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Abstract
Cholangiocarcinoma (CCA) is an extremely aggressive neoplasia, mostly because of diagnostic delay and lack of 
effective therapies. CCA is typically surrounded by a peculiar microenvironment that includes abundant 
desmoplastic stroma and various cell types, which support and enhance CCA development. Among the tumor 
microenvironment (TME) cells, there are tumor infiltrating lymphocytes (TILs), such as CD8+ and CD4+ cells, 
Tregs, natural killers (NKs) and B lymphocytes. TILs contribute to an immunosuppressive microenvironment that 
leads to tumor immune escape. Dendritic cells (DCs) may lead to immunotolerance by maturation or antigen-
presentation deficiency. Hepatic stellate cells (HSCs) are one of the major precursors of cancer-associated 
fibroblast (CAFs), which are distinguished in various subpopulations, each with different functions and interactions 
with other TME cells. CAFs can promote lymphangiogenesis, early lymph-node metastasis and proinflammatory 
environment, but they can also provide a physical and chemical barrier to protect CCA. Tumor-associated 
macrophages (TAMs) could be differentiated between two phenotypes, pro- and anti-inflammatory, and they may 
sustain invasiveness and immunosuppression. Myeloid-derived suppressor cells (MDSCs) impair cytotoxic T 
lymphocytes (CTLs) function, stimulating tumor proliferation and angiogenesis. Tumor-associated neutrophils 
(TANs) function is influenced by the TME, leading to tumor-suppressing or tumor-promoting functions. This paper 
aims to provide an overview of the CCA microenvironment cells, their role in tumor progression and possible 
correlated diagnostic, therapeutic and prognostic implications.
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INTRODUCTION
Cholangiocarcinoma (CCA) is a rare but aggressive biliary-derived cancer with few therapeutic options. The 
tumor microenvironment (TME) has a key role in sustaining tumor progression. In fact, CCA has an 
abundant desmoplastic stroma and it is surrounded by many cell types, such as hepatic stellate cells (HSCs), 
cancer-associated fibroblasts (CAFs), tumor-infiltrating lymphocytes (TILs), tumor-associated neutrophils 
(TANs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells 
(DCs) and extracellular matrix (ECM), which have intense crosstalk between themselves and cancer cells 
[Figure 1]. This interplay provides a good environment for tumor growth, metastasis, chemoresistance, and 
tumor-specific immune tolerance, which may be a target for new immunotherapy approaches. Here, we will 
describe the main cell types of CCA TME, and their related pathways, that have been shown to influence 
tumor development, prognosis or response to current or future treatments.

TUMOR-INFILTRATING LYMPHOCYTES
TILs are involved in immune response against tumor cells, detection of cancer antigens and killing of 
neoplastic cells[1]. In CCA, TILs consist mainly of CD8+ and CD4+ T lymphocytes but also, to a lesser degree, 
of NKs and B lymphocytes[2]. Interestingly, TILs from resected CCA differ from their counterparts in 
tumor-free liver. In fact, in CCA, cytotoxic T cells and natural killer cells (NKs) are reduced while 
regulatory T cells (Tregs) are increased[3]. In TME, indeed, CAFs, TANs and TAMs produce C-C motif 
chemokine ligand 2 (CCL2) enrolling Tregs[4-6], while MDSCs and TAMs secrete interleukin-10 (IL10) and 
transforming growth factor β (TGF-β), which also convert DCs into regulatory DCs. Tregs and regulatory 
DCs perpetuate this vicious cycle attracting more immunosuppressive immune cells and weakening 
antitumor defenses[7,8]. However, TGF-β and IL10 production is not dependent only on TME cells but also 
on CCA cells[4] [Figure 1]. Furthermore, extrahepatic cholangiocarcinoma (eCCA) cells seem to produce 
prostaglandin E2 and adenosine, reducing T cell activity[9-13] and the expression of CXCL12 by CAFs disrupt 
T-cells migration into tumors[14].

TILs subpopulations have different localizations. In fact, CD8+ T cells and CD4+ T (Foxp3-) cells are in 
cancer margins, while Tregs (Foxp3+) infiltrate the core[11]. This setup demonstrates the relegation of the 
effectors in CCA[15].

Various molecular mechanisms underlying TILs regulation have been described. Intrahepatic 
cholangiocarcinoma (iCCA) cells induce T and NK lymphocyte death via Fas/Fas ligand (Fas L) high 
expression levels[16]. 67-kDa laminin receptor induces FasL expression in human CCA cells with subsequent 
activation of the FasL promoter via the extracellular signal-regulated kinase (ERK) pathway, which is a 
possible target of specific mitogen-activated protein kinase (MAPK)-ERK cascade inhibitor[17]. Killer cell 
immunoglobulin-like receptors (KIRs) regulate NK cells function and KIR genes were found altered in 
CCA, possibly affecting NK cell tumor surveillance[18,19]. Moreover, Wingless and Int-1(Wnt)/-catenin and 
TGF-signaling pathways are correlated to a reduced number of tissue-resident memory-like CD8+ TILs, 
which are involved in immune response against tumor cells[20]. The expression of B7-H1 and its receptor 
programmed death 1 (PD-1) in iCCA leads to immune escape due to CD8+ TILs apoptosis[21] [Figure 2]. The 
atypical protein kinase C-iota (aPKC-i)/Ser59-phosphorylated specificity protein 1 (P-Sp1)/Snail signaling 
stimulates the differentiation in T regulatory-like cluster of CD25- cells which have an immunosuppressive 
function in CCA[22].
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Figure 1. Tumor microenvironment influence on effector lymphocytes. CCA: cholangiocarcinoma; PD-1: programmed cell death; 
CTLA4: cytotoxic T-lymphocyte-associated protein 4; NKs: natural killers; IL-10: interleukin-10; TGFβ: transforming growth factor β; 
MDSCs: myeloid-derived suppressor cells; B: B lymphocytes; CD 8+: CD 8+ lymphocytes; CD 4+: CD 4+ lymphocytes; Treg: regulatory T 
cells; DCs: dendritic cells; CAFs: cancer-associated fibroblasts; TAMs: tumor-associated macrophages; TANs: tumor-associated 
neutrophils; CCL2: C-C motif chemokine ligand 2.

TILs are also important for potential immunotherapy for CCA. Tumor-induced immunological checkpoints 
control [e.g., PD-1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)] establish an 
immunosuppressive microenvironment, which leads to tumor immune escape[23,24] [Figure 1]. A 
combination of anti-CD40 and anti-PD-1 in mice iCCA results in myeloid cells, CD4+ and CD8+ T cells and 
NK cells activation, with a cancer burden reduction[25]. Pan et al. showed that the development of specific 
antibodies, which inhibit iCCA growth in rats, may be elicited by CTLA4 - anti-programmed cell death 
ligand (PD-L1) DNA immunization[26]. Moreover, the combination of gemcitabine with cytotoxic T-
lymphocytes (CTLs) increases the cytotoxic activity of effector T cells against chemo-resistant CCA cells in 
vitro, suggesting a potential benefit by this combination therapy[27]. Cetuximab is found to stimulate the 
activity of cultured cytokine-activated (with a high dose of IL-2 and anti-CD3 monoclonal antibodies) 
killing cells against CCA[28]. Conversely, Kirsten rat sarcoma (KRAS) alteration is associated, in PD-1/PD-L1 
blockade-treated patients, with resistance to immunotherapy. This seems to be related to a low TILs density 
in the TME of KRAS-altered neoplasia, suggesting a correlation between KRAS and low immunogenicity in 
iCCA[29]. Furthermore, high-level microsatellite instability (MSIH) in CCA predicts response to immune 
checkpoint blockade, in particular to anti-PD-1 or PD-L1 therapy[30]. MSIH is also associated with a longer 
overall survival (OS) and the presence of a more numerous population of CD8+ T cells, FOXP3+ regulatory 
T cells, and CD20+ B cells[31]. Moreover, MSIH correlates with a higher level of BRCA-mutated iCCA[32].
Immune checkpoint inhibitors may represent a promising strategy for CCA treatment. Durvalumab (anti-
PD-L1), which is now under investigation for advanced biliary tract cancer, showed interesting results with 
a 36-month OS rate of 30.7% and a manageable safety profile as second-line in monotherapy and in 
combination with other molecules[33].

Other than for position, CD8+ and CD4+ T cells and Tregs differ for prognostic value. The former and 
CD20+ B cells are related to a better prognosis; the latter, when abundant, are associated with worse overall 
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Figure 2. Interactions of cells involved in cholangiocarcinoma development and tumor microenvironment. The green arrows indicate 
induction, while the red dotted lines suggest inhibition. CCA: cholangiocarcinoma; PD-1: programmed cell death; CTLA4: cytotoxic T-
lymphocyte-associated protein 4; FasL: Fas ligand; KIR: killer cell immunoglobulin-like receptor; NKs: natural killers; IL-10: interleukin-10; 
TGFβ: transforming growth factor β; MDSCs: myeloid-derived suppressor cells; PD-L1: programmed cell death ligand; T reg: regulatory T 
cells; TILs: tumor infiltrating lymphocytes; DCs: dendritic cells; CXCL-12: C-X-C motif chemokine ligand 12; HSCs: hepatic stellate cells; 
CAFs: cancer-associated fibroblasts; TAMs: tumor-associated macrophages; TANs: tumor-associated neutrophils; CCL2: C-C motif 
chemokine ligand 2; IL-6: interleukin-6; GM-CSF: granulocyte-macrophage colony-stimulating factor; HiF1α: hypoxia-inducible factor 1 
subunit alpha.

survival (OS)[2,3,20,34-40]. A recent systematic review showed that high levels of CD8+ and CD4+ T cells are 
associated with better prognosis in CCA, regardless of their position. Recently, Alvisi et al. demonstrated 
that in iCCA CD4+ Tregs are hyperactivated in comparison with CD8+ T cells, suggesting that CD8+ effector 
functions are reduced and CD4+ Tregs immunosuppressive functions are amplified[41]. This evidence comes 
from the hyperexpression of mesenchyme homeobox 1 (MEOX1) by Tregs and the consequent evolution of 
circulating Tregs in tumor-infiltrating Tregs. Therefore, these finding correlate with a poor prognosis due to 
immunosuppression[41]. However, the prognostic value of Foxp3+ T cells is still not clear and requires further 
research[2,34-39,42-46]. Instead, B cells seem to be associated with an improved prognosis[2,15]. Finally, high C-X-C 
motif ligand 9 (CXCL9) expression, which in animal models stimulates NK cell recruitment, enhancing 
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antitumor immunity, is correlated with better survival after resection[6].

DENDRITIC CELLS
Tumor-infiltrating DCs are abundant in TME and are characterized by an elevated expression of CD40 on 
their surface[25,47]. They may contribute to immunotolerance by maturation or antigen-presentation 
deficiency, which leads to an inhibition of CD8+ and CD4+ T-cell priming[7,8]. Moreover, DCs produce PD-
L1[8] and attract Tregs which express (CTLA-4) that sustains the regulatory phenotype of DCs[7,8]. In CCA, 
CAFs can attract DCs and reduce the expression of human leukocyte antigen (HLA) molecules, weakening 
the activation of TILs[48]. Interestingly, Martìn-Sierra et al. found that in CCA patients, the 
immunomodulation may not be relegated only to the peritumoral area[49]. In fact, in these patients, there are 
low levels of circulating classical dendritic cells and monocytes positive for the Fc fragment of IgE high 
affinity I receptor (FceRI), which are suspected to eventually differentiate into classical dendritic cells and 
tumor necrosis factor α(TNF-α) -producing proinflammatory DCs[49,50].

IL-10 and TGFβ, produced by CCA cells, have an immunosuppressive effect on dendritic cells: they depress 
antigen presentation and the activation of effector T lymphocytes, leading to tumor evasion of immune 
surveillance[51-53] [Figure 2]. Thepmalee et al. demonstrated that the blockage of IL-10 and TGF-β receptors 
on DCs by specific neutralizing antibodies enhances cytolytic activity of effector T-cells against CCA and 
increases the level of interferon-γ (IFN-γ)[54].

The use of postoperative DCs vaccine plus activated T-cell transfer could prevent recurrence and improve 
survival in patients affected by iCCA, as demonstrated by a clinical trial. Five years progression-free survival 
(PFS) and OS were superior in patients treated with DCs vaccine plus activated T-cell transfer than in 
patients who did not receive that treatment[55].

Intracellular protein kinase CAMP-dependent type I regulatory subunit alpha (PRKAR1A) is overexpressed 
in CCA. PRKAR1A-presenting self-differentiated monocyte-derived dendritic cells (SD-DC) activates 
effector T cells killing ability versus the tumor, which is nearly doubled than those stimulated with control 
DC in vitro[56].

With regards to the prognostic role of DCs, peritumoral plasmacytoid DCs (pDCs) correlate with wider 
local and distal extension, higher chance of recurrence and shorter OS. Furthermore, larger numbers of 
pDCs are associated with increased Foxp3+ regulatory T-cell infiltration[57].

CD83+ mature dendritic cells are located primarily on invasive front of CCA, while CD1a+ immature DCs 
are gathered within the tumor tissue. CD83+ DCs density was associated with a greater number of CD4+ or 
CD8+ T cells infiltrating the tumor and was correlated with a good prognosis and lower incidence of 
metastases[50,58].

CANCER-ASSOCIATED FIBROBLASTS
CAFs are a group of various cells, in which the predominant type is the activated myofibroblasts. CAFs 
express several phenotypic markers such as α-smooth muscle actin (α-SMA), platelet-derived growth factor 
receptor β (PDGFRβ), fibroblast specific protein-1 (FSP-1 or S100A4), mucin-like transmembrane 
glycoprotein podoplanin, and the cell surface metalloprotease cluster of differentiation 10 (CD10). CAFs 
origin is still partially unclear and controversial; it is likely that CAFs derive from HSCs[59], periductal or 
portal fibroblasts (PFs)[60], pericytes, mesenchymal stem cells, circulating bone marrow-derived 
mesenchymal cells and adipocytes[61,62].



Page 6 of Argenziano et al. Hepatoma Res 2023;9:9 https://dx.doi.org/10.20517/2394-5079.2022.9815

Various clusters of CAFs have been described. The first is vascular CAFs, which were found in the tumor 
core and in the microvascular region. Vascular CAFs are characterized by the presence of microvascular 
genes and the production of IL-6 and CCL8, implying a possible interaction with cancer[63]. Matrix CAFs 
express high levels of ECM molecules [e.g., collagen molecules and periostin (POSTN)] and lower levels of α
-SMA. Inflammatory CAFs produce low levels of α-SMA and high levels of fibulin 1 (FBLN1), insulin-like 
growth factor 1 (IGFI), insulin-like growth factor binding protein 6 (IGFBP6), secretory leukocyte peptidase 
inhibitor (SLPI), serum amyloid A1 (SAA1), C3 and C7, intimating a role in cancer immunity. 
Myofibroblastic CAFs and mesothelial CAFs coexpress portal fibroblast/mesothelial markers[64]. These 
different phenotypes are probably involved in the CCA progression through the release of biochemical 
signals such as TGF-β1, connective tissue growth factor (CTGF), stromal cell-derived factor-1 (SDF-1), 
ECM components such as POSTN, collagen type I, osteopontin, IL-6 and IL-33, and matrix 
metalloproteases (1, 2, 3,9)[65,66] [Table 1 and Figure 2].

In iCCA, low tissue expression of osteopontin was associated with lymph node metastasis and worse 
prognosis, while serum osteopontin levels were elevated in patients with CCA compared to healthy controls 
and patients with primary sclerosing cholangitis. Moreover, high concentrations of serum osteopontin 
before and after surgery are associated with poor postoperative survival.

Similarly, high POSTN, produced by α-SMA+ CAFs, can be evaluated to discriminate CCA from normal/
cirrhotic liver or hepatocellular carcinoma and is correlated with a shorter 5-year survival in post-resected 
iCCA.

PDGF D domain (PDGF-DD) produced by CCA cells binds to PDGFRβ and stimulates fibroblasts 
motility[67] and vascular endothelial growth factor (VEGF)-C and VEGF-A secretion, thus contributing to 
early metastasis to lymph nodes[68]. Nevertheless, imatinib mesylate (suppressor of the migration on 
myofibroblast) has shown disappointing preliminary results[69].

CAF-released heparin-binding (HB) EGF, which binds the EGF receptor on CCA cells, activates signal 
transducers and activators of transcription 3 (STAT3); this promotes the formation of a proinflammatory 
microenvironment through activation of the IL6/STAT3 axis[70] with subsequent tumor cell migration, 
motility, and invasion[71].

Another interesting peculiarity about activated CAFs is the enhanced susceptibility to apoptosis. In fact, 
BH3-only proteins initiate apoptosis by the ignition of Bax and Bak (multidomain proapoptotic Bcl-2 
proteins) in activated CAFs. CCA cells widely express antiapoptotic multidomain Bcl-2 proteins, such as 
Mcl-1, which inhibits this pathway[72]. Navitoclax, a BH3-only protein mimetic, leads to selective apoptosis 
in α-SMA+ CAFs but not in CCA cells and quiescent fibroblasts. The downregulation of Mcl-1 and the 
upregulation of Bax protein sensitize activated CAFs to navitoclax-mediated apoptosis, inducing a reduction 
in neoplastic burden and metastatization, due to a reduced lymphatic vascularization. Thus, navitoclax leads 
to an improvement in survival in animal models[68,73].

Moreover, CCA cells overexpress CXC chemokine receptor-4 (CXCR4)- SDF-1, the cognate receptor of 
SDF-1, which is widely expressed by CAFs in the peritumoral stroma. The binding between CXCR4 and 
SDF-1 stimulates the antiapoptotic protein Bcl-2 and activates ERK1/2 and PI3K/Akt pathways, permitting 
CCA cells survival and invasiveness and enhancing HSCs differentiation, supporting further CAFs 
enrichment[67]. Furthermore, Okamoto et al. demonstrated that the wide expression of SDF-1 is correlated 
with cancer fibrogenesis and epithelial-to-mesenchymal transition (EMT), predicting poor prognosis[74].



Page 7 of Argenziano et al. Hepatoma Res 2023;9:9 https://dx.doi.org/10.20517/2394-5079.2022.98 15

Table 1. Different CAFs phenotypic subpopulation, their location in the tumor and roles

CAFs phenotypic 
subpopulation Location Expression Role

Vascular CAFs tumor core and 
microvascular region

production of IL-6 and CCL8 interaction with malignant cells

Matrix CAFs invasive front of 
intrahepatic CCA

high levels of ECM molecules, low level of α-SMA Invasiveness/ECM and collagen 
fibril organization

Inflammatory CAFs no specific spatial 
distribution

low levels of α-SMA, high levels of FBLN1, IGFI, 
IGFBP6, SLPI, SAA1, C3 and C7,

immune modulation

Myofibroblastic CAFs no specific spatial 
distribution

Express portal fibroblast/mesothelial markers Promotion of tumor growth 

Mesothelial CAFs no specific spatial 
distribution

Express portal fibroblast/mesothelial markers Fibrogenic effect

CAFs: Cancer associated fibroblast; IL-6: interleukin-6; CCL8: Chemokine (C-C motif) ligand 8; CCA: cholangiocarcinoma; ECM: extracellular 
matrix; α-SMA: α-smooth muscle actin; FBLN1: fibulin 1; IGFI: insulin-like growth factor 1; IGFBP6: insulin-like growth factor binding protein 6; SLPI: 
secretory leukocyte peptidase inhibitor; SAA1: serum amyloid A1.

Interestingly, CAFs could also inhibit CCA progression. It has been demonstrated that high IL-33 content 
in CAFs and cancer cells is associated with a better prognosis. Therefore, IL-33 may be considered as a 
valuable prognostic marker and a potential future treatment target[75].

Finally, high expression of α-SMA is correlated to larger tumor size, lymph node metastasis, higher 
histological grade and a worse 5-year survival rate (6% vs. 29%)[67]. Nintedanib (a tyrosine kinase inhibitor of 
PDGFR, VEGFR, and FGFR) seems to be a promising treatment in refractory iCCA by inhibiting activation, 
proliferation and αSMA expression in CAFs and reducing cancer-promoting cytokines, such as IL-6 and 
IL-8[76-78].

HEPATIC STELLATE CELLS
HSCs have an established role in liver tumor carcinogenesis[79] and activated HSC/myofibroblasts are 
relevant in TME development. The activation of HSCs into tumor‐promoting myofibroblasts is induced by 
TGFβ through the binding with its receptors TGFβR1/TGFβR2 and the subsequent nuclear translocation of 
small mothers against decapentaplegic homolog (SMAD)[80]. Furthermore, TGFβ induces HSCs expression 
of α‐SMA, fibronectin and CTGF, markers of HSC activation and paracrine factors, that enhance liver 
progression and metastatization[81,82]. Recently, Sun et al. showed how PD-L1, produced by HSCs, stabilizes 
TGFβR2 and TGFβR1 supporting TGF-β-stimulated activation of HSCs into myofibroblasts[83]. Interestingly, 
an extracellular domain of PD-L1 halts the lysosomal degradation of TGFβR2 protein and the RNA 
exosome complex degradation of TGFβR1 mRNA [Figure 2]. Moreover, PD-L1 is a possible target for 
suppressing HSC activation in iCCA microenvironment due to its role in CAFs differentiation[83]. 
Furthermore, focal adhesion kinase (FAK) drives TGFβR2 to the HSCs membrane which protects the 
receptor from degradation, perpetuating HSC activation. Thus, targeting FAK could have a role in the 
suppression of HSC activation[84].

TUMOR-ASSOCIATED MACROPHAGES
Environmental stimuli, such as IFN-γ, TNF-α, granulocyte-macrophage colony-stimulating factor (GM-
CSF) or bacterial endotoxin, may enhance the differentiation of macrophages towards the M1 inflammatory 
subtype. In contrast, the anti-inflammatory M2 macrophage phenotype is triggered by IL-4, IL-10, IL-13 
IL-34, osteoactivin, GM-CSF and immune complexes (IC). M1 macrophages are characterized by high 
expression of CXCL9 and proinflammatory cytokine (IL‐1β, IL‐6, IL‐12, and IL‐23), and low expression of 
IL‐10 and strong tumoricidal activity[85-87] [Figure 2]. M2 macrophages are found to be more represented in 



Page 8 of Argenziano et al. Hepatoma Res 2023;9:9 https://dx.doi.org/10.20517/2394-5079.2022.9815

CCA and to facilitate tissue remodeling, tumor progression and immunomodulation[88]. Moreover, M2 
macrophages promote EMT by the secretion of cytokines and chemokines, which stimulate IL-10/STAT3 
and AKT3/PRAS40 pathways[89,90].

TAMs are induced by costimulation by toll-like receptor (TLR) ligands and A2 adenosine receptor (A2R) 
agonists or by IL‐6. TAMs highly express IL‐10, TGF‐β, VEGF and angiopoietins, increasing tumor 
aggressivity[91], while they express low levels of IL‐12, TNF‐α, and IL‐1β. These molecules trigger 
cholangiocytes proliferation, fibrogenesis, angiogenesis and biliary carcinogenesis[92-95]. In fact, TAMs are 
negatively correlated with prognosis in CCA[96].

TAMs have multiple functions due to their proinflammatory activity, such as invasiveness, adhesion, and 
immunosuppression. For instance, TAMs activate Wnt/β-catenin pathway due to Wnt3a and Wnt7b, which 
contributes to CCA proliferation[97,98]. Moreover, TAMs may suppress T cells effector antitumor activity via 
hypoxia-inducible factor-1 (HIF-1α) expression, which is expressed in about 66% of CCA and modulates the 
production of VEGF-A through hypoxia and other autophagy modulators such as PI3KC3, which is highly 
expressed in CCA and correlates with worse prognosis. Hypoxia-associated autophagy, in fact, is associated 
with CCA metastasis and a worse prognosis[99,100]. Interestingly, in a recent study, Ruffolo et al. demonstrated 
that anti-GM-CSF antibodies stimulate the repolarisation of immunosuppressive TAMs and MDSCs, 
promoting anti-tumoral T cell immunity and depressing inflammatory networks[87]. Indeed, a lower 
expression of GM-CSF in CCA is associated with improved overall survival after tumor resection[78,87].

Liver macrophages express TNF-like weak inducer of apoptosis (TWEAK). In case of damage, Fn14 
modulates TWEAK, which supports the proliferation, migration, and polarization of both macrophages and 
CAFs. Furthermore, TWEAK builds up a proinflammatory environment in CCA, and it is hypothesized to 
induce NF-kB-driven mitogen, which stimulates neoplastic proliferation[101].

TNFα is widely produced by Kupffer cells surrounding CCA. TNFα stimulates cholangiocyte proliferation, 
differentiation and carcinogenesis through the activation of c-Jun N-terminal kinase (JNK) signaling. In 
fact, mitochondrial dysfunction and oxidative stress, due to reactive oxygen species (ROS) secretion from 
Kupffer cells, are demonstrated to trigger cholangiocellular growth. Thus, ROS/Tnf/JNK axis may be a 
possible target of therapy in iCCA[102]. Another interesting pathway under study is PCAT6/miR-326/RohA, 
which has a role in M2 polarization of TAMs since prostate cancer-associated transcript 6 (PCAT6) is an 
oncogene highly expressed by macrophages in CCA patients[103].

Finally, exosome Circ_0020256 has been recently described in TAM-secreted exosomes and is involved in 
neoplastic progression in vivo[104]. Tumor-derived exosomal miR-183-5p stimulates, through the miR-183-
5p/PTEN/AKT/PD-L1 pathway, the expression of macrophage PDL-1, of which major source are TAMs. 
Thereby exosomal miR-183-5p may be a target against immunotolerance in CCA[105].

MYELOID-DERIVED SUPPRESSOR CELLS
MDSCs derive from bone marrow and are divided into two groups: polymorphonuclear MDSCs (PMN-
MDSCs) and monocytes (M-MDSCs). The first group includes differentiated neutrophils, basophils, 
eosinophils and mast cells. The second group is composed of macrophages and DCs[106]. Specifically, 
PMN-MDSCs recruitment is permitted by the bond of chemokine CXCL1 to its receptor CXCR2, whereas 
M-MDSCs are inducted by CCL2-CCR2[107]. These cells are mainly triggered by inflammatory cytokines, 
and one of their major functions is the suppression of CTLs by PD-L1, permitting tumor proliferation 
[Figure 2]. In fact, it has been shown that the blockage of TAMs and PD-L1 alone was not sufficient to 
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slower CCA progression, because PMN-MDSCs bypass the PD/L1 and TAMs blockage through the 
impaired T-cells mediated immune responses, therefore dual blockage of TAMs and MDSCs may be a goal 
for CCA treatment[108].

TUMOR-ASSOCIATED NEUTROPHILS
Neutrophils are part of the innate immune system and play an active function in inflammation. Previous 
studies have shown that neutrophils seem also involved in the development of cancer as tumor-associated 
neutrophils (TANs)[109]. Their function in cholangiocarcinogenesis has not been deeply understood and 
investigated. They seem able to have both tumor-suppressing and tumor-promoting functions. TANs may 
have two different phenotypes, depending on the signals coming from the TME. In mouse models of 
different cancers, Fridlender et al. showed that type 1 (“N1 phenotype”) is induced by IFNs and has an 
antitumor role, while type 2 (“N2 phenotype”) is stimulated by TGFβwith tumor-promoting features[110]. In 
iCCA, both cancer and stromal cells produce CXCL5, which strongly attracts TANs to tumor and promote 
metastatization as a result of the PI3K-AKT and ERK1/2 pathways activation[5]. TANs expressing CCL2 and 
CCL17 foster immunosuppression by the recruitment of TAMs and Tregs[4] [Figure 2]. TANs and TAMs 
interactions favor iCCA development through OSM/IL-11/STAT3 signaling pathway activation. TANs and 
TAMs interaction has been abolished by STAT3 knockdown or STAT3 inhibitors, as demonstrated in vitro 
and in vivo[111].

Conversely, N1 may have an antitumor function. In fact, Gao et al. studied the effect of the administration, 
via percutaneous transhepatic biliary drainage, of tumor-cell-derived microparticles loaded with 
methotrexate into the bile-duct lumen above biliary obstruction from eCCA[112]. Tumor-cell-derived 
microparticles may serve as a carrier of chemotherapeutic drugs and simultaneously act as an immune 
modulator. Mobilization and activation of neutrophils and relief of biliary obstruction were observed in 25% 
of cases. Neutrophils showed an N1 phenotype, and they were able to attack and kill eCCA cells[78,112].

The prognostic role of TANs has been evaluated in various studies. Kitano et al. analyzed eCCA 
microenvironment and found that TANs were directly correlated with FOXP3+ (T-regs) and inversely with 
CD8+ T cells[45]. Moreover, a high number of TANs and T-regs are significantly related to poor OS. Mao et 
al. studied neutrophils in CCA and adjacent tissues, using CD15 as their marker[113]. They found that 
patients with deep neutrophils infiltration (high CD15 expression) had a reduced disease-free survival time 
and OS[99,113]. Interestingly, a systematic review showed a correlation between neutrophil to lymphocyte ratio 
(NLR) and OS: a high NLR is associated with significantly poorer OS in CCA[114,115]. Finally, epithelial 
expression of CXCL15 in CCA was found to correlate with TANs recruitment and α-SMA expression and it 
is related to a worse prognosis due to shorter survival after resection[116-118].

CONCLUSION
Growing evidence shows how CCA microenvironment plays a key role in multiple aspects of tumor 
progression. Although a reduction of lymphocyte effector cells leads to immune escape, the development of 
an immunotolerant environment is the final step of non-tumoral and tumoral cell crosstalk. Specifically, 
TILs are switched to an immunoregulatory phenotype, DCs have their antigen-presenting activity reduced, 
CAFs provide both a physical and a chemical barrier to protect CCA, TAMs differentiate themselves in a 
pro- and anti-inflammatory phenotype and MDSCs impair the cytotoxic activity [Figure 1]. Moreover, 
CAFs and TAMs support lymphangiogenesis and angiogenesis through VEGF, IL10 and TGFβ production.
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The late diagnosis of CCA and the frequent struggle to obtain a diagnostic biopsy have stimulated the 
research of novel diagnostic biomarkers. Liquid biopsy seems a promising tool to achieve this aim. In fact, 
the serum or bile evaluation of circulating tumor DNA and miRNA could play a future role as minimally 
invasive screening, diagnostic, prognostic and therapeutic monitoring biomarkers[119].

Other than the evaluation of circulating genetic material, also proteins, cytokines and serum metabolites 
could have a relevant role in the diagnostic and prognostic assessment of CCA. As listed above, POSTN and 
osteopontin may discriminate CCA from healthy controls and offer a stratification of post-surgical 
survival[119-122].

Furthermore, non-tumoral cells and various molecular signaling are associated with different prognostic 
values. For instance, CD8+ and CD4+ T cells are correlated with a better prognosis in CCA as well as high IL-
33 levels in CAFs, while Tregs are correlated with worse OS. High levels of pDCs, TAMs and NLR and the 
expression of α-SMA and SDF-1 by CAFs are correlated with worse prognosis.

Targeting TME could be a strategy for the development of more effective therapies against CCA. In 
particular, immunotherapy seems to offer a promising option in clinical practice. Novel biomarkers could 
assist in a diagnostic and prognostic evaluation of CCA. However, further studies are needed to achieve a 
better comprehension of the relationship between CCA and TME and to deliver new findings in clinical 
practice.
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