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Abstract
Human breast milk (HBM) is the main source of nutrition for neonates across the critical early-life developmental 
period. The highest demand for energy is due to rapid neurophysiological expansion post-delivery, which is largely 
met by human milk lipids (HMLs). These HMLs also play a prebiotic role and potentially promote the growth of 
certain commensal bacteria, which, via HML digestion, supports the additional transfer of energy to the infant. In 
tandem, HMLs can also exert bactericidal effects against a variety of opportunistic pathogens, which contributes to 
overall colonisation resistance. Such interactions are pivotal for sustaining homeostatic relationships between 
microorganisms and their hosts. However, the underlying molecular mechanisms governing these interactions 
remain poorly understood. This review will explore the current research landscape with respect to HMLs, including 
compositional considerations and impact on the early life gut microbiota. Recent papers in this field will also be 
discussed, including a final perspective on current knowledge gaps and potential next research steps for these 
important but understudied breast milk components.
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INTRODUCTION
Human breast milk (HBM) is pivotal for nutrition, immunological priming, neurodevelopmental support, 
and gut microbiome establishment in newborn infants. The mechanisms by which HBM impacts these key 
host responses are varied and include hormones for the regulation of digestion[1], infant appetite[2], and 
multiple pro- and anti-inflammatory cytokines to support and train the largely naive infant immune 
system[3]. HBM is considered the gold standard in infant nutrition, which is highly variable between 
lactating individuals[4] and generally seems temporally and conditionally suited to match the respective 
infants’ needs[5]. One of the most studied nutritional substrates are human milk oligosaccharides (HMOs), 
which pass undigested into the infant colon where they can act as prebiotic (i.e., selective) nutrient sources 
for certain microbial genera such as Bifidobacterium. Fermentation of these HMOs then provides key 
metabolites to the growing infant and the wider microbiota[6]. Another key nutritional component of HBM 
are human milk lipids (HMLs), which are a major source of energy for infants, with an average content of 
~40 g/L breast milk during the initial semester post-delivery[7]. HMLs also include several compounds that 
are essential for infant development. For example, phosphorylated lipids, glycosylated lipids, short- and 
long-chain fatty acids, polyunsaturated fatty acids[8], and several fat-soluble vitamins[9], which are all 
important for cognitive and immune system development[10], bone growth[11], anti-oxidation[12], and 
establishment of gastrointestinal tract (GIT) mucus[13]. It is becoming increasingly clear that the GIT 
microbiota also participates in the degradation of HMLs, which like HMOs, may influence the initial 
assembly of specific microbial members and communities. Thus, HMLs may indirectly affect infant health 
via interactions between the host, bacteria, and their shared diet. However, in comparison to HMOs, our 
understanding concerning the microbial utilisation of HMLs is limited.

The milk fat globule: core and membrane
Milk fat globules (MFGs) are functionally versatile droplets that are secreted into human milk via secretory 
cells of the mammary gland alveoli during lactation[14]. Their main nutritional purpose is to passage a 
triglyceride-rich core through the infants’ digestive tract. Although there is already a significant microbial 
ecosystem in the initial days post-birth[15], and many colonisers are reportedly capable of incorporating 
dietary lipids[16], the nutrient-rich core remains available for the infant as the milk fat globule membranes 
(MFGMs) protect the fat droplet from microbial digestion. MFGMs are heterogeneous and change 
throughout lactation, both regarding overall quantity and composition[17]. In general, MFGs are coated by 
two such membranes: a monolayer coating the triglyceride-rich core, and an overlying bi-layer membrane. 
Both membranes include proteins, phospholipids, sphingolipids, gangliosides, choline, sialic acid, and 
cholesterol, whereby the outer layer contains most of the glycolipids found in human milk (HM)[8]. Most of 
these glycolipids can be classified as gangliosides with a ceramide lipid chain anchoring respective 
combinations of oligosaccharides and sialic acids to the MFGM[18]. Notably, gangliosides have been shown 
to be highly important for both cerebral[19] and enteral[20] development, growth, communication, and 
differentiation of colonocytes[21], and gut-associated immune cells[22]. The most abundant gangliosides in 
human milk are monosialoganglioside-3 (GM-3) and disialoganglioside-3 (GD-3)[23]. GD-3 is very abundant 
in colostrum, while GM-3 increases in abundance at later time points[24]. Gangliosides, in particular, have 
been shown in many cases to protect against gastrointestinal pathogens via inhibition of various toxins[25], 
and GM-3 and GD-3 can act as decoy receptors for rotavirus[26] and influenza viruses[27], respectively. 
Indirectly, gangliosides exert anti-inflammatory effects on the developing immune system via influencing 
dendritic cell maturation[28] and downstream stimulation of the hosts’ own intestinal IgA production[22]. 
However, gangliosides are not antagonistic to all gastrointestinal microorganisms. Previous work has 
indicated that the dominant and keystone early-life bacterial gut microbiota member Bifidobacterium can 
grow in the presence of GM-3 and GD-3 while simultaneously lowering ganglioside levels in vitro, which is 
suggestive of possible incorporation or conversion. Notably, different bifidobacterial species have different 
preferences. Bifidobacterium bifidum is very efficient in removing GD-3 by employing extracellular 
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mechanisms, while Bifidobacterium longum subsp. infantis degrades GM-3 intracellularly, with overall lower 
glycosidase activity[29]. These observations indicate that gangliosides support the establishment of 
commensal microbiota during early-life.

The MFGM is equipped with many other compounds that, such as gangliosides, are interpretable as 
bioactive, as summarised in Table 1. Phosphatidylethanolamines (PEs) are integral to the outer MFG bilayer 
membrane, and while they are important for human cell proliferation during early life, some bacteria of the 
Clostridium and Enterococcus genera were shown to use ethanolamine as a source of carbon and 
nitrogen[30]. Furthermore, phosphatidylserine has implications for brain development in infants[31] and was 
shown to induce major shifts in Bacillota (Firmicutes): Bacteroidota (Bacteroidetes) ratio in human gut 
microbiomes[32]. For strictly anaerobic representatives of the Clostridia and Veillonella genera, it was shown 
that they can use phosphatidylserine as a substrate to catalyse phosphatidylethanolamine and 
plasmenylethanolamine, both by employing respective phospholipid decarboxylase activities[33], a function 
that is commonly found among many lactic acid bacteria found in the human gut[34]. Furthermore, 
phosphatidylcholine is a major membrane-forming phospholipid in eukaryotes, with an estimated presence 
of 15% in the bacterial kingdom[35]. As a provided substrate, it can exert a prebiotic function on B. longum 
subsp. infantis, which, by translating the compound to 1,2-sn-diacylglycerols, affects the regulation of 
colonic mucus production. However, conflicting evidence from in vitro studies indicates that Clostridia and 
Enterobacteriaceae could also be involved in phosphatidylcholine metabolism, which decreases the 
abundance of Bifidobacterium spp. due to competition for the substrate[36]. The outer MFG membrane also 
contains most of the sphingomyelins, for which many bactericidal activities against human opportunistic 
pathogens are described[37], thereby greatly increasing colonisation resistance. Sphingomyelins were 
observed to increase gut barrier function, thereby decreasing the chances of translocation of intestinal 
bacteria during inflammation[38]. Dietary sphingomyelins were also observed to significantly reduce 
inflammatory cytokine levels in the circulation of mice[39]. However, sphingomyelins have also been 
observed to act as binding sites for toxins of the enteropathogen Helicobacter pylori[40]. However, 
sphingosine, a hydrolytic product of sphingomyelin, reportedly showed general bactericidal activity in the 
GIT[41].

The core of MFGs consists of a pool of triacylglycerols (TAGs) that is composed of several saturated fatty 
acids, including stearic, palmitic, oleic, linoleic, myristic, and lauric acids[8]. These by themselves interact 
with colonising microbiota, but especially during their initial hydrolysis, monoacylglycerols are generated, 
constituting prominent bactericidal bi-products [42]. Stearic acid was found in high concentrations in infant 
brain grey matter, suggesting important implications for neurogenesis[43]. Furthermore, stearic acid, similar 
to palmitic acid, forms crystallite surfaces that display bactericidal activity against Pseudomonas aeruginosa 
and Staphylococcus aureus[44], both relevant pathogens during human early life. Greater proportions of 
palmitic acid in the pool of triacylglycerides, for instance, were associated with higher levels of fecal 
Lactobacillus and Bifidobacterium in neonates[45]. Similarly, oleic acid was observed as beneficial for 
Lactobacillus  spp.[46], while lauric acid was shown to exert antimicrobial activity against 
Cutibacterium acnes[47]. Lastly, freely-available myristic acid is involved in the post-translational folding of 
proteins in humans[48] and can inhibit the activity of some bacterial ATP-binding cassette (ABC) 
transporters, for instance, observed for bacillus multidrug-resistance ATP (BmrA) of Bacillus subtilis (B. 
subtilis). The bmrA gene encodes an ABC half-transporter which, besides many different substrates, also 
transports cervimycin out of the cell, thereby rendering B. subtilis resistant to the antibiotic. In this case, 
freely-available myristic acid was observed to have an inhibitory effect on the respective ATPase and BmrA 
transport activity, thereby rendering the B. subtilis unviable[49]. Whether this is the case for other bacterial 
ABC transporters, such as LmrA or MsbA, remains to be elucidated. Furthermore, the accessibility of TAGs 
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Table 1. Summary of bioactive MFGM components

Lipid Description Role for Microbiome Citation

Phosphatidylethanolamine Inner membrane lipid, important for cell proliferation 
and differentiation by regulation of immunological 
pathways. Degraded by phosphodiesterases to yield 
glycerol and ethanolamine

Certain intestinal bacteria including several 
pathogenic 
species such as Clostridium, Enterococcus, 
Escherichia and 
Salmonella catabolise ethanolamine as a major 
carbon and/or N source with the aid of 
ethanolamine utilisation proteins

[30,110,111]

Phosphatidylserine Inner membrane lipid, responsible for the induction 
of apoptosis, carrier of Docosahexaenoic acid

Phosphatidylserine was observed to decrease 
the ratio of Bacillota (Firmicutes) to 
Bacteroidota (Bacteroidetes)

[32,112,113]

Phosphatidylinositol Inner membrane lipid, important for cell signalling 
and activation of immunological pathways. Cell 
signalling, activation of Akt (1)

Phosphatidylinositol was shown to exert active 
bursting action on the protoplasts of Bacillus 
megaterium

[114,115]

Cholesterol Found in inner and outer membrane, responsible for 
the structural maintenance of membranes, 
compartmentalization of membrane proteins, and 
serves as a substrate for bile acids, vitamin D, 
hormones and oxysterols

Several studies on germ-free animal models 
showed evidence of microbial involvement in 
cholesterol and bile metabolism

[8,116-118]

Phosphatidylcholine Outer membrane lipid, important for membrane 
structure, lipoprotein assembly, and secretion

Bifidobacterium longum subsp. infantis was 
observed to utilize phosphatidylcholine to 
produce 1,2-sn-Diacylglycerols (DAG), which 
are involved in the regulation of colonic 
mucosal proliferation

[36,112]

Sphingomyelin Metabolized to ceramide and sphingosine. Important 
for vascular development and immunological 
modifications

General bactericidal activities [37,119-121]

Cerebrosides Cerebrosides are major glycosphingolipids of human 
milk. These are glycolipids with a Galactose/Glucose 
moiety

Protect the procedure of digestion and gut-
mucus integrity

[122,123]

Gangliosides Gangliosides are glycosphingolipids consisting of a 
hydrophobic ceramide and a hydrophilic 
oligosaccharide chain. Seminal involvement for 
cognitive development and immunological 
modulation

Often described as putative decoys that 
enhance colonisation resistance against 
opportunistic pathogens

[19-22]

Monoacylglycerols Hydrolysis of dietary triacylglycerols by endogenous 
lipases produces sn-2 monoacylglycerols

General bactericidal activities [37,124]

Saturated fatty acids Some dietary fatty acids are converted to biologically 
active metabolites by enzymes not only by the host 
but also by gastrointestinal bacteria

Bacteria can incorporate extracellular fatty 
acids into membrane lipids

[125,126]

Triacylglycerols Diverse set of lipids found in the core of the MFG. 
Mainly consists of stearic, palmitic, oleic, linoleic, 
myristic and lauric acid

Some metabolic products of the acids 
(Monoglycerides) can have an inactivating 
effect on bacteria

[8,127]

Stearic acid The high concentration of stearic acid in brain grey 
matter suggests that this fatty acid has an important 
role in neural function

General modulatory effects on gut microbiota [43,128,129]

Palmitic acid Used for energy metabolism and the synthesis of 
bioactive lipids

Higher proportions of palmitic acid in infant 
formula were observed to increase faecal 
Lactobacillus and Bifidobacterium levels

[45,124]

Oleic acid Used for energy storage and metabolism, can alter 
cell membrane fluidity

Was observed as beneficial for growth of 
several Lactobacillus species

[46,130]

Linoleic acid Involved in functions for skin barrier maintenance, a 
precursor to Arachidonic acid, and competes with n-
3 fatty acid metabolism. Described as one of the 
most abundant and active fatty acids in protection 
from infections

Microbial conversion of linoleic acid into 
conjugated linoleic acids reportedly 
contributes to gut health

[131-134]

Myristic acid Myristic acid is directly involved in post-translational 
protein changes and mechanisms that control 
important metabolic processes in the human body

Abundance of myristic acid was associated 
with Bacteroides, Enterobacteriaceae, 
Veillonella, Streptococcus, and Clostridium 
abundances in infant gut microbiota

[85,135]

Lauric acid One of the most active fatty acids in protection from 
infections, makes up 5% of milk fatty acids

Lauric acid has significant antimicrobial activity 
against Gram-positive bacteria

[133,136]
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for hydrolysis is highly dependent on the structural integrity of the MFG during digestion[50]. Cholesterols 
are mainly responsible for the structural maintenance of both membranes but also serve as the substrate for 
bile acids, vitamin D, hormones, and oxysterols[8]. Recently, it was shown that Clostridia can metabolise 
cholesterol to coprostanol[51], which escapes hepatic recirculation as it is not reabsorbed by colonocytes. 
Since cholesterol forms the backbone of bile-acid production, this has massive consequences for 
downstream absorption of lipids emulsions and implied interactions with gut microbiota during 
stabilisation and digestion of TAG-cores.

Interactions of gut bacteria with the lipid emulsion during digestion
Human breast milk is considered the optimal food for the growth and development of healthy infants, as 
well as pivotal for the initial establishment of human gut microbiota. However, many infants are not 
exclusively fed breast milk during the initial months post-delivery, and previous work has indicated that 
formula-fed infants are more susceptible to diarrhea, pneumonia, and sepsis, which may be due to a lack of 
immunological support and colonisation resistance against pathogenic microorganisms provided by breast 
milk[52]. Indeed, receipt of breast milk was shown to be the most significant factor associated with infant gut 
microbiome composition, leading to an increased abundance and prolonged occurrence of bacteria of the 
genus Bifidobacterium, while cessation of breast milk was observed to be associated with a premature 
establishment of Bacillota instead[53]. However, it remains poorly understood how HMLs interact with 
intestinal microbiota during early-life succession. It is believed that the developing central and peripheral 
nervous systems account for the largest fraction of energy demand and expenditure during infancy[54]. 
Approximately half of this energy demand is met by digestible HMLs, such as TAGs[55]. The MFGM passes a 
TAG-rich core through the digestive tract in the presence of gastrointestinal bacteria. For neurons to receive 
this energy, homeostasis between the immune system and the microbiome is favourable[56] during the 
digestion of a TAG emulsion. Questions remain as to where in the gut TAGs and other lipids are 
preferentially absorbed and under which circumstances colonising bacteria aid in absorption or become 
opportunistic scavengers of released nutrients.

Digestion of MFGs starts in the stomach, where gastric proteases begin to hydrolyse MFGM-bound proteins 
at low pH[57]. This partially destabilises the membrane and releases nutritious fat while simultaneously 
releasing sphingomyelins and cholesterol stabilise the coagulate, enabling adherence of lipases secreted from 
gastric mucus[58]. Gastric absorption of lipids is of higher relevance shortly post-delivery, as duodenal 
absorption is deficient due to the initial lack of bile acids and pancreatic lipases in the duodenum and 
onwards[59]. Bile acids are synthesised from cholesterol in the liver[60], and once their synthesis is steadily 
established, primary bile acids are secreted from the gallbladder in dependence on ingested cholesterol: 
phosphatidylcholine ratios[61]. The primary bile acid profile in infants predominantly consists of cholic acid 
(CA) and chenodeoxycholic acid (CDCA), with a greater proportion of CA and its conjugates than CDCA 
and its conjugates[62]. These (conjugated) primary bile acids are key for the degradation of MFGs in the 
small intestine, where they ensure the removal of lipolytic products from the oil-water interface as surface-
active molecules, coordinate micellar solubilisation, and stabilise lipid droplets against aggregation[63]. They 
furthermore stimulate the activity of lipases such as the bile salt-stimulated lipase (BSSL)[64]. Interestingly, 
BSSL is also produced in mammary glands and seeded via breast-feeding, while other lipases are only 
produced in the pancreas, such as pancreatic lipase-related proteins (PLRP) and pancreatic triglyceride 
lipase (PTL)[57]. Around 95% of all bile acids reabsorbed in the distal ileum enter hepatic recirculation[65]. The 
remaining, however, are subjected to microbial translation into secondary bile acids via microbial 
deconjugation, oxidation, epimerisation, 7-dehydroxylation, esterification, and desulfation. To do so, GIT 
microbes employ bile salt hydrolases (BSHs) in the presence of taurine or glycine to deconjugate primary 
bile acids[66], a process that largely takes place in the small intestine and results in the hydrolysis of amide 
bonds in primary bile acids and leads to the release of free amino acids[67]. Generally, the microbiome from 
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duodenum to ileum is phylogenetically less diverse and has lower biomass in total compared to the 
colon[68]. Bacterial genera commonly found in the infant small intestine include Lactobacillus, Clostridium, 
Staphylococcus, Streptococcus, Bacteroides, and Bifidobacterium[69], many of which reportedly show 
respective BSH activity[70]. Currently, only a few three-dimensional structures of the BSH enzyme have been 
reported, including those of bacteria that are prevalent initial colonisers of the infant gut, such as 
Bifidobacterium longum[71], Enterococcus faecalis[72], and Clostridium perfringens[73]. While each is similar in 
topology, they display different catalytic efficiencies and substrate preferences[74]. It is well known that some 
of these bacteria establish as commensals in the human gut, while others may be detrimental to health when 
overly abundant, with a “disturbed” microbial composition potentially being funnelled via key actions of 
strain-specific BSH activities. Importantly, secondary bile acids escape hepatic recirculation, which 
reportedly, in turn, decreases cholesterol absorption and enhances its fecal excretion via modulation of 
farnesoid X receptor (FXR) signalling[75]. Microbial modulation of bile acid profiles has been linked to 
inflammatory bowel disease (IBD), with related FXR modifications as an underlying mechanism of gut 
barrier destabilisation[76]. Furthermore, microbial bile acid deconjugation was shown to involve 
immunological modifications, whereby ω-muricholic acid (ω-MCA) and 3β-hydroxydeoxycholic acid 
(isoDCA) in particular have been shown to stimulate dendritic cell recruitment and increase the frequency 
of Foxp3+ T regulatory cells[77]. However, it remains unclear which species are responsible for the given 
transformations.

Temporal & incidental variability of human milk lipid composition
The size of the MFG and its lipid composition varies across the lactation period and is reflective of the needs 
of the infant[78]. Generally, a slight increase in the size of MFGs as well as total milk fat content was observed 
with the time of lactation[79], likely to meet the increased caloric needs. However, MFG size has been shown 
to be surprisingly large in colostrum during the first two days post-delivery[80], presumably as an adaption to 
the immature digestive tract and enteric immune system of the newborn. Phosphatidylcholine, 
phosphatidylethanolamine, and sphingomyelin contribute up to 40% of all MFGM phospholipids, which are 
subject to intra-individual variation, especially during early lactation, with concentrations ranging from 140 
mg/L to 410 mg/L[81], reflective of the plasticity of the MFGM during early life. Lactobacillus species have 
been shown to either incorporate or coat themselves with milk-derived phospholipids in a species-
dependent manner, whereby they increase their surface electronegativity, which results in increased 
adherence to epithelial cells[82]. Species of the genus Lactobacillus are well-known commensals of the small 
intestine with many anti-inflammatory properties, and their successful establishment in the GIT is believed 
to contribute to the colonisation resistance against enteric pathogens[83]. Furthermore, phospholipids, as 
reviewed in detail elsewhere[84], are important metabolites for intestinal cell integrity and maturation, and 
disruptions in sphingolipid metabolism were previously implied in the pathogenesis of preterm necrotising 
enterocolitis[85]. Interestingly, cholesterol concentrations appear to decrease during lactation as well[86], 
which may have implications for bile acid production. Alongside changes in lipid composition, researchers 
repeatedly find reoccurring patterns of microbial succession during early life. In general, these include a 
transition of dominance from facultative anaerobic bacteria to a fully anaerobic lifestyle in the late phases of 
colonisation[87]. Under anaerobic conditions, intestinal bacteria ferment dietary carbohydrates and produce 
short-chain fatty acid (SCFA) end-products such as acetate, butyrate, and lactate, the composition of which 
varies depending on underlying microbial fingerprints[88]. SCFAs have many important interactions with the 
human host, including the importance of differentiation of dendritic cells[89], as well as the promotion of 
mucus secretion and epithelial barrier integrity[90]. Interestingly, SCFAs are found in HM[91], presumably to 
compensate for the initial lack of intestinal SCFA production in infant microbiota.
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Infant sex and socioeconomic status are involved in HM composition and early life microbiome 
establishment
Collective evidence suggests that the composite of HBM is personalised in order to secure optimal 
developmental conditions for the infant[92]. This highlights the necessity of future research to study mother-
infant pairs in order to gain a better understanding of infant nutrition, including the role of HMLs, and 
early-life gut microbiome establishment. However, non-stochastic sources of variability, such as the 
difference of sex, provide partial explanations for the observed variance, as metabolic requirements between 
male and female newborns diverge[93], implying disparities for BM absorption[94] and microbiome 
establishment[95], which should not be overlooked in future research planning. It was recently highlighted 
that human milk provides sex-specific growth advantages, even implying the existence of sex-specific 
micronutrients[96]. Indeed, there are several observations of sexual dimorphism and its obvious connection 
to nutrition. Overall, male and female growth rates differ[97], and given that the majority of energy is 
delivered via HMLs, it is implied that HML composition and absorption may differ according to infant sex, 
while indeed, mothers of male infants produce BM with a higher energy content that mothers of female 
infants[98]. However, little is known whether microbiome-affecting lipids of the MFGM differ in dependency 
on infant sex, while several studies indicate there are potential sex-dependent differences in gut microbiota 
at different stages post-delivery. For example, it was reported that male premature infants have less rich 
microbiota with higher numbers of Enterobacteriales, as compared to female premature infants who show 
higher numbers of Clostridiales[99], while another study reported on elevated abundances of Bacteroides spp. 
in female infants[100]. Also, there is strong evidence indicating that male infants are at higher risk for 
morbidities when challenged by perinatal complications[101], but the underlying causes are not well-
researched and practical guidelines for differential nutritional strategies are lacking. Maternal diet has 
furthermore been linked to BML contents and related growth of offspring[102]. Socioeconomic status 
furthermore is linked to the human diet[103] and, therefore, partially underlies the HM content of lactating 
mothers. While the relationship is complex, obesity as well as malnourishment manifest in association with 
poverty[104]. It was shown that overall milk lipid contents are negatively associated with the BMI of 
Congolese mothers[105], and HM fatty acid composition, especially levels of long-chain polyunsaturated fatty 
acids, were related to the socioeconomic status of Iraqi mothers[106]. Furthermore, it is well known that 
infant sex and socioeconomic status interactively define milk fat concentrations, given that mothers of 
sufficient socioeconomic status produce milk richer in fat for male offspring, while mothers of lower 
socioeconomic status produce milk richer in fat for female offspring[107]. However, it is not well understood 
how this affects the content of MFGMs and related downstream effects on microbiome establishment.

Conclusion and future prospects of HML research
A balanced establishment of early-life gut microbiota is seminal for health throughout life. Diet heavily 
influences this succession, and the MFGM represents a largely overlooked interface for cross-
communication between establishing microbiota and the developing infant. The MFGM contains a selective 
repertoire of molecules to strengthen colonisation success for human commensal bacteria and colonisation 
resistance against opportunistic pathogens, while simultaneously delivering a major fraction of energy 
supply through the digestive tract. In order to understand the various effects of HMLs on early life 
microbiome establishment, constituent parts of the MFGM and their effects on particular microorganisms 
during digestion of human milk is a key area for future research. For example, stable-isotope probing (SIP) 
techniques are extensively discussed for general application in the inquiry of human microbiomes[108] and 
could be employed for the detection of utilisation of respective MFGM components by particular 
microorganisms of the establishing infant gut microbiome. Thereby, mechanisms underlying pathogenicity 
or colonisation resistance could be identified, described, and attributed  to respective microorganisms. 
Diarrhea remains a major cause of child mortality[109], and neurophysiological impairments following 
premature birth have been linked to aberrant development of the enteric microbiota[88]. Therefore, globally 
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many infants and their families would benefit from such additional research to improve colonisation 
resistance against pathogenic microorganisms and to improve outcomes against serious infections with 
novel therapeutic options while concurrently reducing antibiotic usage, which is also linked to the 
antimicrobial resistance crisis. Furthermore, our understanding of early-life microbiota is biased, as most 
sequencing efforts have focused on samples from high-income countries. Therefore, future microbiota 
profiling and dietary mechanistic studies should be broadened to capture a more global and true perspective 
on infant gut microbial communities and the diversity and impact of HMLs.
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