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Abstract
The induction of cell death is recognized as a potent strategy for cancer treatment. Apoptosis is an extensively 
studied form of cell death, and multiple anticancer drugs exert their therapeutic effects by inducing it. Nonetheless, 
apoptosis evasion is a hallmark of cancer, rendering cancer cells resistant to chemotherapy drugs. Consequently, 
there is a growing interest in exploring novel non-apoptotic forms of cell death, such as ferroptosis, necroptosis, 
pyroptosis, and paraptosis. Natural compounds with anticancer properties have garnered significant attention due 
to their advantages, including a reduced risk of drug resistance. Over the past two decades, numerous natural 
compounds have been discovered to exert anticancer and anti-resistance effects by triggering these four non-
apoptotic cell death mechanisms. This review primarily focuses on these four non-apoptotic cell death mechanisms 
and their recent advancements in overcoming drug resistance in cancer treatment. Meanwhile, it highlights the role 
of natural compounds in effectively addressing cancer drug resistance through the induction of these forms of non-
apoptotic cell death.
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INTRODUCTION
Cancer, as a major global public health concern, poses a severe threat to people’s well-being. In 2018, the 
World Health Organization reported that cancer ranked the second leading cause of death globally, 
resulting in approximately 9.6 million annual fatalities[1]. Cell death is a fundamental process crucial for 
human health, playing a pivotal role in regulating cell division, facilitating organ development, and 
upholding tissue homeostasis[2]. Nevertheless, the disruption and avoidance of cell death mechanisms 
facilitate malignant cell transformation and advance tumorigenesis[3]. From a therapeutic perspective, 
conventional cancer treatments, such as chemotherapy and radiation, achieve their anticancer effects by 
inducing cell death[2].

Over the span of several decades, there has been a growing comprehension of the diverse mechanisms 
governing cell death. This process can be classified into two primary categories: programmed cell death 
(PCD), which is genetically controlled, and unprogrammed cell death, which represents a passive response 
to both biotic and abiotic stress. Among the various forms of PCD, apoptosis has emerged as one of the 
earliest and most extensively explored pathways. For a significant duration, the development of anticancer 
drugs targeting apoptosis has been a focal point of research. Numerous drugs, such as cisplatin, oxaliplatin, 
and pirarubicin, have showcased their ability to elicit anticancer effects through this mechanism[4,5]. 
However, recent studies have increasingly validated that cancer cells possess the capability to elude 
apoptosis through a range of mechanisms, including the overexpression of apoptosis-inhibiting proteins, 
the inhibition of apoptosis-inducing factors, and the activation of survival signaling pathways[6]. This 
evasion of apoptosis directly contributes to chemoresistance, a phenomenon intricately associated with 
alterations in various aspects of cancer, encompassing angiogenesis, the tumor microenvironment, and 
oxidative stress[7-10]. Ultimately, this leads to the failure of cancer treatment. To improve the efficacy of 
cancer treatment, the exploration of non-apoptotic cell death mechanisms has gradually emerged as a 
prominent priority. Over the last two decades, researchers have sequentially unveiled and extensively 
investigated novel different cell death mechanisms, including ferroptosis, necroptosis, pyroptosis, and 
paraptosis. These unique mechanisms, each with its distinct regulators and pathways, hold the potential to 
be activated within apoptosis-resistant cancer cells, offering novel strategies for the treatment of cancer and 
overcoming cancer drug resistance.

Throughout history, natural compounds derived from plants, animals, microorganisms, and minerals have 
consistently served as a valuable source for drug discovery[11,12]. Unlike synthetic compounds, these 
substances are not artificially created and can be categorized into various forms, such as alkaloids, 
flavonoids, and terpenes, due to their diverse chemical structures[13]. Many of these natural compounds 
exhibit significant potential in the realm of cancer treatment. In fact, certain natural compounds, such as 
paclitaxel (PTX), camptothecin, and vincristine, have already gained widespread acceptance as 
chemotherapeutic drugs in clinical practice[14,15]. Moreover, an interesting aspect is that numerous natural 
compounds have been found to induce various non-apoptotic cell death pathways when administered to 
resistant cancer cells that evade apoptosis.

This review focuses on ferroptosis, necroptosis, pyroptosis, and paraptosis, providing a comprehensive 
overview of the latest research advancements in these mechanisms within the framework of cancer. We 
place specific emphasis on their relevance in the context of combatting cancer drug resistance. Additionally, 
this review compiles information on natural compounds with the capacity to induce these four modes of 
cell death in the context of addressing cancer resistance over the past two decades.
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FERROPTOSIS
Overview of ferroptosis
Ferroptosis, a recently discovered form of PCD that is iron-dependent, was first proposed in 2012[16]. 
Morphologically, ferroptotic cells exhibit intact nuclei without chromatin condensation. However, their 
mitochondria undergo significant changes, including reduced size, increased membrane density, reduced 
cristae, and outer membrane rupture[17]. Interestingly, the discovery of ferroptosis inducers was earlier than 
its naming. Yang et al. discovered some new compounds as early as 2003 and 2008, including Erastin, RSL3, 
and RSL5, which induce cell death through a mechanism distinct from apoptosis[18]. Erastin reduces cysteine 
uptake by inhibiting cysteine/glutamate transporter receptor, known as System Xc

-, resulting in a decrease in 
glutathione (GSH) synthesis and an increase in iron-dependent lipid peroxidation (LPO), which finally 
leads cells to ferroptosis[19]. Differently, RSL3 directly inhibits the activity of Glutathione Peroxidase 4 
(GPX4), a GSH-utilizing enzyme that prevents the accumulation of toxic lipid hydroperoxide, thereby 
inducing ferroptosis[20]. Additionally, Erastin also indirectly triggers ferroptosis through the inactivation of 
GPX4 via the inhibition of GSH synthesis[21].

It is known that LPO and intracellular iron accumulation play pivotal roles in triggering ferroptosis. 
Polyunsaturated fatty acids (PUFAs) are the most susceptible lipids to peroxidation during ferroptosis. The 
regulation of PUFA synthesis may be influenced by enzymes such as Long-chain acyl-CoA synthetases 
(ACSLs) and lyso-phosphatidylcholine acyltransferase-3 (LPCAT3). Additionally, arachidonate 
lipoxygenases (ALOXs) and cytochrome p450s (POR) can directly or indirectly modulate PUFA 
peroxidation, resulting in ferroptosis[22]. Additionally, iron metabolism is crucial for ferroptosis. As Fe2+ is 
released from the labile iron pool (LIP) into the cytoplasm, excess Fe2+ oxidizes PUFAs to hydroxyl radicals 
and leads to ferroptosis.

The mitochondria are responsible for cellular metabolism and also play an important role in the regulation 
of ferroptosis[23]. Within the mitochondria, dihydroorotate dehydrogenase (DHODH) reduces ubiquinone 
(CoQ) to ubiquinol (CoQH2), serving as a radical-trapping antioxidant with anti-ferroptosis activity. 
DHODH plays a significant role in mediating ferroptosis defense independent of the GSH pathway[24]. 
Similarly, the plasma enzyme ferroptosis suppressor protein 1 (FSP1) inhibits lipid hydroperoxides by 
reducing ubiquinone to ubiquinol, operating in parallel with GPX4 to counteract ferroptosis[25]. Obviously, 
the mechanisms of ferroptosis are complex and being explored constantly [Figure 1].

Ferroptosis pathways for chemotherapy resistance in cancer
In recent years, ferroptosis has been a hot topic in cancer development, treatment and cancer drug 
resistance. Several signaling pathways have been found to participate in promoting cancer development and 
drug resistance through the inhibition of ferroptosis. With multiple functions for proliferation, metastasis, 
and differentiation of cancer cells, the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the 
rapamycin (mTOR) signaling pathway is responsible for ferroptosis prevention via sterol regulatory 
element-binding protein 1 (SREBP1)/stearoyl-CoA desaturase-1 (SCD1)-mediated adipogenesis[26]. Hippo 
pathway activity is also responsible for cell growth and proliferation. Activating the Hippo pathway can 
suppress downstream YAP, leading cancer cells resistant to ferroptosis by downregulating acyl-CoA 
synthetase long-chain family member 4 (ACSL4) and TCP friendly rate control (TFRC)[27]. Since RAS may 
regulate some processes to escape ferroptosis, RAS-mutated cells are always susceptible to ferroptosis. High-
mobility group box 1 (HMGB1), a leukemia pathogenic gene, inhibits LPO via the RAS/MAP kinase 
(MAPK) pathway, promoting ferroptosis resistance[28].
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Figure 1. The mechanism of ferroptosis. Ferroptosis can be initiated by an increase in intracellular iron levels and the accumulation of
iron-dependent lipid peroxidation. It can be induced through the SystemXc

-/GSH/GPX4 axis, the DHODH/CoQ10 axis, and the
FSP1/CoQ10 axis. ACSL: Acyl-CoA synthetase; ALOXs: arachidonate lipoxygenases; CoQ: ubiquinone; FSP1: ferroptosis suppressor
protein 1; GPX4: glutathione peroxidase 4; GSH: glutathione; LPCAT3: lyso-phosphatidylcholine acyltransferase-3; LIP: labile iron pool;
POR: cytochrome p450s; PUFA: polyunsaturated fatty acid.

Additionally, several other pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2), p53, and 
hypoxia-inducible factor (HIF), are also involved in chemotherapeutic resistance through ferroptosis 
regulation. Recent research highlights the significant impact of the Nrf2 signaling pathway on both organ 
protection and resistance to cisplatin (DDP) across various cancer types[29]. For instance, in non-small cell 
lung cancer, Erastin and Sorafenib, either alone or in combination, induce ferroptosis by inhibiting the 
Nrf2/SLC7A11 (also known as xCT) pathway, thereby overcoming DDP resistance[30]. The p53 gene, 
extensively studied in cancer research, influences metabolic pathways related to ferroptosis, such as 
enhancing ferroptosis by down-regulating xCT expression[31]. According to this mechanism, Flubendazole 
and 5-fluorouracil (5-FU) demonstrate synergistic effects in treating castration-resistant prostate cancer[32]. 
HIF serves a dual role in the regulation of ferroptosis in cancer cells. Lowering HIF-α levels has been found 
to increase LPO and enhance ferroptosis in clear cell renal cell carcinoma[33]. Conversely, in temozolomide-
resistant glioblastoma, activating HIF-1α and HIF-2α can induce ferroptosis, with HIF-2α possibly 
promoting LPO as the primary mechanism[34].

Natural compounds inducing ferroptosis for cancer treatment
Many natural compounds have been found to induce ferroptosis via single or combinational therapies, 
offering opportunities for cancer treatment and drug resistance [Table 1]. Here, we summarize those natural 
compounds that reverse drug resistance by inducing ferroptosis. Most of these compounds can synergize 
with chemotherapeutic drugs by regulating ferroptosis-related proteins and genes. Recent studies have 
revealed that sorafenib can induce ferroptosis in various types of cancer[35]. However, sorafenib-induced 
ferroptosis can be suppressed, specifically through the activation of the PI3K/Akt signaling pathway or the 
NRF2/GPX4 axis[36,37]. To overcome this challenge, drug combinations have proven to be effective strategies. 
Dihydroartemisinin, a derivative of artemisinin, shares similar mechanisms with sorafenib regarding 
ferroptosis-related proteins, such as GPX4, and has a stronger effect in liver cancer cells when combined 
with sorafenib[38]. Ursolic acid, a pentacyclic triterpene compound, also exhibits synergistic anticancer 
effects with sorafenib by inhibiting xCT in many cancers[39]. While DDP is considered a front-line 
chemotherapy drug for various cancers, including ovarian cancer, its resistance poses a significant 
impediment to achieving effective treatment outcomes[40]. Inhibition of apoptosis plays a significant role in 
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Table 1. Natural compounds for anticancer drug resistance by inducing ferroptosis

Compounds Origin Structure Cancer Anti-drug resistant effects Refs

Artesunate Artemisia annua L. Renal cell carcinoma Increasing cytotoxicity in sunitinib-resistant renal 
cell carcinoma by triggering ferroptosis, increasing 
ROS generation, and decreasing metabolism.

[50]

Chrysin Oroxylum indicum 
(L.) Kurz

Pancreatic cancer Inhibiting CBR1 activity in gemcitabine-resistant 
pancreatic cancer to trigger ferroptosis through 
ROS accumulation.

[48]

Dihydroartemisinin Artemisia annua L. Hepatocellular 
carcinoma

Synergizing with sorafenib to induce ferroptosis 
by increasing the levels of L-ROS, LIP, and MDA 
and decreasing the level of GSH.

[38,
127-
129]

Ginkgetin Ginkgo biloba L. Non-small cell lung 
cancer

Synergizing with DDP to induce ferroptosis by 
increasing ROS formation, decreasing the 
expression of xCT and GPX4, and inactivating the 
Nrf2/HO-1 axis.

[46]

Kayadiol Torreya nucifera 
Sieb. et Zucc. 
(Taxaceae)

Extranodal natural 
killer/T cell 
lymphoma

Inducing p53-mediated ferroptosis through the 
xCT/GPX4 axis and exhibiting synergistic effects 
when combined with L-asparaginase and DDP.

[49]

Piperlongumine Piper longum L. Pancreatic cancer Enhancing the antitumor effects of erastin by 
inducing ROS generation, GSH depletion and 
inhibiting TXNRD activity.

[43,
130]

Shikonin Lithospermum
erythrorhizon

 Sieb.   et   Zucc.

Ovarian cancer Synergizing with DDP to induce ferroptosis 
through upregulation of HMOX1 and increased 
levels of ROS, LPO, and Fe2+.

[42]

Tiliroside Tribulus terrestris L. Hepatocellular 
carcinoma

Enhancing the antitumor effects of sorafenib by 
inducing ferroptosis via targeting TBK1 to promote 
Keap1-mediated Nrf2 ubiquitination and 
degradation.

[45]

Ursolic acid Ligustrum lucidum 
W. T. Aiton

Colon cancer, gastric 
cancer, prostate 
cancer

Enhancing the antitumor effects of sorafenib by 
inducing xCT-dependent ferroptosis.

[39]

Withaferin A Withania somnifera 
(L.) Dunal

Hepatocellular 
carcinoma

Enhancing the antitumor effects of sorafenib in 
sorafenib-resistant hepatocellular carcinoma cells 
by regulating Keap1/Nrf2-associated ferroptosis 
and EMT.

[44]

CBR1: Carbonyl reductase 1; DDP: cisplatin; EMT: mesenchymal transition; GPX4: glutathione peroxidase 4; GSH: glutathione; HMOX1: heme
oxygenase 1; LIP: labile iron pool; LPO: lipid peroxidation; L-ROS: lipid reactive oxygen species; MDA: malondialdehyde; TBK1: tank-binding kinase;
TXNRD: thioredoxin reductase.

contributing to DDP resistance, whereas the induction of novel forms of cell death, such as ferroptosis, has 
been shown to effectively kill DDP-resistant cancer cells that evade apoptosis[41]. The combination of DDP 
with Shikonin, a hydroxy-1,4-naphthoquinone isolated from Lithospermum erythrorhizon Sieb. et 
Zucc.(Boraginaceae), promotes Fe2+ accumulation by upregulating heme oxygenase 1 (HMOX1), initiating 
ferroptosis in DDP-resistant ovarian cancer cells[42]. Piperlongumine, an alkaloid derived from long pepper 
(Piper longum L.), exhibits anticancer activity in lung cancer cells by targeting the glutathione regeneration 
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enzyme, thioredoxin reductase 1 (TXNRD1). Although it does not induce ferroptosis, it can significantly 
enhance erastin-induced LPO[43].

In addition to ferroptosis-related genes and proteins, some natural compounds induce ferroptosis via 
regulation of the Nrf2 signaling pathway. Withaferin A, a steroidal lactone isolated from the medicinal plant 
Ashwagandha [Withania somnifera (L.) Dunal], and Tiliroside, a flavonoid found in the herbs of Tribulus 
terrestris L., both modulate the Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 pathway in 
hepatocellular carcinoma. Withaferin A enhances sorafenib sensitivity in sorafenib-resistant hepatocellular 
carcinoma cells by regulating the Keap1/Nrf2-associated epithelial-to-mesenchymal transition (EMT) and 
ferroptosis[44]. Additionally, tiliroside synergistically combines with sorafenib to inhibit Tank-binding kinase 
(TBK1) activity, prompting Keap1-mediated Nrf2 ubiquitination and degradation, leading to ferroptosis in 
hepatocellular carcinoma cells[45]. Ginkgetin, a natural biflavonoid isolated from the leaves of Ginkgo biloba 
L., has been found to induce ferroptosis in non-small cell lung cancer cells through decreased expression of 
xCT and GPX4, decreased GSH/glutathione disulfide (GSSG) ratio, and inactivation of the Nrf2/HMOX1 
axis. Interestingly, it can promote DDP-induced anticancer activity, which is also a result of ferroptosis 
induction[46].

As a key regulator of iron homeostasis, ferritin plays a vital role in storing intracellular free iron and is 
involved in ferritinophagy, a form of autophagic ferroptosis. In ferritinophagy, the autophagic cargo 
receptor nuclear receptor coactivator 4 (NCOA4) binds to ferritin heavy chains (FTH1) and delivers it to 
autophagosomes for degradation and iron release[47]. Human carbonyl reductase 1 (CBR1) contributes to 
gemcitabine resistance in pancreatic cancer. The upregulation of CBR1 induced by gemcitabine inhibits the 
antitumor effects of the drug. Conversely, reducing CBR1 activity enhances the sensitivity of cancer cells to 
gemcitabine, thereby improving its therapeutic efficacy. Chrysin, a natural bioflavonoid compound, has 
been discovered to induce ferritinophagy, thus enhancing gemcitabine sensitivity in pancreatic cancer cells. 
In Chrysin-treated cells, there is a deregulation of FTH1 and an increase in intracellular free iron levels, 
followed by the inhibition of CBR1, which is involved in the induction of ferroptosis[48].

The tumor suppressor protein p53 also plays an essential role in ferroptosis in certain cancers. As a 
diterpenoid extracted from Torreya nucifera, kayadiol exhibits anticancer properties through p53-mediated 
ferroptosis in NK/T lymphoma cells, and it could synergistically combine with L-asparaginase and DDP[49]. 
Artesunate (AST), another derivative of artemisinin, was found to inhibit the growth of sunitinib-resistant 
renal cell carcinoma cells by both inhibiting cell cycle progression and inducing ferroptosis. Interestingly, 
the induction of ferroptosis was associated with its inhibitory effect only in renal cell carcinoma cells 
expressing p53, suggesting that AST induces p53-dependent ferroptosis[50].

NECROPTOSIS
Overview of necroptosis
Necroptosis, first described in 2005, is a form of cell death characterized by morphological features similar
to necrosis, including a lack of nuclear chromatin, organelle swelling, and cell membrane disruption[51].
However, unlike necrosis, which is a passive and non-programmed form of cell death, necroptosis can be
regulated by multiple signal transduction pathways[52].

The classical form of necroptotic cell death is mediated by tumor necrosis factor-α (TNF-α). Initially, TNF-α
binds to its specific receptor TNF receptor 1 (TNFR1), promoting its trimerization and facilitating the
recruitment of several proteins including receptor-interacting protein 1 (RIP1) kinase, TNF-α receptor-
associated death domain (TRADD), cellular inhibitor of apoptosis 1 (cIAP1), TNFR-associated factor 2 
(TRAF2), and TNFR-associated factor 5 (TRAF5) to form complex I. Within complex I, RIP1 can 
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When the ubiquitylation of RIP is impaired, complex I can transform into complex IIa and complex IIb,
leading to cell death[54]. Complex IIa can trigger caspase-8-dependent apoptosis in the absence of RIP1,
whereas complex IIb depends on RIP1 for caspase-8 activation due to its deficiency in TRADD compared to
complex IIa[55]. Additionally, complex IIa can transform into complex IIb. When the levels of receptor-
interacting protein 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL) are sufficiently high 
and caspase-8 is blocked, complex IIb may develop into a necrosome. Following the phosphorylation of 
RIP1 and RIP3, two core components of the necrosome, the activated RIP3 can further recruit and 
phosphorylate MLKL, triggering its oligomerization. The oligomerized MLKL is then translocated 
to the plasma membrane, increasing its permeability and ultimately leading to necroptotic cell death[56] 
[Figure 2]. In addition to TNF superfamily receptors, various other types of receptors, such as Toll-like 
receptors, T-cell receptors, and interferon receptors, also contribute to the activation of necroptosis[57].

Regulation of necroptosis for anti-drug resistance in cancer
As independent of caspase activation and involving distinct components from apoptotic pathways,
necroptosis is an effective mechanism to overcome apoptosis resistance in cancer. However, some
necroptotic core components are always lacking in cancer cells, resulting in the evasion of this mechanism.
RIP3 is silenced in numerous cancer types, and this silencing is likely ascribed to genomic methylation near
the RIP3 transcriptional start site or driven by oncogenes BRAF and AXL[58]. Current studies have revealed
that demethylation treatment can activate necroptotic pathways by restoring the expression of RIP3.
Moreover, upregulating RIPK3 expression can enhance the sensitivity of colon cancer cells to 5-FU and
lung cancer cells to DDP through mediating necroptosis[59,60].

Furthermore, the low expression of MLKL appears to be associated with a poor patient prognosis in certain
cancers, making it a potential novel potential prognostic biomarker for these cancers[61]. In addition, some
compounds can induce MLKL-mediated necroptosis without the phosphorylation of RIP1 and RIP3, which
presents a very promising prospect for future studies[62].

In addition to modulating necroptosis genes and proteins, increasing glycolytic metabolism may confer
resistance to necroptosis in cancer cells under hypoxic conditions. The mechanism involves the suppression
of RIP-dependent necroptosis through pyruvate scavenging of mitochondrial superoxide[63]. Several studies
have suggested that inhibiting glycolysis may be a potential mechanism for necroptosis induction. For
instance, selenite-induced necroptosis in prostate cancer resulted from the inhibition of glycolysis through
adenosine triphosphate (ATP) depletion and phosphofructokinase activity reduction[64].

Natural compounds inducing necroptosis for cancer treatment
So far, many natural compounds can induce necroptosis in diverse cancer types, and some can also inhibit
drug resistance [Table 2]. As mentioned above, modulating necroptosis core proteins is critical for
necroptosis induction. By regulating the RIP1/reactive oxygen species (ROS)-mediated pathway, bufalin, an
endogenous cardiotonic steroid, can induce necroptosis in adriamycin-resistant triple-negative breast
cancer cell lines[65]. Numerous studies have indicated that when 5-FU is in combination with other
anticancer agents, its therapeutic efficacy can be effectively enhanced[66]. Gambogenic acid is one of the main
components of Gamboge which can be used in combination with 5-FU to upregulate necroptosis-related
proteins such as RIP1 in lung cancer cells, thereby inducing necroptosis[67]. Piperlongumine can also activate
RIP1 to produce excessive ROS, triggering necroptosis in DDP-resistant bladder cells[68]. Berberine can

undergo polyubiquitination by TRAF2, TRAF5, cIAP1, and cIAP2. The ubiquitination status of RIP1 
determines whether complex I activates the nuclear factor-κB (NF-κB) pathway to promote cell survival, 
or triggers cell death[53].
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Table 2. Natural compounds for anticancer drug resistance by inducing necroptosis

Compounds Origin Structure Cancer Anti-drug resistant effects Refs

Berberine Coptis chinensis 
Franch

Ovarian cancer Synergizing with DDP to induce necroptosis by activating the 
RIP3/MLKL pathway.

[69]

Bufalin Bufo bufo gargarizans 
Cantor

Triple-negative 
breast cancer

Inducing necroptosis in adriamycin-resistant triple-negative 
breast cancer through mediating the RIP1/ROS pathway.

[65]

Gambogenic 
Acid

Garcinia hanburyi 
Hook. f.

Lung cancer Synergizing with 5-FU to induce necroptosis by increasing the 
expression of RIP1.

[67]

Ganoderic acid 
T

Ganoderma lucidum 
(Leyss.ex Fr.) Karst.

Cervical cancer Increasing the radiosensitivity of cervical cancer by inducing 
necroptosis via ROS generation and increased expression of 
RIP and MLKL.

[71]

Oridonin Isodon rubescens 
(Hemsley) H. Hara

Renal carcinoma Inducing necroptosis in renal carcinoma to enhance the 
antitumor effects of 5-FU via ROS generation, GSH depletion, 
and activation of p38, ERK, and JNK.

[70]

DDP: Cisplatin; ERK: signal-regulated kinase; FU: fluorouracil; GSH: glutathione; JNK: c-Jun N-terminal kinase; MLKL: mixed lineage kinase
domain-like protein; RIP: receptor-interacting protein; ROS: reactive oxygen species.

Figure 2. The classical pathway of necroptosis. The classical form of necroptosis begins with the binding of TNF-α to TNFR1, initiating
the formation of complex I. If the ubiquitylation of RIP1 within complex I is inhibited, it undergoes a transition into complex IIA and
complex IIB. When caspase-8 is inactive, complex IIB recruits RIP3 to form the necrosome. Once RIP3 is phosphorylated, it recruits and
phosphorylates MLKL, leading to its oligomerization. The oligomerized MLKL is subsequently translocated to the plasma membrane,
resulting in necroptosis. MLKL: Mixed lineage kinase domain-like protein; PIR1: receptor-interacting protein 1; RIP3: receptor-
interacting protein 3; TNF: tumor necrosis factor; TNFR: TNF receptor; TRADD: TNF-α receptor-associated death domain  TRAF: 
TNFR-associated factor.

effectively enhance the antitumor effect of DDP in ovarian cancer by increasing the expression and 
activation of RIP3 and MLKL, thereby inducing necroptotic cell death[69]. In TNF-α induced necroptosis, 
MLKL is a key downstream component of RIP1 and RIP3. However, it is worth mentioning that tanshinol 
A, a phenolic compound extracted from Salvia miltiorrhiza Bunge, can trigger non-canonical necroptosis 
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mediated by MLKL in lung cancer independently of RIP1 and RIP3[62].

MAPK signaling pathways also play a role in necroptosis induction. For instance, oridonin, a diterpenoid 
derived from Isodon rubescens (Hemsley) H. Hara, has been shown to enhance the cytotoxicity of 5-FU in 
renal cancer cells by inducing necroptosis. This process is associated with the activation of c-Jun N-terminal 
kinase (JNK), p38, and extracellular signal-regulated kinase (ERK)[70].

Moreover, certain studies have demonstrated that the inhibition of caspases may cause a switch from 
apoptosis to necroptosis in specific cancer types. Ganoderic acid T (GAT) is a triterpene of Garcinia 
hanburyi Hook. f., inducing both necroptosis and apoptosis in cervical cancer cells. Interestingly, the 
percentage ratio of necroptosis is increased following the increase of GAT concentration, as GAT can 
reduce the matrix metalloproteinase (MMP) and ATP levels and caspase-8 expression under radiation 
conditions[71].

Notably, glycolysis suppression has also emerged as an effective mechanism for necroptosis induction by 
natural compounds. Docetaxel is indeed a valuable chemotherapeutic agent utilized in the treatment of 
prostate cancer, primarily by inducing cell death[72]. However, similar to DDP, the effectiveness of docetaxel-
induced apoptosis can also be hindered through various pathways, including the p38/p53/p21 pathway, 
USP33-DUSP1-JNK pathway, and PI3K/Akt/NF-κB pathway[73-75]. Therefore, several studies are currently 
focused on identifying alternative cell death pathways, such as necroptosis, that can be induced in 
docetaxel-resistant cancer cells as well. Shikonin has been extensively studied as a natural necroptosis 
inducer in various cancer types, and it has been demonstrated to overcome drug resistance to docetaxel in 
prostate cancer and DDP in bladder cancer[76,77]. Furthermore, shikonin can induce glycolysis suppression in 
glioma cells, which is closely associated with the accumulation of intracellular H2O2 triggered by the 
activation of RIP1 and RIP3[78].

PYROPTOSIS
Overview of pyroptosis
Pyroptosis, a pro-inflammatory programmed cell death, was originally termed by Cookson et al. in 2001[79]. 
The term derives from the Greek roots “pyro”, which relates to fire or fever, and “ptosis”, denoting a falling, 
reflecting its nature. Pyroptosis shares certain characteristics with apoptosis, such as DNA fragmentation, 
nuclear condensation, and caspase dependence. However, cells undergoing pyroptosis differ in that they 
retain intact nuclei and exhibit pore formation in the plasma membrane[80]. An increasing understanding of 
pyroptosis has revealed that this type of cell death can be divided into classical and non-classical pathways.

The classical pyroptotic pathway is mediated by inflammasome assembly, which consists of pattern 
recognition receptors (PRRs), apoptosis-related speck-like protein (ASC), and pro-caspase-1[81]. PRRs, 
functioning as inflammasome sensors, recognize pathogen-associated molecular patterns (PAMPs) and 
damage-associated molecular patterns (DAMPs)[82]. Subsequently, they recruit the bridging protein ASC, 
which contains a pyrin domain (PYD) and a caspase activation and recruitment domain (CARD), through 
specific PYD-PYD interactions. After being recruited, ASC can interact with and activate pro-caspase-1 via 
CARD-CARD interactions[83]. Some PRRs containing CARD can also directly bind to pro-caspase-1, 
forming inflammasomes without the participation of ASC[84]. Activated caspase-1 facilitates the maturation 
of inflammatory cytokines interleukin (IL)-1β and IL-18, as well as cleaves the pore-forming protein 
gasdermin D (GSDMD) to produce its N-terminal fragment (N-GSDMD)[85]. N-GSDMDs then translocate 
to the plasma membrane and form pores, promoting the release of mature IL-1β and IL-18. As the number 
of N-GSDMD pores increases, cells swell and rupture, resulting in pyroptotic cell death[86].
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In non-classical pathways, caspase-3/8 can also trigger pyroptosis by activating GSDMD or GSDME[87,88]. 
Additionally, caspase-8 can induce GSDMC-dependent pyroptosis as well[89]. The cleavage of GSDMD can 
also be mediated by caspase-4/5/11, which recognizes intracellular LPS to activate the non-canonical 
inflammasome[90]. Notably, GSDMB can not only be cleaved by caspase-1 to directly initiate pyroptosis, but 
also enhance caspase-4 activity to promote this cell death mechanism[91]. Recently, the cleavage of GSDMA 
has been found to be catalyzed by streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease secreted by 
group A Streptococcus. This finding demonstrates that GSDMA can also play a role in pyroptosis by 
releasing the cleaved N-terminal fragments, which can bind to and disrupt specific acidic lipid-containing 
membranes[92] [Figure 3].

Induction of pyroptosis for anti-drug resistance in cancer
In cancer treatment, the induction of pyroptosis is increasingly recognized as a promising strategy for 
overcoming drug resistance. NOD-like receptor family pyrin domain-containing 3 (NLRP3), a crucial 
inflammasome sensor in the NLR family, is recognized as a downstream target of multiple microRNAs 
(miRNAs) associated with cancer drug resistance. For example, by downregulating the expression of miR-
556-5p in non-small cell lung cancer, NLRP3 inflammasome-mediated pyroptosis can be triggered, thereby 
enhancing DDP sensitivity[93].

The pore-forming proteins GSDMD and GSDME, extensively studied in the GSDM family, are potential 
targets for combating drug resistance and contributing to the treatment and prognosis of various cancers. 
Some chemotherapeutic agents have been demonstrated to exert antitumor activity when used alone or in 
combination to induce GSDMD-dependent pyroptosis, enhancing the efficacy of chemotherapy. For 
instance, the co-administration of paclitaxel and ruthenium complexes can induce cell death in paclitaxel-
resistant cervical cancer cells by mediating Caspase-1/GSDMD-dependent pyroptosis[94]. GSDME-mediated 
pyroptosis has been observed to improve the sensitivity of various drugs across different cancer types, 
including increasing DDP sensitivity in esophageal squamous cell carcinoma cells and oxaliplatin sensitivity 
in colon cancer cells[95]. Additionally, it can alleviate the side effects of DDP in patients with oral squamous 
cell carcinoma.

In recent years, programmed death-ligand 1 (PD-L1), known as an immune checkpoint, has emerged as a 
research hotspot in tumor immunotherapy. However, PD-L1 has an additional role as a non-immune 
checkpoint by regulating the non-classical pyroptosis pathway mediated by GSDMC/caspase-8[96]. In this 
way, a variety of antibiotics can induce pyroptosis in cancer cells, indicating that it could be a novel strategy 
to combat antibiotic resistance in chemotherapy.

Natural compounds inducing pyroptosis for cancer treatment
Nowadays, the caspase-1/GSDMD and caspase-3/GSDME pathways have attracted significant attention in 
pyroptosis induction, and many natural compounds have been found to activate these pathways in cancers 
[Table 3]. Wedelolactone, an ingredient of Eclipta prostrata (L.) L., can simultaneously activate these two 
pathways by strongly increasing the activation of caspase-1, caspase-3, GSDME and GSDMD in 
retinoblastoma cells[97]. Ophiopogonin B, derived from Dioscorea bulbifera L., can induce caspase-1/
GSDMD-dependent pyroptosis in lung cancer cells, especially exhibiting a more significant suppression of 
growth in DDP-resistant cancer cells[98]. As a pentacyclic triterpene compound of lupine, betulinic acid can 
induce caspase-1-dependent pyroptosis, thereby enhancing chemosensitivity to DDP in esophageal cancer 
cells[99].
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Table 3. Natural compounds for anticancer drug resistance by inducing pyroptosis

Compounds Origin Structure Cancer Anti-drug resistant effects Refs

Betulinic acid Betula platyphylla 
Suk.

Esophageal 
cancer

Enhancing the antitumor effects of DDP by inducing pyroptosis 
via increasing the levels of ASC and caspase-1 and decreasing 
the levels of Ki67, PCNA, SOX2, and OCT4.

[99]

Diosbulbin B Dioscorea bulbifera L. Gastric 
cancer

Increasing DDP-sensitivity in gastric cancer by inducing 
pyroptosis via regulating the PD-L1/NLRP3 pathway.

[106]

Ophiopogonin 
B

Ophiopogon 
japonicus (L. f.) Ker-
Gawl.

Lung cancer Increasing DDP-sensitivity in gastric cancer by inducing 
pyroptosis via regulating the caspase-1/GSDMD pathway.

[98]

ASC: Apoptosis-related speck-like protein; DDP: cisplatin; GSDMD: gasdermin D; NLRP3: NOD-like receptor family pyrin domain-containing 3;
OCT4: octamer-binding transcription factor-4; PCNA: proliferating cell nuclear antigen; PD-L1: programmed death-ligand 1; SOX2: SRY-related 
high mobility group box protein-2.

Figure 3. In the classical pathway, PRRs recognize PAMPs and DAMPs, initiating the recruitment of ASC and pro-caspase-1. The 
activation of caspase-1 results in cleavage of GSDMD, forming GSDMD pores that ultimately trigger pyroptosis. Furthermore, caspase-1 
also results in the maturation of IL-1β and IL-18, which are eventually released from the GSDMD pores. Alternatively, in the non-
classical pathway, pyroptosis can be initiated by other members of the GSDM family. CARD: Caspase activation and recruitment 
domain; DAMPs: damage-associated molecular patterns; GSDMD: gasdermin D; IL: interleukin; PAMPs: pathogen-associated 
molecular patterns; PRR: pattern recognition receptor; PYD: pyrin domain.

By activating the caspase-3-dependent pathway, natural compounds such as curcumin, dihydroartemisinin, 
and germacrone can induce pyroptosis in different cancers[100-102]. Some studies have reported that the 
activation of caspase-9 is also involved in caspase-3-mediated pyroptosis. For example, alantolactone, a 
terpenoid of Inula helenium L., can promote the cleavage of caspase-9 and caspase-3 to induce GSDME-
mediated pyroptosis in anaplastic thyroid cancer[103]. Some chemotherapeutic agents, such as DDP, 5-FU, 
and carboplatin, have been demonstrated to combat cancer drug resistance by inducing GSDME-dependent 
pyroptosis, while whether natural compounds can also suppress drug resistance through this pathway needs 
further investigation[95,104,105].
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In addition, by downregulating PD-L1 to activate NLRP3-mediated pyroptosis, Diosbulbin B extracted from 
Dioscorea bulbifera L. can sensitize DDP-resistant gastric cancer cells to DDP[106]. At present, there are few 
reports on whether natural compounds induce pyroptosis via the regulation of other GSDM family 
proteins. This is partly because of their unclear functions in initiating pyroptotic cell death. Further 
elucidation of how the other members of the GSDM family contribute to pyroptosis induction in cancers 
may provide new insights for the search for natural compounds with anticancer and anti-drug resistance 
activities.

PARAPTOSIS
Overview of paraptosis
Paraptosis was first introduced as a form of programmed cell death by Sperandio et al. in 2000[107]. It derives
from “para”, meaning “next to” or “related to”, and “apoptosis”, suggesting that it is distinct from apoptosis.
The main morphological features of paraptosis include cytoplasmic vacuolization, swelling of the
endoplasmic reticulum and/or mitochondria, and the absence of nuclear fragmentation or apoptotic body
formation. In this paradigm, caspases are not activated, and thus, cells undergoing paraptosis are resistant to
caspase inhibitors[108].

The MAPK pathways play a critical role in paraptosis, and research focusing on the ERK, JNK, and p38
pathways is particularly extensive. Notably, the protein AIP1/Alix was described as the first specific
inhibitor of paraptosis, capable of restraining the insulin-like growth factor-I receptor (IGFIR)-
induced paraptotic process mediated by the MAPK/ERK and JNK pathways[109]. Furthermore, TrxR1 
inhibition and GSH depletion have been observed to potentially activate the MAPK pathways by 
triggering the accumulation of cellular ROS[110]. Paraptosis induction is also related to the 
homeostasis of intracellular Ca2+, which is mainly regulated by the endoplasmic reticulum and 
mitochondria. Intracellular Ca2+ can be released from the endoplasmic reticulum into 
mitochondria when paraptosis is initiated, resulting in the endoplasmic reticulum and mitochondrial 
dilation and ultimately leading to cell death. The voltage- and Ca2+-activated K+ (BKCa) channels are 
widely expressed in body and have the ability to link changes in intracellular calcium to outward 
hyperpolarizing potassium currents. The activation of these channels will disrupt the osmotic balance, 
initiating cell swelling and vacuolization[111]. Additionally, proteasome inhibition may also promote
paraptosis by inducing endoplasmic reticulum (ER) stress[112] [Figure 4].

Paraptosis potential applications in cancer drug resistance
Paraptosis induction is a potential strategy for developing non-genetically modified tumor vaccines. In rat
T9 glioma cells, the activation of BKCa channels promotes the overexpression of heat shock proteins and
the translocation of HMGB1 from the nuclear region to the periphery, stimulating immune responses and
initiating paraptosis. Rats injected with paraptotic T9 glioma cells, which are killed by prolonged BKCa
channel activation, can develop specific immunity to T9 cells. This suggests the potential of using these
treated cells as a functionally killed vaccine[113].

Due to its unique molecular mechanism, paraptosis induction also contributes to enhancing the activity of
proteasome inhibitors in cancer cells. Although many proteasome inhibitors have shown antitumor
activities, their clinical efficacy is unsatisfactory as their effectiveness can be compromised by both primary
and secondary resistance mechanisms. Therefore, combination therapy can be seen as an effective strategy
to address proteasome inhibitor resistance. For instance, by triggering paraptotic cell death, bortezomib
(Btz), a 20S core particle inhibitor of the proteasome, can be combined with loperamide, an antidiarrheal
agent, to enhance Btz sensitivity and reduce its side effects, effectively combating the colon cancer[114].
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Figure 4. The mechanism of Paraptosis. Paraptosis was initially discovered to be induced by IGFIR and mediated through the MAPK
pathways. Furthermore, it is intricately linked to various factors, including TrxR1 inhibition, GSH depletion, intracellular Ca2+

homeostasis, activation of BKCa channels, and proteasome inhibition. BKCa: Ca2+-activated K+; ER: endoplasmic reticulum; GSH:
glutathione; IGFIR: insulin-like growth factor-I receptor; MAPK: MAP kinase; ROS: reactive oxygen species.

Natural compounds inducing paraptosis for cancer treatment
Currently, a number of natural compounds have shown potential in cancer treatment by inducing 
paraptosis [Table 4], with many of them modulating the MAPK signaling pathways to trigger ER stress. One 
such example is Paris Saponin II, derived from Paris polyphylla Smith, which effectively induces paraptosis 
by activating the JNK pathway and augmenting ER stress[115]. Moreover, the activation of this paraptosis-
associated pathway enhances the sensitivity of DDP in lung cancer. Jolkinolide B, an active abietane ent-
diterpenoid, is also a noteworthy compound that induces paraptosis in both sensitive and DDP-resistant 
bladder cancer cells by activating the ERK pathway and enhancing ER stress[110]. Additionally, 
Chalcomoracin, isolated from Morus alba L., has been discovered to enhance the sensitivity of non-small 
cell lung cancer to radiation by augmenting ER stress[116]. Elaiophylin is a natural antibiotic derived from 
Streptomyces melanosporus that can also induce paraptosis through the hyperactivation of the MAPK 
pathway. This compound demonstrates notable efficacy in eliminating ovarian cancer cells that are resistant 
to multiple drugs, including platinum, taxane, and poly (ADP-ribose) polymerase inhibitor (PARPi)[117].

Some natural compounds such as curcumin, morusin, and ophiobolin A can also induce paraptosis by 
affecting ion homeostasis. Curcumin can induce paraptosis in epithelial ovarian cancer mainly through 
mitochondrial Ca2+ overload, which subsequently contributes to mitochondrial swelling and 
dysfunction[118]. Similarly, morusin, a prenylflavonoid, can also induce paraptosis in breast cancer by 
triggering mitochondrial Ca2+ overload[119]. In glioblastoma cells, paraptosis induced by ophiobolin A, a 
sesterterpenoid phytotoxin from the genus Bipolaris, is linked to K+ homeostasis imbalance, primarily 
caused by the blockage of BKCa channels[120].

Furthermore, natural compounds can induce paraptosis by disrupting sulfhydryl homeostasis and 
suppressing proteasome functions, both of which can be significantly inhibited by thiol antioxidants. In this 
way, plumbagin, extracted from Plumbago zeylanica L., can induce paraptotic cell death in different cancer 
types[121]. Paraptosis can also be triggered in a p53-dependent manner. For instance, Ginsenoside Rh2, which 
is a bioactive product in Panax ginseng C. A. Meyer, can induce paraptosis in colorectal cancer via activating 
the p53 pathway as well as the NF-κB survival pathway[122].
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Table 4. Natural compounds for anticancer drug resistance by inducing paraptosis

Compounds Origin Structure Cancer Anti-drug resistant effects Refs

Chalcomoracin Morus alba L. Non-small cell 
lung cancer

Increasing the radiosensitivity of non-small cell lung 
cancer by inducing ER stress-mediated paraptosis via 
activation of the MAPK pathway.

[116]

Elaiophylin Streptomyces 
hygroscopicus

Ovarian 
cancer

Inducing paraptosis to overcome platinum, taxane, 
and PARPi resistance in ovarian cancer by regulating the
SHP2/SOS1/MAPK pathway.

[117]

Jolkinolide B Euphorbia 
fischeriana Steud

Bladder              Inducing ROS-mediated paraptosis to suppress the
cancer                  growth of DDP-resistant bladder cancer by targeting

thioredoxin and glutathione systems.

[110,
131]

Paris saponin 
II

Paris polyphylla 
Smith

Non-small 
cell lung 
cancer

Enhancing the antitumor effects of DDP by regulating 
the JNK pathway.

[115]

DDP: Cisplatin; ER: endoplasmic reticulum; JNK: c-Jun N-terminal kinase; MAPK: MAP kinase; PARPi: poly (ADP-ribose) polymerase inhibitor;
ROS: reactive oxygen species; SHP2: src homology 2 domain-containing tyrosine phosphatase 2; SOS1: son of sevenless homolog 1.

CONCLUSION
Numerous natural compounds possess the ability to elicit anticancer and anti-chemoresistance effects by 
triggering non-apoptotic cell death mechanisms such as ferroptosis, necroptosis, pyroptosis, and paraptosis. 
It is noteworthy that while these forms of cell death have unique regulators, some common pathways can 
also govern them. This implies that multiple cell death pathways may occur concurrently and be subject to 
simultaneous regulation. In 2019, Malireddi et al. introduced PANoptosis, an innovative form of cell death 
that amalgamates essential features of pyroptosis, apoptosis, and necroptosis yet defies a straightforward 
classification under any one of these categories[123]. This discovery underscores the co-regulation and 
interplay among these cell death pathways, suggesting that drugs may possess multifaceted regulatory effects 
by modulating master factors within these pathways. Beyond the four aforementioned types of cell death, 
some other novel cell death mechanisms have surfaced in recent years, including parthanatos, disulfidptosis, 
and cuproptosis[124-126]. These revelations open up new avenues for identifying targets in cancer treatment 
and provide additional strategies for combating cancer drug resistance. As such, ongoing exploration is 
essential to ascertain whether natural compounds can elicit anticancer effects through these emerging forms 
of cell death.
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