-ray diffraction
(XRD), and in situ X-ray absorption spectroscopy (XAS). Additionally, we will explore the recent progress
in developing strategies to enhance the performance of HER, OER, and bifunctional electrocatalysts,
focusing on structures based on both precious metals and non-precious metals, such as transition metals.
Finally, future perspectives and opportunities are discussed to encourage the advancement of
electrocatalysts for AEMWE.

FUNDAMENTAL PRINCIPLE FOR AEMWE

AEM water electrolyzer mechanism and structure

AEMWE, as a promising technological approach, combines features of AWE and PEMWE. It utilizes
anion-exchange membranes as solid electrolytes, with closely integrated membrane electrode assemblies
(MEA), allowing the use of cost-effective, non-precious metal catalysts. Additionally, AEMs provide
outstanding gas impermeability and minimize gas crossover, achieving hydrogen purity levels as high as
99.99%, which is crucial for the performance of electrolyzers™*. As depicted in Figure 2A", the
fundamental operation of a single water electrolyzer cell, but in real applications, a system consists of
multiple cells assembled into a stack!**?. A separator is employed to maintain a gap between the anode and
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Figure 2. (A) Schematic illustration showing the operating principle of AEMWE™". Copyright 2024 American Chemical Society; (B)
Photograph of the assembled AEM water electrolyzer'®. Copyright 2020 Elsevier; (C) HER and OER mechanism under acidic and
alkaline environments"?. Copyright 2023 Elsevier; (D) Cross-sectional schematic of an AEM pure water electrolysis system'®?’,
Copyright 2019 American Chemical Society; (E) Schematic and (F) photograph of the AEM seawater electrolyzer device'. Copyright
2024 The American Association for the Advancement of Science. AEMWE: Anion exchange membrane water electrolysis; AEM: anion
exchange membrane; HER:hydrogen evolution reaction; OER: oxygen evolution reaction.

cathode within a water electrolyzer, avoiding the crossover of H, and O, gases. Consequently, the AEMWE
system is quite similar to conventional AWE. The main distinction between AWE and AEMWE is the
replacement of traditional diaphragms with an AEM. Furthermore, the AEMWE provides multiple benefits,
including the use of low-cost transition metal catalysts in place of high-cost precious metals, and the ability
to operate with deionized (DI) water or low-concentration alkaline solutions rather than highly

concentrated ones!®.

As illustrated in Figure 2B, the typical components of an AEM water electrolyzer include current
collectors at the cathode and anode materials such as a gas diffusion layer (GDL), an AEM serving as the
separator, bipolar plates, and end plates'*!. At the cathode, the HER takes place, producing H, and OH"
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from the H,O reduction. Meanwhile, at the anode, the OER occurs, resulting in the formation of O, and
H,O through the oxidation of OH ions. The OH" ions produced at the cathode migrate through the AEM to
the anode, driven by the positive charge of the anode, while the two electrons released during the oxidation
of OH' ions travel through the external circuit back to the cathode.

In the context of water electrolysis, the main bottleneck for efficient water splitting is the slow kinetics of the
OER, requiring substantial efforts to address this challenge!”*. Apart from the slow kinetics of the OER or
HER, along with issues with increased overpotential and stability, AEM needs to exhibit excellent ion
conductivity to support the creation of exceptionally effective electrocatalysts™").

HER and OER mechanism

Water electrolysis consists of two half-reactions, HER and OER, both of which are influenced by the surface
behavior of the electrocatalyst. The intermediates formed during these reactions depend on the pH of
electrolytes [Figure 2C]".

The cathodic HER follows several steps, primarily proceeding through two main reaction routes: the
Volmer-Tafel and Volmer-Heyrovsky mechanisms”. Initially, the Volmer step leads to generating
adsorbed hydrogen atoms (H,,). The generated H,, can either react with an H'/H,O and an electron to
produce an H, molecule, known as the Heyrovsky step, or combine with a neighboring atom to form H,,
referred to as the Tafel step, based on the surface coverage of H,,. In acidic environments, H' ions serve as
the charge carriers, moving from the anode to the cathode, and the adsorption energy of the H atom on the
surface of the catalyst is a key factor influencing catalytic performance. On the other hand, in alkaline
conditions, OH" ions act as charge carriers, and because additional energy is needed for H,O splitting,
alkaline HER experiences greater overpotentials due to higher energy barriers relative to acidic HER".
Thus, optimizing alkaline HER electrocatalysts requires focusing on key factors, including H atom
adsorption, H,O dissociation, and desorption of OH" ions'.

The anodic OER involves a four-proton-coupled electron transfer, which acts as the main limiting factor in
water electrolysis due to its higher energy barrier than the HER. The commonly accepted OER mechanisms
are the adsorbate evolution mechanism and the lattice oxygen-mediated mechanism (LOM)"". The
adsorbate evolution mechanism is a traditional OER mechanism, proposing that O, is produced from
adsorbed H,O, whereas the LOM posits that O, originates from both the lattice oxygen in the catalyst and
adsorbed H,0"". According to an adsorbate evolution mechanism, in a basic environment, OH" radical, or
in acidic conditions, the H,O molecule, initially adsorbs onto the metal active sites (M), creating M-OH.
This intermediate then undergoes deprotonation, resulting in the formation of M-O. Subsequently, there
are two primary pathways for generating O,. In the first pathway, H,O molecules or OH" ions adsorb onto
M-O, leading to product M-OOH, which subsequently experiences a deprotonation to release O,. In the
second pathway, two M-O species combine directly to produce O,. Unlike the AEM mechanism, the last
step in the LOM involves the direct coupling of O-O free radicals without the formation of M-OOH. Thus,
the LOM mechanism has the potential to overcome the constraints imposed by adsorption-energy scaling
relationships.

Pure water and seawater electrolysis

AEMWE has garnered significant interest as an emerging technology, using a considerably lower
concentration of KOH as the electrolyte compared to traditional AWE, while still attaining a substantially
higher current density”*!. However, challenges persist, such as the formation of K,CO, due to the reaction
between KOH and CO, from the air, which diminishes electrolyzer performance, along with the issue of
waste electrolyte management™’. Lately, the implementation of pure water as an electrolyte has been
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proposed to resolve these challenges in an eco-friendly way, without sacrificing stability [Figure 2D]"*.
From a cost-efficiency perspective, using pure water, which is about 30 times less expensive than an alkaline
solution, has demonstrated greater economic advantages over alkaline-based options”. Moreover, selecting
DI water enables a more straightforward system design and eases maintenance, resulting in lower
operational expenses. In addition, the lack of corrosive electrolytes reduces the requirement for specialized
equipment, enhancing water management and electrolyte handling. Despite these advantages, some
difficulties remain in pure water-based AEMWE, such as limited ionic conductivity, degradation of the
triple phase boundary, impurities in the water, and the need for high overpotential®*. Therefore,
addressing these challenges will require innovative material design and optimization of electrode
configurations to enhance performance and maintain the long-term stability of pure water-based AEMWE
systems.

With freshwater resources becoming increasingly limited, the ocean offers a virtually endless supply, and
the hydrogen energy it holds is of significant importance to humanity®. Utilizing variable renewable energy
for hydrogen production via seawater electrolysis can effectively make use of surplus electricity during times
of reduced demand®*. This approach also offers benefits such as straightforward and economical
equipment, along with environmentally friendly and efficient production, highlighting its potential for
large-scale practical applications [Figure 2E and F]*. Furthermore, hydrogen produced from seawater
electrolysis can serve as a fuel to generate high-purity freshwater, representing an eco-friendly technology
that integrates hydrogen production with seawater desalination.

However, in seawater electrolysis, alongside HER and OER, there is competition between the OER and the
chlorine evolution reaction (CIER). In mild alkaline seawater electrolytes, the CIER, which produces
hypochlorite through a two-electron process, is more thermodynamically favorable than the OER via a
four-electron process, leading to competition between the two reactions at the anode. Additionally, CL, is
hazardous and challenging to store and transport, making it crucial to minimize the formation of CIER
during seawater electrolysis”’. More critically, Cl' can degrade the catalyst during the reaction, thus
reducing catalytic efficiency. Therefore, researchers are tackling these challenges through various
approaches, such as increasing the potential difference between the two reactions or promoting the selective
adsorption of oxygen-containing intermediates at active sites by constructing advanced electrocatalysts and
optimizing electrode structure'*”.

To summarize, KOH-based electrolytes face two major limitations: the formation of K,CO, due to
interaction between KOH and CO, in the air and high waste electrolyte management costs. To address these
challenges, pure water, and seawater electrolytes have been proposed alternatives. Pure water electrolytes are
approximately 30 times cheaper than KOH and less corrosive, simplifying equipment design and
maintenance. However, their low ionic conductivity and high overpotential remain significant challenges,
requiring innovative electrode and material designs. Seawater electrolytes offer a sustainable solution by
integrating hydrogen production and desalination using an abundant resource. While economically
advantageous and compatible with simple equipment, issues such as CIER and catalyst degradation hinder
commercialization. Optimizing catalysts and electrode structures to enhance selective oxygen intermediate
adsorption is critical to overcoming these barriers. In conclusion, novel strategies to optimize the benefits
and address the limitations of both pure water and seawater electrolytes will be key to the sustainable
development and commercialization of AEMWE.
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IN SITU CHARACTERIZATION

In situ characterization entails the real-time observation and examination of materials or systems under
conditions that closely replicate actual reaction environments. This characterization enables direct
monitoring and analysis of modifications in materials properties, including morphology, structure, and
chemical composition, without extracting the materials from their original environment or changing the
conditions". Furthermore, combining multiple in situ characterization techniques, each with a distinct
focus, is often valued for gaining a comprehensive understanding of the mechanisms in complex
electrocatalysts.

In situ FTIR

FTIR employs infrared (IR) light to induce molecular vibration, allowing for the identification of chemical
compounds based on their distinctive IR absorption characteristics [Figure 3A]"“". In the context of
electrochemical studies, in situ FTIR can be utilized to detect the presence of species within solutions, and
those adsorbed onto electrode surfaces. The IR absorption depends on fluctuations in the dipole moment
resulting from molecular vibrations or rotations within the solution. In contrast, on electrode surfaces, the
examination of adsorbed species is directed by surface selection rules, focusing on their configuration,
bonding, and orientation. The two principal techniques employed in situ FTIR are thin layer mode and
attenuated total reflection (ATR) mode. Thin layer mode is straightforward to design and operate, yet it
offers lower sensitivity in comparison to ATR mode®. On the other hand, the ATR mode, which is more
intricate and necessitates meticulous optical adjustment, can mitigate interference from the bulk solution,
yielding more discernible spectra with superior signal-to-noise ratios".

In situ FTIR is an effective tool for gaining insights into the overall chemical properties of a sample, which
can assist in the examination of catalyst structure. The selection of appropriate measurement techniques can
facilitate the identification of details about the chemical composition, phase variations, and intermediates
involved in electrochemical reactions, thereby enhancing the understanding of how catalyst structure relates
to its performance”.

In situ Raman & surface-enhanced Raman spectroscopy

Raman spectroscopy is a tool used to examine molecular vibrations, rotations, and other low-frequency
modes within a sample®. In situ Raman spectroscopy allows for the concurrent observation of molecular
transformations and electrochemical reactions, providing a crucial understanding of reaction mechanisms,
kinetics, and the intermediates present on electrodes and electrolytes [Figure 3B]*". Traditional in situ
Raman spectroscopy can detect alterations in the bulk phase of catalysts or structural modifications, offering

[100-102]

comprehensive insights into the catalyst’s crystalline structure, defects, and chemical bonding .

In situ Surface-Enhanced Raman Spectroscopy (SERS) is a strategy employed to detect species on catalyst
surfaces by incorporating unique and specialized nanostructures, such as Ag, Au, and Cu nanoparticles
(NPs)"!. These nanostructures greatly amplify Raman signals, allowing for the detection of even minute
quantities of surface species [Figure 3C]"*. The exceptional sensitivity and spatial resolution of SERS
render it a powerful tool for exploring chemical reactions and intermediates on catalyst surfaces.

However, in situ Raman analysis faces challenges related to signal intensity, detection of specific species, and
interference from background signals arising from solvents and electrolytes. The naturally weak Raman
signals and complex chemical surroundings can impede the identification of target species, particularly at
low concentrations or with faint spectral features. Moreover, ensuring device stability during dynamic
electrochemical reactions and achieving high temporal resolution to capture rapid molecular changes
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require advanced instrumentation and data collection techniques"*>"*.

In situ XRD

XRD is a powerful method for acquiring crystallographic details, including lattice parameters and phase
composition"””. In the field of electrocatalysis, in situ XRD provides significant benefits by allowing
real-time observation of structural transformations in catalysts under electrochemical conditions. In
contrast to traditional XRD, in situ configurations utilize specialized reaction cells that are compatible with

[93]

the electrochemical condition, enabling accurate measurements during reactions [Figure 3D]

Nevertheless, a drawback of in situ XRD is its lower sensitivity to nanostructured catalysts, especially when
particle sizes are below around 5 nm. This issue stems from diffraction limitations linked to small crystallite
sizes, which can impede the detailed structural characterization of these materials. Additionally, in situ XRD
faces difficulties in resolving local structural characteristics because of its relatively limited spatial

[108,109]

resolution .

In situ XAS

XAS is based on the concept that atoms absorb X-rays at energy levels that are characteristic of the specific
element and its chemical surroundings™"”. The examination of metals typically involves the use of hard
X-ray and consists of two key components: X-ray Absorption Near-Edge Structure (XANES) and Extended
X-ray Absorption Fine Structure (EXAFS). XANES is concerned with the electronic and chemical properties
of the absorbing atom, highlighting electron transitions from core levels to vacant states close to the

absorption edge*"*. On the other hand, EXAFS examines the local atomic surroundings of the absorbing
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atom including neighboring atoms, coordination number, and bond lengths, by analyzing oscillatory
patterns caused by the interference of scattered photoelectron waves'" "\

In situ XAS enhances this functionality by allowing real-time tracking of structural and chemical
modifications on catalyst surfaces under actual working electrochemical conditions [Figure 3E]"*\. In situ
XAS offers a more precise understanding of catalyst behavior during operational conditions, capturing
dynamic modifications that static analyses might overlook. Furthermore, in situ EXAFS is particularly
sensitive to alterations in the local coordination environment of metals, overcoming the limitation of XRD,
which has difficulty detecting nanosized materials smaller than 5 nm"”..

However, it might not possess adequate sensitivity to identify slight variations across various chemical
environments. Moreover, in situ XAS presents challenges, as the electrochemical cell must be precisely
engineered to ensure a consistent condition while permitting X-ray penetration. Besides, the temporal
resolution of in situ XAS is relatively limited, making it challenging to accurately observe and investigate
reaction systems with fast kinetics or swiftly changing transient intermediates**""”.

Overall, in situ analysis is a powerful tool for elucidating the chemical properties of reaction intermediates
occurring on catalyst and electrode surfaces in the AEMWE reaction environment, along with the structural
and chemical changes of the catalyst and electrode itself. Techniques such as in situ FTIR and Raman are
effective tools for analyzing reaction intermediates, while in situ XRD and XAS are useful for monitoring
structural changes. These insights enable a more precise understanding of electrocatalytic mechanisms in
AEMWE. However, the high cost of specialized equipment, complex operation requirements, and
challenging data processes limit its feasibility for large-scale applications. Therefore, addressing these
challenges will require significant efforts in developing cost-effective techniques, simplifying operational
setups, and advancing data processing methods.

ELECTROCATALYSTS FOR AEMWE

Constructing HER and OER electrocatalysts that feature low overpotential, robust durability, and
cost-effectiveness is crucial while presenting difficulties in lowering the costs associated with hydrogen
production. To address these obstacles, HER and OER electrocatalysts should be strategically engineered to
enhance both activity and stability concurrently. Herein, we highlight the latest progress in advanced
electrocatalytic materials for AEMWE across alkaline, pure water, and seawater systems.

HER electrocatalyst for cathode

Precious metals

Precious metals, including Pt, Pd, Ru, Ir, and Rh, exhibit excellent electrocatalytic performance for HER.
Nonetheless, the commercial usage of these precious metal-based electrocatalysts is limited by their rarity
and high expense. To address this issue, the strategic development of electrocatalysts with reduced metal
content and optimized metal utilization is crucial. For example, Hong et al."'** synthesized Heusler-type
PtRuP, double-walled nanotube (c-PRP DWNT/C) HER catalysts using consecutive anion and dual cation
exchange processes, chemical etching, and pyrolysis following attachment to carbon black [Figure 4A]. The
resulting c-PRP DWNT/C-based AEM water electrolyzer demonstrated an impressive current density of
9.4 Acm? at 2.0 V and stable operation at 1.0 A cm™ at 60 °C for approximately 270 h, surpassing the
performance of state-of-the-art AEM and proton exchange membrane (PEM) water electrolyzers. This high
performance is attributed to the synergistic interaction between Pt and Ru dual sites, which provide
numerous active sites to enhance HER kinetics. This facilitates sequential processes, including water
activation and dissociation at Ru sites, followed by H, generation at Pt sites. The cooperative interaction
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between the Ru and Pt active sites, which enhances HER activity in alkaline media, was further clarified
through in situ XAS. As revealed in Figure 4B, the Ru K-edge XANES spectra at -0.02 V for c-PRP
DWNT/C showed an increase in white line intensity, indicating the formation of Ru intermediates through
OH and H,O chemisorption. Additionally, in situ Ru K-edge Fourier-transformation EXAFS (FT-EXAFS)
suggested that Ru sites in PtRuP, promote water dissociation, while the Pt in PtRuP, enhances HER kinetics
by serving as a cooperative site for H' adsorption and H, production, as evidenced by a decrease in white
line intensity in the operando Pt L,-edge, indicating the formation of H intermediates [Figure 4C]. Lei
et al." developed a self-supporting HER catalyst by fabricating Pt quantum dots on sulfur-doped NiFe
layered double hydroxide (Pt@S-NiFe LDH) via facile hydrothermal synthesis and electrodeposition process
[Figure 4D]. This method stands out for its mild conditions, low consumption of precious metals, and
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utilization of economically viable materials, positioning it as a compelling option for industrial applications.
During electrolysis, large volumes of hydrogen and oxygen gases evolve, leading to bubble formation at the
electrocatalyst-electrolyte interface, which can hinder the interaction between active sites and reactants.
This issue is particularly prevalent at high current densities, which are typical of industrial operations, and
therefore bubble release behavior is a critical factor. It is noteworthy that Pt@S-NiFe LDH exhibits an
exceptional ability to prevent the accumulation of bubbles on its surface, even when subjected to elevated
current densities. The nanoengineering of Pt quantum dots on NiFe LDH has been demonstrated to
effectively minimize the negative impact of gas bubble adhesion. This design facilitates efficient mass
transfer and rapid bubble release, allowing the active sites to remain exposed to reactants and thereby
enhancing reaction kinetics [Figure 4E]. Consequently, at an industrially relevant temperature of 65 °C, the
Pt@S-NiFe LDH-based electrolyzer achieves a current density of 100 mA cm™ at just 1.62 V, outperforming
commercial catalysts (40% Pt/C//IrO,).

Ru has garnered significant interest as a more affordable alternative to Pt, exhibiting comparable energy
barriers for water splitting and hydrogen binding strengths. For instance, Wang et al."* designed an
innovative Ru-based hybrid HER catalyst, featuring atomically layered Ru nanoclusters with adjacent Ru
single atomic sites anchored onto a Ni hydr(oxy)oxide substrate (NS-Ru@NiHO/Ni.P,), synthesized via
electrochemical deposition method. Theoretical studies demonstrated that the H,O molecules preferentially
dissociate at the single-atom (SA) Ru sites, followed by *H adsorption facilitated by bridging Ru-H
activation in Ru nanoclusters, which enhances the kinetics of the Volmer-Heyrovsky HER mechanism. As a
result, the assembled AEM water electrolyzer exhibited a current density of 1.0 A cm™ at a low cell voltage of
1.7 V. Lin et al."" presented a Ru SA catalyst anchored on tungsten carbide (Ru SAs/WC,) for HER,
fabricated via dopamine-assisted molecular assembly followed by pyrolysis. They proposed that the SA Ru
sites exhibit a puncture effect that effectively mitigates OH' blockages, significantly enhancing the HER
performance in alkaline conditions. Moreover, density functional theory (DFT) calculations indicated that
the isolated Ru atoms reduce the local OH" binding energy, thereby alleviating OH" blockages and forming
dual-functional interfaces involving Ru atoms and the support, which facilitates H,O dissociation. As a
result, the AEM water electrolyzer incorporating Ru SAs/WC, revealed a current density of 1.0 A cm™ at a
cell voltage of just 1.79 V, as evidenced by Figure 4F. Furthermore, the electrolyzer exhibited remarkable
stability, operating for 190 h at 1.0 A cm™ with minimal performance degradation [Figure 4G]. Yao et al."*”
introduced a Ni SA-modified Ru NP catalyst with a defective carbon bridging structure (UP-RuNiSAs/C)
synthesized via a unique unipolar pulse electrodeposition (UPED) technique. Unlike traditional continuous
potentiostatic deposition, the UPED method minimizes concentration polarization, enabling precise control
over the deposition of Ni SA onto defect-rich carbon through periodic pulses. Theoretical calculations
indicated that incorporating NiSAs into the Ru nanocrystalline framework substantially lowers the
adsorption energy of OH,, on Ru. Additionally, the carbon bridge effect of defective carbon facilitates OH-
charge redistribution between Ni and Ru, further reducing OH,, adsorption on Ru. The optimized AEM
electrolyzer using the UP-RuNiSAs/C catalyst achieved a cell voltage of just 1.95 V at a current density of
1 A cm™ at 70 °C, maintaining stable operation for 250 hat 1 A cm™.

Os, the densest and most affordable metal in the Pt group, possesses a similar electronic structure to Pt but
is seldom utilized in water electrolysis due to its poor proton adsorption ability. However, its limited
catalytic performance can be improved by further adjustments to its electronic structure. For example, Li
et al."” reported a phosphorus-doped Os (P-Os) catalyst for alkaline HER using a rapid 20 s microwave
plasma technique. Both theoretical calculations and experimental data confirmed that the modulation of the
electronic structure at the Os sites, facilitated by p-d orbital hybridization between P and Os, enhances H,O
dissociation and optimizes hydrogen intermediate adsorption/desorption, thereby improving catalytic
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performance. Therefore, an AEM electrolyzer with the optimized P-Os cathode attained current densities of
500 and 1000 mA cm™ at 1.86 and 2.02 V, respectively, and operated continuously at 500 mA cm™ for over
100 h, indicating its potential for industrial applications.

Non-precious metals

Transition metals possessing a d-electronic configuration, particularly Ni, Co, and Fe, are commonly
investigated as HER electrocatalysts due to their promising catalytic characteristics. In particular, alloying or
doping Ni with additional elements seeks to modify its electronic structure, thereby enhancing its catalytic
performance for HER. For instance, Li et al."** developed a freestanding binder-free hierarchical electrode
using a simple in situ approach, where Ni NPs were encapsulated within N-doped carbonized wood
(Ni@NCW) [Figure 5A]. The carbonized wood, with an ordered hierarchical 3D porous structure, serves as
an ideal carbon matrix for catalyst nucleation and active component loading, promoting efficient mass
diffusion. The incorporation of N-doped carbon nanotubes in the carbonized wood further facilitates
electron transfer within the electrode and enhances the durability of the active metal components. Owing to
these advantageous properties, an AEM water electrolyzer utilizing the freestanding Ni@NCW electrode
operated at a lower cell voltage of 2.43 V to reach an industrial-scale current of 4.0 A, maintaining
remarkable stability at 4.0 A for 18 h [Figure 5B and C]. Lee et al."*"' designed Ni-Mo catalysts (Ni,Mo) as
the cathode for an AEM water electrolyzer through a co-precipitation method to form hydroxides, followed
by pyrolysis under H, flow. Notably, after applying a mild activation process by maintaining a current
density of 50 mA cm? for 6 h, the cell demonstrated its best performance, achieving 1.82 V at 1 A cm?,
surpassing the performance of the 40 wt% Pt/C catalyst. It was observed that a considerable amount of Mo
dissolved from the cathode and migrated to other parts of the cell. As depicted in Figure sD, DFT
calculations revealed that Mo dissolution occurs from the surface of Ni,Mo, but the redeposition of MoO,
onto the surface is thermodynamically favored. The dissolution of Mo enhances water dissociation on the
Ni,Mo surface, while the adsorbed MoO, species reduce hydrogen adsorption, thereby improving the HER
activity. Chen et al."* synthesized a hierarchical composite electrocatalyst consisting of heterogeneous
Ni,Mo/NiMoO, NPs (NiMoO, NPs) anchored on mesoporous carbon CMK-3 (NiMoO,@CMK-3) for
HER. The robust interaction between the NiMoO, NPs and the CMK-3 support matrix efficiently stabilizes
the catalytic active Ni,Mo/NiMoO, heterostructure by modifying the local geometric and electronic
environments, resulting in optimizing the exposure of active sites and enhancing electron transfer
capabilities. Furthermore, the heterogeneous interface between Ni,Mo and NiMoO, facilitates the
stabilization of the favorable MoO,” species. As observed in Figure 5E, due to the robust metal-metal
oxide-support interaction, the AEM water electrolyzer employing NiMoOx@CMK-3 exhibited a low cell
voltage of 1.965 V at 1 A cm™ and maintained excellent stability, with minimal decay over 400 h at 1 A cm™.
Moreover, in situ Raman spectroscopy demonstrated that a partial combination of MoO,” from NiMoO,
with newly generated MoO,” from dissolved Mo in NiMoO,@CMK-3, facilitated the rapid formation of
polymerized Mo,0.” species [Figure 5F]. This process significantly improved the HER under an alkaline
environment by promoting the formation of active Mo-H* intermediates. Zhao et al."*” introduced a boron
and vanadium co-doped nickel phosphide electrode (B, V-Ni,P) that effectively modifies the intrinsic
electronic structure of Ni,P, thereby enhancing HER activity. Both experimental and theoretical findings
demonstrated that the inclusion of V significantly accelerated the H,O dissociation, while the combined
effect of B and V promoted the desorption of *H intermediates. Thus, an AEM water electrolyzer using B,
V-Ni,P maintained stable performance, achieving current densities of 500 and 1000 mA cm™ at cell voltages
of 1.78 and 1.92 V, respectively. Interestingly, under a constant cell voltage of 1.8 V, the electrolyzer
achieved current densities of 460, 475, 512, and 535 mA cm? in seawater electrolysis across devices I-IV,
while demonstrating stable performance over 30 h of continuous operation [Figure 5G].
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Figure 5. Transition metal-based electrocatalysts for HER in AEMWE. (A) Schematic showing the fabrication process of Ni@NCW; (B)
Chronopotentiometric curves for Ni@NCW under multiple potentials; (C) Chronopotentiometric curve at 4.0 A and the digital image of
AEM water electrolyzer utilizing Ni@NCW"*. Copyright 2023 John Wiley & Sons; (D) Schematic depicting the HER process on
MoO,/Ni;Mo in an alkaline environment"'?. Copyright 2023 American Chemical Society; (E) Polarization curves of AEM water
electrolyzer using NiMoO,@CMK-3 as a cathode; (F) In situ Raman spectra for NiIMoO,@CMK-3 in T M KOH"®. Copyright 2023
Elsevier; (G) Schemes of various operational modes for AEM seawater electrolyzers[m].Copyright 2023 John Wiley & Sons; (H)
Chronopotentiometric curve of the AEM water electrolyzer employing WS, superstructure as a cathodic catalyst"™. Copyright 2024
Springer Nature. AEMWE: Anion exchange membrane water electrolysis; HER: hydrogen evolution reaction; NCW: N-doped carbonized
wood; AEM: anion exchange membrane.

Apart from Ni-based electrocatalysts, other transition metal-based catalysts show great potential as
cost-effective options. Moreover, these materials are well-suited for use in the cathode of AEM water
electrolyzers due to their efficient HER kinetics. For example, Zhang et al."* employed a universal
ligand-exchange [metal-organic framework (MOF)-on-MOF] modulation strategy to fabricate ultrafine
Fe,P and Co,P NPs, which were stably anchored on N and P co-doped carbon porous nanosheets
(Fe,P-Co,P/NPC). Theoretical calculations suggested that the electron density in Fe,P-Co,P/NPC was
redistributed, with enrichment at the P site, due to the reversal of electron flow from Fe and Co to the P site.
This process resulted in the reallocation of active sites, effectively reducing the energy barrier for HER.
Consequently, a practical AEM water electrolyzer incorporating Fe,P-Co,P/NPC indicated a low cell voltage
of 1.73 V at 1.0 A cm” in 1.0 M KOH. Furthermore, the electrolyzer exhibited stable performance without
any degradation at 1.0 A cm™ over 1000 h of continuous operation, maintaining an energy efficiency of over
85%. Xie et al."”! constructed a flexible tungsten disulfide (WS,) superstructure as a cathodic catalyst,
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characterized by bond-free van der Waals interaction between nanosheets with a low Young’s modulus,
providing exceptional mechanical flexibility. The catalyst also featured stepped-edge defects on the
nanosheets, which boosted activity and created an advantageous reaction microenvironment. This unique
WS, superstructure efficiently withstood the stress of high-density gas-liquid exchanges, promoting mass
transfer and ensuring outstanding long-term durability under industrial-scale current density. As a result,
an AEM water electrolyzer equipped with this cathodic catalyst achieved a cell voltage of 1.70 V, preserving
a current density of 1 A cm™ over 1000 h [Figure 5H].

OER electrocatalyst for anode

Precious metals

Precious metals and metal oxides have been regarded as highly effective electrode materials for OER, with
RuO, and IrO, often seen as the benchmark electrocatalysts for OER. However, because of the high costs
and dissolution issues associated with these materials, various modification strategies have been suggested
to enhance electrocatalyst activity and stability while reducing expenses. For example, Du et al.” designed
hollow Co-based N-doped porous carbon spheres decorated with ultrafine Ru nanoclusters (HS-RuCo/NC)
as effective OER catalysts by pyrolyzing bimetallic zeolite imidazolate frameworks loaded with Ru (III) ions
[Figure 6A]. Both theoretical and experimental investigation indicated that the synergistic interaction
between the in situ-formed RuO, coupled with Co,0, helped optimize the electronic structure of the
RuO,/Co,0, heterostructure, reducing the energy barrier for OER. Additionally, Co,O, played a crucial role
in preventing the over-oxidation of RuO,, thereby significantly improving the catalyst’s stability. As a result,
an AEM water electrolyzer incorporating HS-RuCo/NC exhibited a cell voltage of 2.07 V to reach a current
density of 1 A cm?, maintaining stable performance without significant potential degradation over 100 h at
500 mA cm™. Kang et al." presented a corrosion-resistant RuMoNi electrocatalyst, where in situ-formed
MoO,* ions-generated by the leaching of Mo during electrochemical reconstruction-serve to repel chloride
ions derived from seawater [Figure 6B]. The synthesis of the RuMoNi electrocatalyst was achieved through
a two-step process involving a hydrothermal method followed by electrochemical activation. After the
hydrothermal treatment, the product consisted of nearly parallel nanorods uniformly coated with NPs.
Following electrochemical oxidation, the RuMoNi electrocatalyst retained its nanorod structure, with a
porous surface formed in the process. Consequently, the AEM seawater electrolyzer using this RuMoNi
electrocatalyst demonstrated enhanced performance, with a high activity (1.72 V at 1 A cm?), improved cell
efficiency (77.9% at 500 mA cm?), and long-term stability (maintaining 500 mA cm? for 240 h) due to its
robust corrosion-resistant layer [Figure 6C-E].

In addition to Ru, theoretical calculations indicate that Pd exhibits excellent capabilities for H,O adsorption
and dissociation, which can contribute to improved OER catalytic performance. For instance, Wang et al.""*"
introduced a proton-adsorption-enhancing approach for synthesizing palladium-doped cobalt oxide
(Co,,Pd,O,) catalysts designed for OER in neutral seawater splitting. Both experimental results and
theoretical studies highlighted the synergetic interaction between Co active sites and strong proton
adsorption (SPA) cations. The Co active sites adsorbed OER intermediates, while SPA cations, such as Pd,
facilitated the dissociation of H,O molecules, thereby boosting OER activity in neutral conditions. As a
result, an AEM seawater electrolyzer utilizing Co, Pd,O, OER catalysts maintained stable seawater splitting
performance for 450 h at 0.2 A cm™ and for 20 h at 1 A cm™ [Figure 6F and GJ.

Non-precious metals

Ni-based oxides, among transition metal-based OER catalysts, have shown superior OER performance due
to their high-water oxidation potential, surpassing other catalysts. For example, Park et al."*”! constructed a
three-dimensional unified electrode by electrodepositing nickel-iron oxyhydroxide (NiFeOOH) directly
onto a GDL to serve as the anode in an AEM water electrolyzer [Figure 7A]. Unlike traditional electrodes,
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Figure 6. Precious metal-based electrocatalysts for OER in AEMWE. (A) Scheme of the fabrication procedure for Ru—O/N—C—NH3[58].
Copyright 2023 John Wiley & Sons; (B) Schematic illustrating the structure and corrosion-resistant approach of RuMoNi
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seawater electrolyte; (E) Performance comparison of the RuMoNi-catalyzed electrolyzer with other reported AEM seawater
electrolyzersmm.Copyright 2023 Springer Nature; Durability tests for Co, ,Pd,O, catalysts on MnO,-coated Ni foam substrates at (F)
200 mA cm” and (G) 1 A cm™ in natural seawater electrolyte™". Copyright 2023 John Wiley & Sons. AEMWE: Anion exchange
membrane water electrolysis; OER: oxygen evolution reaction; AEM: anion exchange membrane.

which are typically composed of separate catalysts and GDL, this single-component integrated electrode
enhanced the electrical connectivity between the catalyst and GDL, resulting in improved performance and
stability. As shown in Figure 7B, the unified AEM water electrolyzer revealed exceptional current density,
achieving 3.6 A cm™ at 1.9 V. Even with a non-noble metal catalyst, the performance of this unified
AEMWE was twice as high as that of a conventional AEM water electrolyzer with a noble metal catalyst.
Moreover, even with AEM degradation, the unified AEM water electrolyzer demonstrated stable
performance, maintaining a current density of 500 mA ¢cm™ for 100 h and 3000 mA cm™ for 24 h. Thangavel
et al" designed highly efficient OER catalysts by anchoring Ni,N particles onto an electrochemically
reconstructed amorphous oxy-hydroxides surface, leading to V-NiFe(OOH)/Ni,N structures. This
distinctive amorphous-crystalline interface, abundant in active sites, significantly improved electron
transport and accelerated OER kinetics at the electrode-electrolyte interface. As seen in Figure 7C, to
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pinpoint the actual active sites and intermediates of the V-NiFe(OOH)/Ni,N catalysts, in situ Raman
spectroscopy measurements were carried out. The in situ Raman analysis revealed a substantial increase in
peak intensity after 1.35 V, which was associated with the formation of FeOOH from Fe,O, reconstruction,
acting as the true catalytic phase during OER. Additionally, the elevating intensity of NiOOH peaks at
higher overpotentials revealed the continuous formation of NiIOOH during OER, suggesting that the
catalyst was both chemically stable and electrically conductive. This structural synergy contributed to the
enhanced activity of the V-NiFeOOH/Ni,N catalyst. As a result, the AEM water electrolyzer using the
V-NiFeOOH/Ni,N/NF electrode demonstrated an impressive current density of 685 mA cm,,,* at 1.85 V,
and 70 °C, maintaining stability for over 500 h in ultra-pure water-electrolyte [Figure 7D and E]. Yang
et al"* synthesized a multiple-layered ternary NiFeM (M = Co, Mn, or Cu) nanofoam as a catalyst for
OER, constructed from self-assembled ultrathin nanowires [Figure 7F]. Each nanowire featured a
multilayered core-shell structure with amorphous oxide shells and metallic alloy cores, which enhanced
both surface OER activity and electrical conductivity through the core. Among the catalysts tested, NiFeCo
demonstrated the highest catalytic activity and stability in a half-cell with concentrated alkaline electrolytes.
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In contrast, the NiFeMn catalyst exhibited a significantly improved current density of 2.0 A cm?at 1.7 V in
an AEM water electrolyzer with 0.1 M KOH, surpassing the IrO, [Figure 7G]. Additionally, the NiFeCu
catalyst recorded a promising current density of 1.2 A cm™ at approximately 2.3 V when pure water was
supplied, showing performance close to that of IrO,, particularly at high current densities [Figure 7H].

Aside from Ni, other transition metals, including Co, Fe, Cu, and Cu, could also enhance OER performance.
For instance, Zhao et al.'* utilized a high-entropy Co and Mo co-doped NiFe hydroxide (Co, Mo-NiFe
LDH) as a precursor, leveraging the in situ leaching of Mo atoms during OER operation to create Co-doped
NiFe oxyhydroxide (Co, V,-NiFe OOH) with coexisting cation vacancies. The reconfiguration process from
Co, Mo-NiFe LDH to Co, V-NiFe OOH was monitored using in situ electrochemical spectroscopy. In situ
Raman spectroscopy showed that Co doping reduced the energetic barrier for oxidation, while the vacancies
formed by Mo leaching generated more high-valence active species, enhancing OER performance
[Figure 8A-C]. Thus, the AEM water electrolyzer incorporating the Co, Mo-NiFe LDH catalyst achieved a
notably low voltage of 1.94 V at a current density of 2 A (electrode area about 4 cm?®) in 1 M KOH,
maintaining stable performance for 130 h with a cell voltage fluctuation of less than 20 mV. Park et al."*"
constructed hierarchically structured CuCo-oxide (CCO) catalysts via electrochemical co-depositing of Cu
and Co hydroxides onto Ni foam, followed by surface chemical etching and calcination [Figure 8D]. The
chemical etching process introduced oxygen vacancies in the CCO, enhancing its electrical conductivity and
promoting OER. Consequently, an AEM water electrolyzer, using CCO as the anode, delivered outstanding
OER performance, achieving 1.39 A cm™ at 1.8 V. Additionally, the AEM water electrolyzer exhibited
strong durability, with the initial overpotential of 1.66 V., gradually increasing to 1.74 V_, after 64 h ata
high current density of 500 mA cm?, retaining 82% of its original performance. Park et al."* reported a
CuCo,0, (CCO*) electrocatalyst with a chestnut-burr-like morphology, directly grown on Ni foam
substrates and featuring hierarchical mass transfer pathways. This distinctive structure, which eliminated
the need for binders and conductive agents, enabled a high catalyst loading without electrode degradation,
leading to enhanced OER performance. Leveraging these advantages, a resulting AEM water electrolyzer
equipped with CCO* for the anode catalyst showed an impressive current density of 1.4 A cm™ at 1.85 V
and 70 °C, while continuously delivering 500 mA cm™ for over 12 h in 1 M KOH at 45 °C. Park et al."™””
designed a CeO,/CoFeCe-LDH heterostructure as an efficient OER catalyst. The ternary CoFeCe-LDH
(CoFeCe*"), with Ce, doped into the CoFe-LDH lattice, exhibited enhanced OER performance due to
modifications in its electronic structure. Further doping with Ce led to the formation of a self-assembled
CeO,/CoFeCe-LDH (CoFeCe*’) heterostructure, which formed an active interface between CeO, and
CoFeCe-LDH. Therefore, the AEM electrolyzer incorporating the CoFeCe"* catalyst indicated both reduced
ohmic and activation losses, achieving an impressive current density of 2.7 A cm™ at 1.8 V,, surpassing the
performance of AEM electrolyzers using IrO, as the OER catalyst. Park et al."”® explored Co@MXene
catalysts by seeding commercial Co NPs onto three different MXene supports (Ti,C,T,, Mo,Ti,C,T,, and
Mo,CT,). The strong Mo-Co interaction between Mo,CT, and Co NPs was identified as the key factor
enhancing the intrinsic OER activity of Co, with Co@Mo,CT, achieving an exceptional performance of
2.11 A cm? at 1.8 V, maintaining stability for over 700 h. Furthermore, in situ XAS analyses revealed
minimal changes in the oxidation state and crystal structure of Co@Mo,CT, and Co@Mo,Ti,C,T,,
indicating the stability of the active site under alkaline OER conditions [Figure 8E and F]. In contrast,
Co@Ti,C, T, underwent continuous oxidation. This analysis further confirmed that the Mo-O layer
protected Co@Mo,CT, and Co@Mo,Ti,C,T,, emphasizing the significance of Mo-Co interaction over
! developed a
hierarchically structured OER electrocatalyst consisting of a Co,Fe, core and N-doped graphitic carbon

139

traditional notions of electrical conductivity in MXene-based electrocatalysts. Park et al.'

shell, synthesized by pyrolyzing Co/Fe-Prussian blue analogue templates. The Co,Fe,@N-doped graphitic
carbon catalyst showed remarkable OER performance and stability, due to the combined effects of abundant
Co™ species, a large electrochemically active surface area, a highly conductive bimetallic core, and
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Figure 8. Other transition metal-based electrocatalysts for OER in AEMWE. (A-C) Time-resolved in situ Raman spectra of catalysts in
1.0 M KOH™*, Copyright 2023 John Wiley & Sons; (D) Schematic diagram showing the fabrication process of the chemically etched
CuCoO, catalyst™. Copyright 2020 Elsevier; In situ Co K-edge XAS spectra of Co@MXene at TmA cm™ and 10 mA cm™ in (E) XANES
and (F) FT-EXAFS™®. Copyright 2024 Elsevier; (G) Polarization curves, (H) Chronopotentiometric curves, and energetic efficiency of
AEM water electrolyzer based on Co,Fe;@N-doped graphitic carbon catalyst[m].Copyright 2024 American Chemical Society. AEMWE:
Anion exchange membrane water electrolysis; OER: oxygen evolution reaction; XAS: X-ray absorption spectroscopy; XANES: X-ray
absorption near-edge structure; FT-EXAFS: Fourier-transformation extended X-ray absorption fine structure; AEM: anion exchange
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oxygen-rich functional groups with pyridinic N in the N-doped carbon shell. Thus, an AEM water
electrolyzer utilizing this catalyst revealed lower overpotential, 139 % higher energy efficiency, and a 70-fold
lower degradation rate than a commercial IrO,-based system [Figure 8G and H].

Bifunctional electrocatalyst for both cathode and anode

Bifunctional electrocatalysts are crucial for efficient water electrolysis, as they catalyze both HER and OER
simultaneously, reducing energy losses and improving overall efficiency for sustainable hydrogen
production. Additionally, bifunctional electrocatalysts are essential for creating a cost-effective, compact,
and efficient water electrolyzer, streamlining design by eliminating the need for separate catalysts and
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ensuring balanced performance"*. Thus, numerous bifunctional catalyst materials were carefully developed
and constructed to fulfill the specific and challenging requirements of AEMWE.

For example, Tran et al.""" proposed a tunable engineering strategy to modify the structure of Ni layered
double hydroxide (LDH) through an in situ doping method involving dual transition metals, Mn and Fe,
followed by partial substitution or surface adsorption with atomic Pt, resulting in the development of the
Pty,-Mn,Fe-Ni LDH bifunctional electrocatalyst [Figure 9A]. The incorporation of Pt SAs, combined with
the co-doping of transition metal moieties into the Ni LDH framework, resulted in a synergistic interaction
that enhanced electrochemical performance by increasing the number of electroactive sites and improving
structural stability. To gain deeper insights into the origin and factors contributing to its remarkable HER
and OER activity and stability, in situ Raman spectroscopy was employed. As revealed in Figure 9B, the in
situ Raman spectra of Pty,-Mn,Fe-Ni LDHs during HER at varying potentials showed a reduction in NiO
mode peak intensities as the potential shifted from OCP to the HER range, indicating the reduction of
Ni(OH), to Ni. Even at a potential more negative than -0.2 V, unreduced Ni(OH), was still detected,
suggesting its structural stability under H,-evolving conditions. As illustrated in Figure 9C, the in situ
Raman spectra of Pty,-Mn,Fe-Ni LDHs during OER showed no significant structural changes up to 1.25 'V,
but at 1.3 V and above, the intensity of NiOOH-related vibration modes increased, indicating the
conversion of Ni(OH), to NiOOH as the catalytically active phase, with the appearance of a new Ni-O
stretching peak and a broad feature assigned to superoxide species. Utilizing the optimized structure, the
AEM water electrolyzer stack with Pty,-Mn,Fe-Ni LDHs as both the anode and cathode achieved a cell
voltage of 1.79 V at 500 mA cm”, demonstrating outstanding durability over a 600 h operation period
[Figure 9D]. Shen et al."* developed a method involving room-temperature reduction followed by
low-temperature calcination at 300 °C to synthesize Ru NPs, referred to as Ru-BO,-OH-300, characterized
by surface-enriched hydroxyl and borate species. Both experimental and theoretical analyses revealed that
these surface species modulate the Ru catalytic sites in Ru-BO,-OH-300, facilitating H,O dissociation and
lowering the activation energy for water splitting to generate O, and H,. As a result, an AEM seawater
electrolyzer using Ru-BOx-OH-300 as both the anodic and cathodic electrocatalysts at 25 °C achieved
current densities of 500 and 1000 mA cm? at 1.73 V and 1.95 V, respectively, while maintaining excellent
stability over 400 h without significant performance degradation. Chang et al."*! presented a synthesis of
iron phosphosulfate (Fe,P,S,) nanocrystal (NC) catalysts grown in situ on carbon paper using a combination
of chemical vapor deposition and solvothermal treatment. Detailed analyses, including X-ray photoelectron
spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), and Raman, revealed that Fe,P,S, NCs
were primarily responsible for HER, while the surface FFOOH on the Fe,P,S, NCs acted as the true active
phase for OER. In a practical AEM water electrolyzer, the bifunctional Fe,P,S, NCs achieved an impressive
current density of 370 mA cm? at 1.8 V. Furthermore, the Fe,P,S, NCs exhibited significantly greater
stability than Pt-IrO,, maintaining performance at 300 mA cm™ for 24 h without noticeable degradation.
Liang et al." proposed a liquid-phase self-assembly approach to fabricate the coral-like Co,V,0,
nanoarrays on a nickel foam (CoVO@NF) [Figure 9E]. The unique structure not only provided abundant
active sites to boost catalytic activity but also created ample space to accommodate volume fluctuations and
mitigate stress, thereby promoting stability. The HER and OER activities were further improved by
adjusting the electronic structure through nitridation and phosphorization, respectively, which
strengthened the metal-H bond for optimized hydrogen adsorption and promoted proton transfer, thereby
enhancing the conversion of oxygen-containing intermediates. Consequently, an AEM water electrolyzer
employing CoN/VN@NF as the cathode and P-CoVO@NF as the anode delivered only 1.76 V to reach a
current density of 500 mA cm™ in 1.0 M KOH at 70 °C, with performance degradation of just 1.01% after
1000 h [Figure 9F]. Quan et al."*' introduced a liquid-assisted chemical vapor deposition approach to
concurrently anchor SA Ru sites on the sidewalls and Janus Ni/NiO NPs at the apex of nanocavities,
effectively activating N-doped carbon nanotube arrays (Ni/NiO@Ru-NC). Both theoretical and
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Figure 9. Bifunctional electrocatalysts for HER/OER in AEMWE. (A) Scheme of the fabrication processes for Pt;,-Mn, Fe-Ni LDHs on
NF; In situ Raman spectra of Pt;,-Mn, Fe-Ni LDHs for (B) HER and (C) OER processes in an alkaline environment; (D) Long-term
stability test of AEM water electrolyzer employing Pts,-Mn, Fe-Ni LDH catalysts for both anode and cathode™". Copyright 2024
American Chemical Society; (E) Synthesis illustration of CoN/VN@NF and P-CoVO@NF; (F) Durability test at 1.76 V under 70 o4,
Copyright 2024 John Wiley & Sons; (G) Polarization curves of AEM water electrolyzer equipped with bifunctional Ni/NiO@Ru-NC
electrocatalyst; (H) Chronopotentiometric curve of AEM water electrolyzer using bifunctional Ni/NiO@Ru-NC electrocatalyst at
500 mA cm ™™, Copyright 2024 American Chemical Society. HER: Hydrogen evolution reaction; OER: oxygen evolution reaction;
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experimental investigations suggested that the confinement of Ru single atoms, along with Janus Ni/NiO
NPs, modulated electron distribution through potent orbital interactions, activating the NC nanotubes from
sidewall to apex, thereby improving water-splitting performance. As displayed in Figure 9G, the
Ni/NiO@Ru-NC||Ni/NiO@Ru-NC system delivered 100 mA ¢cm™ at an applied voltage of only 1.595V,
significantly outperforming RuO,||Pt/C and Ni/NiO@NC||Ni/NiO@NC in a traditional
two-electrode setup. Additionally, when incorporated into an AEM water electrolyzer, the ionomer-free,
self-supported Ni/NiO@Ru-NC electrode functioned as a highly efficient and durable bifunctional
electrocatalyst, maintaining stability for 50 h at 500 mA cm™ [Figure 9H]. Table 1 summarizes the
performance metrics of various electrocatalysts for AEMWE.
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Table 1. Summary of the detailed performance metrics of electrocatalysts for different types of AEMWE
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Performance about activity

Strategy Electrocatalysts Electrolyte or stability Ref.
Precious metal electrocatalysts c-PRP DWNT/C 1.0 M KOH 94Acm?at2.0V [118]
for HER 1.0 Acm™for-270 h
Pt@S-NiFe LDH 1.0 M KOH 100 mA cm?at1.62 V [119]
NS-Ru@NiHO/NigP, 1.0 M KOH 10Acm?at17V [120]
Ru SAs/WC, M KOH 10Acm?at179V [1211
1.0 Acm”for 190 h
UP-RuNiSAs/C 1.0 M KOH 10Acm?at1.95V [122]
1.0 Acm?for 250 h
P-Os 1.0 M KOH 500 mA cm” at 1.86 V [123]
10Acm?at2.02V
500 mA cm’ for 100 h
Non-precious metal Ni@NCW 1.0 M KOH 4.0Aat243V [124]
electrocatalysts for HER 4.0 Afor18h
Ni;Mo 1.0 M KOH 10Acm?at182V [125]
NiMoO,@CMK-3 1.0 M KOH 1.0 Acm?at1.965V [126]
1.0 Acm for 400 h
B, V-Ni,P 1.0 M KOH 500 mA cm”at1.78 V [127]
1.0Acm?at192V
Fe,P-Co,P/NPC 1.0 M KOH 1.0 Acm?at173V [128]
1.0 A cm™ for 1000 h
WS, superstructure 1.0 M KOH 10Acm’at170 vV [129]
1.0 Acm’ for 1000 h
Precious metal electrocatalysts HS-RuCo/NC 1.0 M KOH 10Acm?at2.07V [58]
for OER 500 mA cm™ for 100 h
RuMoNi 1.0 M KOH + seawater 10Acm?at172V [130]
500 mA cm’ for 240 h
Co, Pd,O, 1.0 M phosphate buffer solution + 200 mA cm™ for 450 h [131]
natural seawater 1.0 Acm?for20h
Non-precious metal NiFeOOH 1.0 M KOH 3.6 Acm?at19V [132]
electrocatalysts for OER 500 mA cm™ for 100 h
3.0 Acm™for 24 h
V-NiFe(OOH)/Ni;N 1.0 M KOH 685 mA cm,,,” at 1.85 V [133]
685 mA cm,,,~ for 500 h
NiFeMn 0.1 M KOH 20Acm?at17V [134]
NiFeCu Pure water 12Acm?at-23V [134]
Co, Vy-NiFe OOH 1.0 M KOH 20Aat1.94V [135]
2.0Afor130h
cco 1.0 M KOH 139 Acm™at18V [64]
500 mA cm’” for 64 h
Ccco* 1.0 M KOH 14Acm?at185V [136]
500 mA cm™ for -12 h
CoFeCe®” 1.0 M KOH 27Acm?at18V [137]
Co@Mo,CT, 1.0 M KOH 2MAcm?at1.8V [138]
211 A cm” for -700 h
Co,Fe;@N-doped graphitic 1.0 M KOH 139% higher energy efficiency [139]
carbon
Bifunctional electrocatalysts Ptsa-Mn,Fe-Ni LDH 1.0 M KOH 500 mA cm” at1.79 v [141]
500 mA cm’ for 600 h
Ru-BO,-OH-300 1.0 M KOH + seawater 500 mA cm” at1.73 V. [142]
10Acm?at195V
500 mA cm” and 1.0 A cm™ for
400 h
Fe,P,S; NCs 1.0 M KOH 370 mA cm” at1.8 V [143]

300 mA cm™ for 24 h
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CoVO@NF 1.0 M KOH 500 mA cm*at1.76 V [144]
500 mA cm” for 1000 h
Ni/NiO@Ru-NC 1.0 M KOH 100 mA cm™ at 1.595 V [145]

500 mA cm ™ for 50 h

AEMWE: Anion exchange membrane water electrolysis; HER: hydrogen evolution reaction; OER: oxygen evolution reaction; LDH: layered double
hydroxide; Ru SAs/WC,: Ru SA catalyst anchored on tungsten carbide; SA: single-atom; c-PRP DWNT/C: Heusler-type PtRuP, double-walled
nanotube.

Overall, the development of electrocatalysts is crucial for advancing AEMWE technology. AEMWE
electrodes are broadly classified into HER electrocatalysts for the cathode, OER electrocatalysts for the
anode, and bifunctional electrocatalysts for both electrodes. Additionally, electrocatalysts are further
categorized based on the type of metal used, distinguishing between precious and non-precious metals. A
comprehensive understanding of the relationship between catalyst composition, structure, and activity is
imperative to facilitate the rational design of the next-generation electrocatalysts, thereby enabling the
widespread implementation of AEMWE technology.

CONCLUSION AND OUTLOOK

Hydrogen, recognized as a sustainable and eco-friendly energy source, is emerging as a leading fuel due to
its wide range of applications. Among the various water electrolysis systems, AEMWE is the most recent
innovative system, integrating the zero-gap design of PEMWE with the alkaline environments of AWE,
resulting in outstanding activity. In this review, the key elements of the AEM water electrolyzer, such as
reaction mechanisms for HER and OER, and cell assemblies, have been reviewed. This discussion was
complemented by a detailed examination of in situ characterization analyses, including in situ FTIR, Raman
spectroscopy, XRD, and XAS. Furthermore, we have highlighted recent advancements in approaches aimed
at improving the efficiency of HER, OER, and bifunctional electrocatalysts, emphasizing designs that utilize
both precious and abundant transition metals. The aforementioned studies have effectively addressed the
limited use of precious metals and the relatively low activity of non-precious metals through diverse
nanotechnology, developing high-performance electrocatalysts. These catalysts apply not only to alkaline
electrolytes but also to pure water and seawater electrolytes, showing environmentally friendly and
commercially viable properties. Moreover, various in situ characterizations provided a deeper
understanding of the complex mechanisms of AEMWE.

AEMWE has seen significant progress; however, several challenges still need to be promptly addressed:

Developing non-precious metal catalysts with high electrocatalytic activity and robust durability remains a
challenge. Their long-term structural and chemical stability under alkaline conditions remains insufficient,
and achieving a low overpotential at current densities exceeding 1 A cm™ is not yet optimal. Enhancing the
activity of electrocatalysts can be facilitated by tailoring morphologies, introducing defects, and optimizing
interfaces. Although industrial-level current densities have been achieved for AEMWE, the stability test
durations, along with the KOH concentration and operating temperature, still fall short of industrial
standards. In this context, regulating the wettability of HER electrocatalysts or electrodes is critical for
improving HER stability. Effective surface modification is essential to optimize aerophobicity for hydrogen
production and wettability for better reactant adsorption. Furthermore, during the OER process in
AEMWE, catalyst dissolution and subsequent irregular redeposition can adversely affect long-term stability.
To address this issue, strategies such as interface control between the catalyst layer and the membrane, or
the design of stability-focused structures like core-shell catalysts, are proposed to mitigate dissolution and



Kim et al. Energy Mater. 2025, 5, 500099 | https://dx.doi.org/10.20517/energymater.2024.290 Page 23 of 29
improve AEMWE durability.

In addition to electrocatalysts, there have been recent advancements in ion-conductive membranes for
AEMWE, focusing on improving hydroxide conductivity and resistance to alkaline conditions. These
improvements have greatly accelerated the development of AEMWE. The recently developed AEMWE
technology allows for a reduction in electrolyte concentration and, in certain instances, enables the direct
use of pure water as the electrolyte. Researchers have constructed various advanced AEMs using molecular
design techniques. However, issues such as limited OH" ions conductivity and insufficient chemical stability
continue to pose significant challenges. In summary, for AEMWE to be effective, ion-conductive
membranes should possess high OH ions conductivity, minimal hydrogen permeability, excellent alkaline
durability, and robust mechanical strength.

The progress of in situ characterization techniques is essential for investigating electrochemical reactions.
However, there are challenges associated with improving in situ characterization. The bubbles produced
during water electrolysis frequently disrupt in situ measurements, leading to inaccuracies in data analysis.
Furthermore, although DFT calculations offer valuable insights into the adsorption energies of intermediate
and potential reaction mechanisms, the simplified material models and reaction conditions employed in
these simulations often fail to capture the actual reaction dynamics. To gain a deeper understanding of these
complex systems, advanced data analysis techniques driven by artificial intelligence can be utilized. These
methods can handle and interpret vast amounts of high-dimensional data, reveal underlying patterns, and
develop predictive models. Therefore, combining machine learning with in situ characterizations can
enhance the effectiveness and thoroughness of analysis, while also extending the utilization of these
methods to more practical and challenging conditions.
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