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Abstract
Aim: Since double sources of uncertainties are usually involved in practical engineering – namely, the epistemic and
aleatory uncertainties – it is becoming increasingly crucial to incorporate these double sources of uncertainties into
structural reliability analysis in order to ensure the safety of structures.

Methods: In this paper, a two-level Active-learning Kriging (AK) meta-model approach is put forward to address the
challenge of imprecise structural reliability analysis, where the epistemic and aleatory uncertainties are characterized
by using a parameterized probability-box (p-box)model. At the inner loop, a new learning function called the Relative
Entropy Function (REF) is proposed to enhance the active learning process. The proposed REF facilitates the selec-
tion of informative points efficiently, accelerating the overall AK with Monte Carlo Simulation (AK-MCS) process.
In that regard, the proposed AK-MCS with REF is effective in estimating failure probabilities with high accuracy in a
precise probability sense. Moving to the outer loop, another Kriging meta-model is established to relate the distribu-
tion parameters within the p-boxes to the conditional failure probabilities. This outer-loop model allows for efficient
estimation of the failure probability bounds via the efficient global optimization.

Results: The efficacy of the proposed method is verified through four numerical examples, which include a finite-
element model. A pertinent double-loopMCS is employed to obtain comparative results. Furthermore, the proposed
method is applied to structural progressive collapse analysis, serving as a guide for robustness-based design.
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Conclusion: The computational results demonstrate that the proposed method is effective in dealing with structural
reliability problems involving double sources of uncertainties.

Keywords: Probability-boxes, Kriging meta-model, Active learning, Relative entropy function, Imprecise structural
reliability analysis, Structural progressive collapse

INTRODUCTION
Uncertainty is a common occurrence in various aspects of practical engineering, including structure design,
manufacturing, operation, and maintenance. While individual uncertainties may have minimal impacts on
structural response, the combination of multiple uncertainties can lead to significant deviations in the struc-
tural behavior [1]. As a result, it is crucial to perform structural reliability analysis, particularly for critical
structures such as nuclear power plants, hospitals, and monuments, where structural failure can pose signifi-
cant safety risks and have monumental consequences.

In practical engineering, uncertainties can generally be classified into two categories: aleatory and epistemic
uncertainties [2–4]. On the one hand, aleatory uncertainty, also known as probability uncertainty, is inher-
ent in nature and beyond our control. It is characterized by a level of uncertainty that cannot be reduced or
eliminated. On the other hand, epistemic uncertainty, also referred to as subjective uncertainty, arises from
insufficient knowledge of variables and a lack of comprehensive experimental data. As knowledge and infor-
mation increase, epistemic uncertainty tends to decrease [5,6]. In practical engineering problems, it is crucial
to recognize that our knowledge is inherently imperfect. As a result, accurately assessing the probability of a
structure becomes challenging due to the presence of epistemic uncertainty. Thismeans that even the reliability
index, which is used to measure the safety and performance of a structure, is fundamentally uncertain.

Traditional reliability analysis methods may not be suitable for handling the problem at hand because they
are designed to handle precise probability problems that assume complete probabilistic information of vari-
ables without accounting for aleatory uncertainty. To address this issue, non-probabilistic models and impre-
cise probability models have emerged as potential solutions. Non-probabilistic models, such as the interval
model [7,8], convex model [9–11], and fuzzy set theory [12], have been proposed. However, these models may not
effectively distinguish between epistemic and aleatory uncertainties, which can result in sub-optimal decision-
making. Imprecise probability models, on the other hand, have gained attention as a more effective way to
handle uncertainties. These models include probability-boxes (p-boxes) [3,13,14], Dempster-Shafer evidence
theory [15–17], interval probabilities [18], fuzzy probabilities [19]. By utilizing imprecise probability models, it is
possible tomore accurately capture and express the uncertainties associated with the variables. However, using
imprecise probability models comes with a significant challenge—computational cost. The large number of
Limit State Function (LSF) evaluations, especially for time-consuming finite element analyses, can increase the
computational effort significantly. Some other methods, such as nested Monte Carlo Simulation (MCS) [20],
random sets [21], and advanced line sampling [22], have been developed to address the imprecise problems, but
their computational efficiency remains unsatisfactory. To overcome the challenge of computational complex-
ity, active learning-based meta-models, also known as surrogate models, have been introduced. These surro-
gate models aim to approximate the LSF with reduced computational effort while maintaining an acceptable
level of accuracy. By using surrogate models, the computational burden associated with imprecise probability
models can be significantly reduced, making them more manageable and efficient in practice.

In recent decades, significant strides have been made in the development and widespread application of var-
ious meta-models aimed at enhancing the precision of structural reliability analysis. Notably, the Kriging
meta-model [also known as the Gaussian Process Regression (GPR) model] has garnered substantial atten-
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tion and utilization in this field [23–25]. Other prominent meta-models include response surfaces [26], support
vector machines [27,28], neural networks [29–31], and high-dimensional model representations [32]. Among these,
the Krigingmeta-model stands out due to its exceptional qualities in precise interpolation and local uncertainty
quantification. As a result, the active Kriging meta-model technology has found applications in addressing im-
precise probability problems. Noteworthy contributions from researchers involve the fusion of Active-learning
Kriging (AK) meta-models with advanced sampling techniques to evaluate failure probabilities [33–38]. Never-
theless, efficiently estimating failure probability bounds for imprecise reliability problems remains a challeng-
ing endeavor, particularly when employing the AK model. This paper addresses this challenge by employing
parametric p-boxes [14] to accurately characterize the imprecise random variables involved.

This paper introduces a novel methodology to address imprecise reliability problems employing parametric
p-boxes. The approach introduces an efficient learning function termed the “Relative Entropy Function (REF)”
to enhance the AK meta-model. By optimizing the point selection strategy, the REF significantly accelerates
the speed of active learning. The organizational structure of this paper is outlined as follows: In Section 2, the
problem formulation is meticulously presented. Moving on to Section 3, a succinct review of the Kriging meta-
model is offered, alongside its fusion with the REF, giving rise to an AK meta-model with MCS (AK-MCS)
in the precise probability sense. Furthermore, the paper applies the devised AK-MCS with REF to tackle im-
precise probability problems, facilitating the estimation of failure probability bounds. Section 4 demonstrates
the effectiveness of the proposed method through the exposition of four numerical examples. To delve deeper
into the applicability, Section 5 explores a practical implementation of the proposedmethod. Some concluding
remarks are contained in the final section.

PROBLEM STATEMENT
In structural reliability analysis, the LSF of a stochastic systemmapping inputs to outputs is typically expressed
as:

𝑍 = 𝐺 (X) (1)

where 𝑍 signifies the output, while X = [𝑋1, 𝑋2, . . . , 𝑋𝑛] forms a vector encompassing 𝑛 input random vari-
ables. Each random variable 𝑋𝑖 , where 𝑖 = 1, 2, . . . , 𝑛, can generally be characterized by its Probability Density
Function (PDF) 𝑓𝑋𝑖 (𝑥𝑖) or Cumulative Distribution Function (CDF) 𝐹𝑋𝑖 (𝑥𝑖). In practice, a combination of
epistemic and aleatory uncertainties often comes into play. Parametric p-boxes can effectively capture epis-
temic uncertainties, while exact PDFs/CDFs are employed to delineate aleatory uncertainties.

In parametric p-boxes, the PDF or CDF of 𝑋𝑖 can be expressed by distribution function families with interval
variables. The joint PDF of X can be can be defined as 𝑓X (x) = 𝑓X ( x| 𝜽), where 𝜽 = [𝜃1, 𝜃2, . . . , 𝜃𝑚] is distri-
bution parameter vector. For simplicity, the interval model is often used to describe the uncertainty of 𝜽 , i.e.,
𝜽 ∈

[
𝜽 , 𝜽

]
, where 𝜽 =

[
𝜽1, 𝜽2, . . . , 𝜽𝑚

]
and 𝜽 =

[
𝜽1, 𝜽2, . . . , 𝜽𝑚

]
are the lower and upper bounds, respectively.

For convenience, the interval distribution parameters are independent of each other, i.e.,
[
𝜽1, 𝜽1

]
×

[
𝜽2, 𝜽2

]
×

· · · ×
[
𝜽𝑚 , 𝜽𝑚

]
denotes a hyper-rectangular geometry. For example, if 𝑋 ∼

(
[0, 1] ,

[
1, 1.52] ) , the PDFs and

CDFs are shown in Figure 1.

In the precise reliability sense, the condition 𝑍 ≤ 0 means the structural failure state, and the corresponding
failure probability 𝑝 𝑓 is defined as:

𝑝 𝑓 = Pr [𝑍 ≤ 0] = Pr [𝐺 (X) ≤ 0] =
∫
Ω
𝑓X (x) , dx (2)

where Ω represents the failure domain of the structure. However, in the context of parametric p-boxes, unlike
precise reliability analysis, the joint PDF 𝑓X (x) cannot be precisely determined.
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Figure 1. PDFs and CDFs of the parametric p-boxes.

In this case, the range of failure probability 𝑝 𝑓 ∈
[
𝑝
𝑓
, 𝑝 𝑓

]
, where the bounds are defined as follows:

𝑝
𝑓
= min

𝑓X ( x|𝜽)

∫
Ω
𝑓X ( x| 𝜽) dx, 𝑝 𝑓 = max

𝑓X ( x|𝜽)

∫
Ω
𝑓X ( x| 𝜽) dx (3)

where both min
𝑓X ( x|𝜽)

and max
𝑓X ( x|𝜽)

indicate that optimization is carried out over all distribution parameters 𝜽 to

identify the minimum and maximum values of failure probabilities. The central objective of this paper is to
assess the failure probability bounds within the framework of parametric p-boxes. To this end, an adaptive AK
meta-model, coupled with a novel learning function, is proposed for achieving this goal.

IMPRECISE STRUCTURAL RELIABILITY ANALYSIS WITH RELATIVE ENTROPY FUNCTION
In this section, the classical Kriging meta-model is briefly revisited. Subsequently, a new learning function
named the “Relative Entropy Function (REF)” is introduced. This REF is then combined with the Kriging
meta-model to establish a novel active-learning algorithm termed AK-MCS-REF. This algorithm is further
extended to address the challenges of imprecise structural reliability analysis [14], where both epistemic and
aleatory uncertainties are considered. The objective of this extension is to effectively determine the bounds of
failure probability.

Kriging meta-model
The Kriging meta-model, often categorized as a GPR, serves as a regression algorithm designed for spatial
modeling and prediction (interpolation) of stochastic processes or random fields, relying on covariance func-
tions [39]. As outlined in [40], the Gaussian process is frequently applied to achieve Kriging predictions. This
involves the assumption of a relationship between the real response of the system and the input variables,
characterized by:

𝑔 (x) = Y (x, 𝜷) + 𝜺 (4)
where the deterministic functionY (x, 𝜷) serves as an estimate of themodel response’s mean, and its general re-
gressionmodel is typically expressed asY (x, 𝜷) = y(x)𝑇 𝜷. In this formulation, y(x)𝑇 = {𝑦1 (x) , 𝑦2 (x) , . . . , 𝑦𝑘 (x)}
represents the regression function, while 𝜷𝑇 = {𝛽1, 𝛽2, . . . , 𝛽𝑘 } corresponds to the associated regression co-
efficients. The residual or noise, denoted as 𝜺, is assumed to adhere to a zero-mean normal distribution with
independent and identical distribution, given by 𝑓 (𝜺) = 𝑁

(
𝜺
��0, 𝜎2

𝜺𝑅 (x,w)
)
. Here, 𝜎2

𝜀 signifies the variance
of the Gaussian process, and 𝑅 (x,w) represents the correlation function between points x and w within the
spatial domain. Besides, the Squared Exponential Kernel function, which incorporates distinct length scales
for each predictor [41,42], is chosen to model 𝑅 (x,w) in this paper.
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Figure 2. Kriging meta-model prediction.

The Kriging meta-model can be conceptualized as a process in which a Gaussian prior model is combined
with observations to derive a posterior model. Given a training set T = {X,Z}, where X =

{
x1, x2, . . . , x𝑝

}𝑇
represents the realizations of input variables, and Z𝑇 =

{
𝑧1, 𝑧2, . . . , 𝑧𝑝

}
corresponds to the associated output

values of the random system. The parameters 𝛽 and 𝜎2
𝜀 are then estimated using the approach described in [43]:

𝛽 =
(
1𝑇R−11

)−11𝑇R−1Z
𝜎2
𝜀 = 1

𝑝 (Z − 𝛽1)𝑇R−1 (Z − 𝛽1) (5)

where R𝑖 𝑗 = 𝑅
(
x𝑖 , x 𝑗

)
is the correlation matrix between the initial sample points in the training set and 1

is a 1-vector of length 𝑝. Obviously, the values of 𝛽 and 𝜎2
𝜀 depend on the correlation parameter in corre-

lation function R. Cross-validation or maximum likelihood estimation can be applied when the correlation
parameter is unknown [44].

Consider a collection of unobserved points denoted as x∗, where the associated system output value is �̂� (x∗).
It is noteworthy that �̂� (x∗) adheres to a Gaussian distribution characterized by its mean value and variance:

�̂� (x∗) = 𝛽 + r (x∗) 𝑅−1 (Z − 𝛽1)
𝜎2
�̂� (x∗) = 𝜎2

𝜀

(
1 + 𝑢(x∗)𝑇

(
1𝑇𝑅−11

)−1
𝑢 (x∗) − r(x∗)𝑇𝑅−1r (x∗)

) (6)

where 𝑢 (x∗) = 1𝑇𝑅−1r (x∗) − 1 and r (x∗) = {𝑅 (x∗, x𝑖)}𝑖=1,2,...,𝑝 . In summary, the Kriging meta-model stands
as an exact interpolationmodel. For an experimental design point x, the attributes �̂� (x) = 𝑔 (x) and𝜎2

�̂� (x) = 0
hold true, a depiction of which can be observed in Figure 2. The distinctive feature of the Kriging meta-model,
namely its ability to quantify local uncertainty, has led to its widespread adoption within the realm of active
learning in recent years.

The proposed learning function REF
In the context of the Kriging meta-model integrated with active learning, the selection of the next best point is
significantly influenced by the learning function [38]. An effective learning function has the capacity to acceler-
ate the refinement process of the Kriging meta-model while also ensuring result accuracy. This is particularly
advantageous for intricate finite element models that demand substantial computational resources, as it can
markedly enhance computational efficiency. Recent years have witnessed the emergence of several learning
functions tailored specifically for reliability analysis.

Based on the Effcient Global Optimization (EGO) [43], the Expected Feasibility Function (EFF) was proposed
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for efficient global reliability analysis [45]. The EFF elucidates the degree to which the actual value of the per-
formance function at a specific point x satisfies the equality constraint 𝑔 (x) = 𝑦 within the designated domain
[𝑦 − 𝜉, 𝑦 + 𝜉]. Furthermore, it is assumed that the output value �̂� (x) of the system adheres to a Gaussian
distribution within the context of Kriging prediction. In other words, �̂� (x) is modeled as being ∼ 𝑁

(
𝜇�̂�, 𝜎

2
�̂�

)
.

The general formulation of EFF reads:

𝐸𝐹𝐹 (x) =
(
𝜇�̂� − 𝑦

) [
2𝛷

(
𝑦 − 𝜇�̂�

𝜎�̂�

)
−𝛷

( (𝑦 − 𝜉) − 𝜇�̂�

𝜎�̂�

)
−𝛷

( (𝑦 + 𝜉) − 𝜇�̂�

𝜎�̂�

)]
−𝜎�̂�

[
2𝜑

(
𝑦 − 𝜇�̂�

𝜎�̂�

)
− 𝜑

( (𝑦 − 𝜉) − 𝜇�̂�

𝜎�̂�

)
− 𝜑

( (𝑦 + 𝜉) − 𝜇�̂�

𝜎�̂�

)]
+𝜉

[
𝛷

( (𝑦 + 𝜉) − 𝜇�̂�

𝜎�̂�

)
−𝛷

( (𝑦 − 𝜉) − 𝜇�̂�

𝜎�̂�

)] (7)

where𝛷 (·) and 𝜑 (·) denote the CDF and PDF of standard normal distribution, respectively.

In the context of reliability analysis, significant attention is directed toward the limit state of the performance
function. As a consequence, the value of 𝑦 is typically set to 0. Additionally, the parameter 𝜉 is often defined
as 2𝜎�̂� . In accordance with Equation (7), the EFF value provides insights into both the level of uncertainty at
the point x and the relative proximity of point x to the limit state. Points exhibiting maximal EFF values are
particularly valuable for constructing a more accurate Kriging meta-model. To facilitate the selection of points
in close proximity to the limit state while also displaying high uncertainty, the U learning function has been
introduced for reliability analysis [24]:

𝑈 (x) =
��𝜇�̂� ��
𝜎�̂�

(8)

In recent advancements, a novel learning function rooted in information entropy has been introduced, as
shown in [46]. It is worth noting that information entropy serves as a gauge of the uncertainty level of the data:
higher entropy values signify greater uncertainty, while lower values indicate reduced uncertainty.

The information entropy is defined as [47]

𝐻 (�̂� (x)) = −
∫

ln ( 𝑓 (�̂�)) 𝑓 (�̂�) d�̂� (9)

where 𝑓 (�̂�) denotes the PDF of �̂� (x). Equation (9) shows the information entropy function 𝐻 (�̂� (x)) can be
used to quantitatively judge the uncertainty of �̂� (x) [46].

The learning function H is proposed to be applied to AK prediction [46].

𝐻 (�̂� (x)) =
�����−∫ 2𝜎�̂�

−2𝜎�̂�

ln ( 𝑓 (�̂�)) 𝑓 (�̂�) d�̂�

�����
=

������ ln
(√

2𝜋𝜎�̂� + 1
2

) [
𝛷

(
2𝜎�̂�−𝜇�̂�

𝜎�̂�

)
−𝛷

(
−2𝜎�̂�−𝜇�̂�

𝜎�̂�

)]
−

[
2𝜎�̂�−𝜇�̂�

2 𝜑
(

2𝜎�̂�−𝜇�̂�
𝜎�̂�

)
+ 2𝜎�̂�+𝜇�̂�

2 𝜑
(
−2𝜎�̂�−𝜇�̂�

𝜎�̂�

)] ������
(10)

The detailed derivation of Equation (10) can be found in Appendix A.

The learning criteria and stopping criteria of the above three learning functions are compared in Table 1.

As previously mentioned, information entropy serves as a means to quantify the uncertainty associated with
a random variable, rendering it a suitable tool for gauging the confidence in the model response value during
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Table 1. The learning criterion and stopping condition of EFF, U, and H

Learning function Learning criterion Stopping condition
EFF max (𝐸𝐹𝐹 (x) ) max (𝐸𝐹𝐹 (x) ) ≤ 0.001
U min (𝑈 (x) ) min (𝑈 (x) ) ≥ 2
H max (𝐻 (x) ) max (𝐻 (x) ) ≤ 0.5

Kriging prediction. In the active learning procedure, the realizations of random variables that affect the system
with large uncertainty are used to construct a GPR, and then the Kriging prediction will be close to the true
response of the system. This ensures that the Kriging prediction closely approximates the real system response,
particularly within critical regions such as limit state areas. Subsequently, based on the stability criterion, a
new learning function rooted in the Relative Entropy (RE) will be put forward.

RE finds its application in quantifying the disparity between two probability distributions. Within active
learning algorithms, the probability distribution of the system response �̂� (x) is subject to ongoing updates.
Prior to introducing a new experimental design point, the system response is denoted as �̂�𝑝 (x) with �̂�𝑝 (x) ∼
𝑁

(
𝜇�̂�𝑝 , 𝜎

2
�̂�𝑝

)
, and its corresponding probability distribution is indicated by 𝑓

(
�̂�𝑝

)
. The notation �̂�𝑞 (x) sig-

nifies the response after the incorporation of a new experimental design point, characterized by �̂�𝑞 (x) ∼
𝑁

(
𝜇�̂�𝑞 , 𝜎

2
�̂�𝑞

)
, and its associated probability distribution is denoted as 𝑓

(
�̂�𝑞

)
. It is evident that �̂�𝑞 (x) is contin-

gent upon �̂�𝑝 (x). In accordance with the definition of RE, the following relationships hold:

𝑅𝐸 =
(
𝑓
(
�̂�𝑝

) �� 𝑓 (
�̂�𝑞

) )
=

∫
𝑓
(
�̂�𝑝

)
ln

𝑓
(
�̂�𝑝

)
𝑓
(
�̂�𝑞

) d�̂�𝑝 (11)

The RE serves as a metric for assessing the disparity between �̂�𝑝 (x) and �̂�𝑞 (x). A diminishing RE implies that
the constructed Kriging meta-model closely mirrors the characteristics of the original stochastic system. For
the purpose of pinpointing optimal points within the stochastic system, the learning function can be defined
as follows:

𝑅𝐸𝐹 =
(
𝑓
(
�̂�𝑝

) �� 𝑓 (
�̂�𝑞

) )
=

∫ �̂�+𝑝

�̂�−𝑝

𝑓
(
�̂�𝑝

)
ln

𝑓
(
�̂�𝑝

)
𝑓
(
�̂�𝑞

) d�̂�𝑝 (12)

where �̂�+𝑝 and �̂�−𝑝 are defined by 2𝜎�̂�𝑝 and −2𝜎�̂�𝑝 to ensure the accuracy in this paper. The detailed derivation
of Equation (12) can be found in Appendix B.

The REF learning function plays a pivotal role in gauging the stability of the estimated system response �̂� (x) at
a specific point x and facilitates the construction of a meta-model that closely aligns with the stochastic char-
acteristics of the system, especially in proximity to the limit state. To strike a balance between computational
efficiency and precision, a termination criterion of 𝑅𝐸𝐹max ≤ 10−3 is adopted for the learning function in this
paper, based on our prior computational experiences.

To summarize, the proposed AK-MCS-REF framework entails a comprehensive set of seven steps for conduct-
ing structural reliability analysis in a precise probability sense:

Step 1: Generate a sample pool 𝑆 comprising 𝑛𝑚𝑐 points using quasi-MCS methods such as Sobol sampling.

Step 2: Initialize the initial design of experiments (DoE). Select the first 𝑛0 points from 𝑆, evaluate them using
the LSF, and establish a preliminary Kriging meta-model utilizing the MATLAB function fitrgp. An empirical
value of 𝑛0 = 12 is suggested based on computational considerations.
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Step 3: Compute the predicted value �̂�0 of the preparation Kriging meta-model across the entire sample pool.

Step 4: Define the formal DoE using the first 𝑛1 points from 𝑆 and subsequently build the formal Kriging
meta-model. A recommended value of 𝑛1 = 13 is provided.

Step 5: Construct the formal Kriging meta-model based on the formal DoE. Compute the predicted value �̂�
of the formal Kriging meta-model for the entire sample pool, thereby estimating the failure probability 𝑝 𝑓 .

Step 6: Implement the learning function 𝑅𝐸𝐹 and assess the convergence criterion. Should the termination
threshold be met, proceed to the subsequent step. Otherwise, identify the optimal point using Equation (13):

x∗ = arg max
x∈𝑆

[𝑅𝐸𝐹 (x)] (13)

Evaluate 𝑔 (x∗), add x∗ and 𝑔 (x∗) to the formal DoE, and then return to Step 5 to formulate a novel formal
Kriging meta-model incorporating 𝑛0 + 1 points.

Step 7: Compute the Coefficient Of Variation (C.O.V.) for the failure probability using Equation (14):

𝐶𝑜𝑉
(
𝑝 𝑓

)
=

√
1 − 𝑝 𝑓

𝑝 𝑓 𝑛𝑚𝑐
(14)

If 𝐶𝑜𝑉
(
𝑝 𝑓

)
≤ 𝜀𝑝 𝑓 , the procedure terminates, and 𝑝 𝑓 is deemed the definitive result for the failure probability.

Conversely, if 𝐶𝑜𝑉
(
𝑝 𝑓

)
> 𝜀𝑝 𝑓 upon utilizing all points in the sample pool, 𝑝 𝑓 lacks credibility, necessitating

the generation of a new sample pool 𝑆 with an increased 𝑛𝑚𝑐 . Subsequently, return to Step 2.

Imprecise structural reliability analysis for parametric p-boxes
In the context of parametric p-boxes, the distributions of the random vector X are dependent upon their
corresponding distribution parameters. Consequently, the determination of the conditional failure probability
𝑝 𝑓 |𝜽 and the establishment of the failure probability range

[
𝑝
𝑓
, 𝑝 𝑓

]
become pivotal components of imprecise

structural reliability analysis. The conditional failure probability is formally defined as follows:

𝑝 𝑓 |𝜽 = Pr [𝐺 (X𝜽 ) ≤ 0] (15)

where X𝜽 represents a random variable generated using 𝐹X𝜃 = 𝐹X (x |𝜽 ) based on a specific set of distribution
parameters 𝜽 . As a result, the parametric p-boxes exhibit a characteristic hierarchical model structure. The
approach of nested algorithms, as outlined in [48], can be employed in imprecise structural reliability analysis
to address the complexities posed by parametric p-boxes. Within this hierarchical framework, the parametric
p-boxes can be segregated into two distinct components. The AK-MCS with REF learning function, as de-
tailed above, is well-suited for addressing the task of evaluating the conditional failure probability 𝑝 𝑓 |𝜽 . Since
the failure probability is dependent upon the distribution parameters, the EGO algorithm [43] can be utilized
to optimize 𝜽 and thereby deduce the bounds of the failure probability. This integrated approach enables a
comprehensive treatment of the uncertainties associated with parametric p-boxes.

Figure 3 depicts the flowchart, illustrating the process of imprecise structural reliability analysis coupled with
the innovative REF learning function, denoted as AK-MCS-REF-EGO. The overall procedure encompasses
the following sequential steps:

Step 1: Generate a sample pool for distribution parameters denoted as D𝜽 , comprising 𝑛𝜽 points. This can be
accomplished through the utilization of Latin-Hypercube Sampling (LHS), wherein each point corresponds to
a distinct set of distribution parameters, i.e., 𝜽 𝑗 ∈ D𝜽 ( 𝑗 = 1, 2, . . . , 𝑛𝜽 ). It is noteworthy that a sample size of
𝑛𝜽 = 106 is typically deemed adequate for this purpose.
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Figure 3. Flowchart of AK-MCS-REF-EGO.

Step 2: Define the DoE for the distribution parameters. To achieve this, 𝑛0
𝜽 samples are selected at random

from the sample pool D𝜃 , and these selected samples are recorded as D =
{
𝜽 (1) , . . . 𝜽 (𝑛0

𝜽)
}
. For the purposes

of this paper, the value of 𝑛0
𝜽 is set to 6.

Step 3: Compute the conditional failure probability 𝑝 (1)𝑓 of 𝜽 (1) by the procedure of AK-MCS-REF.

Step 4: Calculate the conditional failure probabilities P =

{
𝑝 (2)𝑓 , . . . , 𝑝

(𝑛0
𝜽 )

𝑓

}
for D =

{
𝜽 (2) , . . . , 𝜽 (𝑛0

𝜽)
}
using the

proposed AK-MCS-REF approach. Beginning with 𝜽 (2) , the initial DoE needed for constructing the Kriging
meta-model does not have to be selected exclusively from the Sobol sample pool associated with 𝜽 (2) . Instead,
it can be composed of the sample points that have already been evaluated in the preceding AK-MCS-REF
iterations. In essence, the initial DoE for 𝜽 (𝑖+1) comprises all the LSF evaluations of 𝜽 (𝑖) . This implies that all
the previously acquired sample points, along with their corresponding outputs, can be recycled to construct a
new Kriging meta-model.

Step 5: Build a second-level Kriging meta-model, utilizing the information from P and D, to approximate the
conditional failure probabilities P̂ of the random system.
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Step 6: Determine the lower and upper bounds of failure probabilities, 𝑝
𝑓
and 𝑝 𝑓 , by identifying the current

minimum failure probability P̂min and maximum failure probability P̂max from the approximated P̂. To search
for optimal distribution parameters, the expected improvement (EI) function is employed [43]. Specifically, for
𝑝
𝑓
, the EI function is defined as follows:

𝐸𝐼min (𝜽) =
(
P̂min − 𝜇P̂ (𝜽)

)
𝛷

(
P̂min − 𝜇P̂ (𝜽)

𝜎P̂ (𝜽)

)
+ 𝜎P̂ (𝜽) 𝜑

(
P̂min − 𝜇P̂ (𝜽)

𝜎P̂ (𝜽)

)
(16)

For 𝑝 𝑓 , there is:

𝐸𝐼max (𝜽) =
(
𝜇P̂ (𝜽) − P̂max

)
𝛷

(
𝜇P̂ (𝜽) − P̂max

𝜎P̂ (𝜽)

)
+ 𝜎P̂ (𝜽) 𝜑

(
𝜇P̂ (𝜽) − Pmax

𝜎P̂ (𝜽)

)
(17)

where 𝐸𝐼min and 𝐸𝐼max represent the EIs for minimizing and maximizing the failure probability, respectively.

Step 7: Determine the optimal distribution parameters using 𝐸𝐼min and 𝐸𝐼max:

𝜽∗min = arg max
𝜽∈𝐷𝜽

[𝐸𝐼min (𝜽)] (18)

𝜽∗max = arg max
𝜽∈𝐷𝜽

[𝐸𝐼max (𝜽)] (19)

Step 8: Utilize the convergence criterion proposed in [43] to estimate the bounds of failure probability.

𝐸𝐼min
(
𝜽∗min

)
≤ 𝜀𝐸𝐼 (20)

𝐸𝐼max
(
𝜽∗max

)
≤ 𝜀𝐸𝐼 (21)

where 𝜀𝐸𝐼 is the threshold value, which is 𝜀𝐸𝐼 = 10−5 in this paper. If the criterion is satisfied, the EGO
algorithm terminates and outputs the minimum (𝑝

𝑓
= min

[
P̂
]
) and maximum (𝑝 𝑓 = max

[
P̂
]
) failure proba-

bilities. If not met, proceed to Step 9 for further iterations.

Step 9: Incorporate the optimal next distribution parameters 𝜽∗min (𝜽
∗
max) into D and return to Step 4. Repeat

this cycle until the convergence criterion specified in Step 8 is met, at which point the optimization algorithm
stops.

NUMERICAL EXAMPLES
In this section, the efficiency and accuracy of the proposed method are demonstrated through four numer-
ical examples. The double-loop MCS [49] and the proposed AK-MCS-REF approach are implemented using
MATLAB. The Kriging meta-models are established using the GPR model, with the explicit basis and kernel
function defined as Constant and ardsquaredexponential, respectively. Notably, the application of the ARD
kernel proves beneficial for addressing problems with inputs of varying dimensions, as it allows for the consid-
eration of diverse length scales across input dimensions [50]. A detailed discussion for effects of using different
kernels can be found in [51].

The LHS technique is utilized to generate the distributed parameter sample pool, while the Sobol sampling
technique is applied to generate the sample pool of random variables. In the final numerical example, a com-
parison is made between the proposed learning function and the previously mentioned ones, namely, EFF [45],
U [24], and H [46], all at the precise probability level. This comparison serves to further establish the superior-
ity of the proposed learning function in effectively balancing calculation accuracy and efficiency, particularly
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Figure 4. Experimental design in precise probability sense.

for computationally intensive finite element models. The accuracy is evaluated using the relative error of the
reliability index, given by:

𝜖 =

���� 𝛽𝑚 − 𝛽

𝛽𝑚

���� × 100% (22)

where 𝛽𝑚 is the reliability index byMCS, and 𝛽 represents the reliability index obtained from a specificmethod.

Example 1
A classic series system with four branches is first employed to validate the effectiveness of the proposed
method [24]. The LSF is defined as follows:

𝑍 = 𝐺 (X) =


3.5 + 0.1(𝑥1 − 𝑥2)2 − (𝑥1+𝑥2)√

2
3.5 + 0.1(𝑥1 − 𝑥2)2 + (𝑥1+𝑥2)√

2
𝑥1 − 𝑥2 + 3.5

√
2

𝑥2 − 𝑥1 + 3.5
√

2


(23)

To validate the efficacy of the proposed learning function, a precise probability level analysis is initially con-
ducted, where the variables 𝑥1 and 𝑥2 are assumed to be independent standard normal random variables. The
learning process of the proposed REF learning function at the precise probability level is depicted in Figure 4.
The optimal points selected by the REF learning function are consistently situated near the limit state surface,
and a majority of them satisfy the constraints of the limit state equation. This characteristic facilitates the ca-
pability of AK-MCS-REF to accurately predict the failure domain of the LSF. The results presented in Table 2
underscore that the proposed AK-MCS-REF method can offer a highly accurate prediction of the reliability
index at the precise probability level while demanding minimal computational effort.

In the context of imprecise probability, the variables 𝑥𝑖 are all characterized by parametric p-boxes, wherein
the distribution parameters are selected as interval variables in this numerical illustration. The specific forms
of the parametric p-boxes are presented below:

𝐹𝑋𝑖 (𝑥𝑖) = 𝐹N (𝑥𝑖 | 𝜇, 𝜎) , 𝜇 ∈ [−0.1, 0.1], 𝜎 ∈ [0.95, 1.05], 𝑖 = 1, 2 (24)

The LHS technique is employed to generate the parameter sample pool within the domains of 𝜇 ∈ [−0.1, 0.1]
and 𝜎 ∈ [0.95, 1.05], with a total of 106 samples. Among these samples, an initial set of six parameter samples
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Table 2. Results in precise probability sense

Method 𝑃 𝑓 𝛽 𝜖 (%) 𝑁𝑐𝑎𝑙𝑙

MCS 7.42 × 10−4 3.1778 - 106

AK-MCS-REF 7.29 × 10−4 3.1829 0.16 85

Note: 𝑁𝑐𝑎𝑙𝑙 denotes the number of LSF
evaluations.

Table 3. Initial distribution parameters and their corresponding failure probabilities

Number Distribution of variables Failure probability
1 𝑥1 ∼ 𝑁

(
0.0985, 1.01862 ), 𝑥2 ∼ 𝑁

(
−0.0253, 0.99872 ) 6.70 × 10−4

2 𝑥1 ∼ 𝑁
(
0.0354, 0.99122 ), 𝑥2 ∼ 𝑁

(
−0.0529, 0.97132 ) 4.85 × 10−4

3 𝑥1 ∼ 𝑁
(
−0.0014, 0.96782 ), 𝑥2 ∼ 𝑁

(
0.0419, 1.00052 ) 4.75 × 10−4

4 𝑥1 ∼ 𝑁
(
−0.0766, 1.00382 ), 𝑥2 ∼ 𝑁

(
−0.0932, 1.03792 ) 9.00 × 10−4

5 𝑥1 ∼ 𝑁
(
0.0097, 1.03972 ), 𝑥2 ∼ 𝑁

(
0.0892, 1.01882 ) 1.09 × 10−3

6 𝑥1 ∼ 𝑁
(
−0.0666, 0.95162 ), 𝑥2 ∼ 𝑁

(
0.0261, 0.95712 ) 4.12 × 10−4

Table 4. Bounds of reliability index for Example 1

Method
𝛽𝐿 𝛽𝑈

𝑁𝑐𝑎𝑙𝑙

Value 𝜖 (%) Value 𝜖 (%)

Double-loop MCS 2.9633 - 3.4090 - 105 × 106

Proposed method 2.9794 0.55 3.4051 0.11 88+10+10

are selected. Subsequently, the failure probabilities associated with these initial parameter sample points are
computed using the AK-MCS-REFmethod, and the results are presented in Table 3. The initial sample points
and their associated failure probabilities are employed to establish a second-level AK meta-model to address
the imprecise probability scenario. The focus is on establishing the bounds of failure probabilities, achieved
through the application of the 𝐸𝐼 criterion to locate extreme values. The evolution of the search for reliability
index bounds

[
𝛽𝐿 , 𝛽𝑈

]
is depicted in Figure 5, with summarized results provided in Table 4. Notably, the

double-loop MCS utilizes 105 samples for the outer loop and 106 samples for the inner loop, resulting in a
combined sample size of 105 × 106 for this scenario. The upper and lower bounds of the reliability index are
accurately determined by the proposed method, exhibiting a maximum error of just 0.55% when compared
to double-loop MCS results. In order to visualize the required number of model calculations involved in the
analysis, the number of model calculations is actually divided into three parts. Specifically, 88 computations
correspond to generating failure probabilities for initial parameter sample points, while ten model evaluations
are conducted to identify the minimum reliability index within the parameter sample pool. An additional
ten evaluations are dedicated to locating the maximum reliability index within the parameter sample pool.
This accumulation results in a total of 𝑁𝑐𝑎𝑙𝑙 = 80 + 10 + 10 = 108 calculations. Consequently, the proposed
method yields highly accurate results with notably fewermodel calculations compared to the double-loopMCS
approach. Observing Figure 5, it becomes evident that the EGO algorithm mandates four iterations to locate
the maximum reliability index, while a mere two iterations suffice for the minimum reliability index search.
Paradoxically, Table 4 presents a contrary perspective: regardless of aiming for the maximum or minimum
reliability index, the essential number of LSF calls remains constant at 10. This divergence between the number
of iterations and LSF calls underscores a nonlinear relationship between the two factors.

Example 2
The second example employs a nonlinear LSF characterized by independent random variables, as detailed
in [52]. This LSF involves ten imprecise random variables and is represented as follows:

𝑍 = 𝐺 (X) = 3 + 0.015
9∑
𝑖=1

𝑥2
𝑖 − 𝑥10 (25)
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Figure 5. Evolution of the bounds of reliability index (Example 1).

Table 5. Statistical information of random variables in Example 2

Variable Distribution Mean Standard deviation
𝑥1 − 𝑥10 Normal 0 [1, 1.5]
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Figure 6. Evolution of the bounds of reliability index (Example 2).

Likewise, the variables 𝑥𝑖 , where 𝑖 = 1, 2, . . . , 10, are modeled using parametric p-boxes. The statistical details
for these variables are provided in Table 5.

As depicted in Figure 6, both the maximum and minimum reliability indexes necessitate four iterations. No-
tably, Table 6 reveals that the maximum reliability index necessitates only one LSF evaluation, while the min-
imum reliability index requires 11 LSF evaluation calls. In this regard, the proposed method achieves rapid
convergence to the bounds of the reliability index, requiring a total of 123 LSF evaluations. Clearly, the maxi-
mum error remainsmerely 0.99%. These results serve as further validation of the accuracy and efficiency of the
proposed method for conducting structural reliability analysis in the presence of dual sources of uncertainties.
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Table 6. Bounds of reliability index for Example 2

Method
𝛽𝐿 𝛽𝑈

𝑁𝑐𝑎𝑙𝑙

Value 𝜖 (%) Value 𝜖 (%)

Double MCS 2.1139 - 3.2437 - 105 × 106

proposed method 2.1274 0.64 3.2760 0.99 111+11+1

k1

k2r
F(t)

z(t)
F(t)

t

F1

t1

m

Figure 7. Single-degree-of-freedom system.

Table 7. Statistical information of random variables in Example 3

Variable Distribution Mean Standard deviation
𝑘1 Normal 1 0.1
𝑘2 Normal 0.1 0.01
𝑚 Normal 1 0.05
𝑟 Normal 0.5 0.05
𝑡1 Normal [0.95, 1.05] [0.095, 0.105]
𝐹1 Normal [1.09, 1.11] [0.095, 0.105]

Example 3
Theapplicability of the proposedmethod for non-monotonic functions is demonstrated through the utilization
of a highly nonlinear undamped single-degree-of-freedom system [Figure 7], as elaborated in [24]. The LSF for
this case is expressed as follows:

𝑍 = 𝐺 (X) = 3𝑟 −
����� 2𝐹1

𝑚𝜔2
0

sin
(
𝜔0𝑇1

2

)����� (26)

The statistical characteristics of the input random variables are presented in Table 7. In this context, the spring
stiffness parameters (𝑘1 and 𝑘2), mass (𝑚), and the displacement at which the secondary spring yields (𝑟) are
modeled with precise probabilities. Conversely, the amplitude of the applied force (𝐹1) and the duration of
the load (𝑡1) possess uncertain information and are represented using parametric p-boxes. Notably, the means
and standard deviations of these variables are denoted as interval variables within the parametric p-boxes.

As depicted in Figure 8 and summarized in Table 8, the proposedmethod requires five iterations to successfully
converge to the maximum reliability index. In this process, a total of 22 evaluations of the LSF are conducted,
yielding an impressively low relative error of only 0.17%. In comparison, for the minimum reliability index,
the proposed method utilizes two iterations and performs four LSF evaluations, resulting in a slight increase
in error to 1.2%. Remarkably, the total number of LSF evaluations for the proposed method is 60+22+4=86,
which is significantly fewer compared to the total number of evaluations required for the double-loop MCS,
which amounts to 105 × 107. For the double-loop MCS, the number of samples for the outer loop is 105, and
the sample size for the inner loop is 107. Then, the total number of sample sizes in the double-loop MCS is
105×107 in this example. These results underscore the efficacy of the proposed method in achieving both high
efficiency and accuracy in structural reliability analysis, particularlywhen dealingwith scenarios encompassing
both epistemic and aleatory uncertainties.
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Figure 8. Evolution of the reliability index boundary (Example 3).

Table 8. Bounds of reliability index for Example 3

Method
𝛽𝐿 𝛽𝑈

𝑁𝑐𝑎𝑙𝑙

Value 𝜖 (%) Value 𝜖 (%)

Double MCS 2.0303 - 2.6614 - 105 × 107

Proposed method 2.0546 1.2 2.6569 0.17 60+4+22

Example 4
A practical validation is performed using a two-bay, four-story spatial concrete frame structure, aimed at
demonstrating the practical engineering applicability of the proposed method. The structure takes into ac-
count the intricate nonlinear behaviors inherent to both concrete and rebar materials. To accurately capture
the behavior of the system, a nonlinear beam-column finite element representation of each member is imple-
mented within the OpenSees software [53]. In accordance with Figure 9, the horizontal displacement at node 8
is designated as the control index, thereby defining the implicit LSF as follows:

𝑍 = 𝐺 (X) = �̄� − 𝐷8
(
𝑓𝑐, 𝜖𝑐, 𝑓𝑢, 𝜖𝑢, 𝑓𝑦 , 𝐸𝑠, 𝑏, 𝐹6, 𝐹8, 𝐹5, 𝐹7, 𝐹11, 𝐹12, 𝐹19, 𝐹20

)
(27)

where 𝐷8 represents the horizontal displacement at node 8, while �̄� signifies the allowable displacement, set
at �̄� = 50mm within the context of this specific example. To ascertain the suitability of the proposed learning
function in handling time-consuming finite element models, the example is initially employed to conduct a
reliability analysis in a precise probability sense. Thepertinent physical interpretations and statistical properties
of the involved random variables are itemized in Table 9.

Table 10 presents the results of the reliability analysis conducted in a precise probability sense. This table
includes results from various methods for comparison purposes, such as Importance Sampling (IS) and Subset
Simulation (SS). Moreover, the AK-MCS approach is coupled with several well-established learning functions,
including U [24], EFF [45], and H [46], to facilitate a comprehensive evaluation. Upon comparison, it becomes
evident that the proposed learning function REF enhances computational efficiency without compromising
accuracy. Furthermore, the AK-MCS-REF methodology exhibits superior performance compared to classical
approaches such as IS and SS, demonstrating improved accuracy and efficiency in the context of reliability
analysis in a precise probability sense.

Next, the proposed method is applied to conduct imprecise reliability analysis. In this context, the loads are
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Figure 9. Two-bay four-story spatial concrete frame.

Table 9. Statistical information of random variables in Example 4

Variable Description Distribution Mean Standard deviation
𝑓𝑐 (MPa) Concrete compressive strength Lognormal 26.8 2.68

𝜀𝑐 Concrete strain at maximum strength Lognormal 0.0001 0.05
𝑓𝑢 (MPa) Concrete crushing strength Lognormal 10.0 1

𝜀𝑢 Concrete strain at crushing strength Lognormal 0.0035 0.000175
𝑓𝑦 (MPa) Yield strength of rebar Lognormal 355 355
𝐸𝑠 (GPa) Initial elastic modulus of rebar Lognormal 200 20

𝑏 Strain-hardening ratio of rebar Lognormal 0.001 0.00005
𝐹6 (kN) External load Lognormal 54 10.8
𝐹8 (kN) External load Lognormal 54 10.8
𝐹5 (kN) External load Lognormal 42 8.4
𝐹7 (kN) External load Lognormal 42 8.4
𝐹11 (kN) External load Lognormal 30 6
𝐹12 (kN) External load Lognormal 30 6
𝐹19 (kN) External load Lognormal 18 3.6
𝐹20 (kN) External load Lognormal 18 3.6

Table 10. Reliability results in precise probability sense

Method 𝑃 𝑓 𝜖𝑃 𝑓 (%) 𝛽 𝜖𝛽 (%) 𝑁𝑐𝑎𝑙𝑙

MCS 1.21 × 10−3 - 3.0334 - 106

IS 1.29 × 10−3 6.83 3.0134 0.66 1106
SS 1.43 × 10−3 18.28 2.9824 1.68 2800

AK-MCS-U 1.13 × 10−3 6.53 3.0538 0.67 135
AK-MCS-EFF 1.21 × 10−3 1.32 3.0294 0.13 175
AK-MCS-H 1.37 × 10−3 13.40 2.9953 1.26 76
AK-MCS-REF 1.22 × 10−3 1.24 3.0297 0.12 67

treated as imprecise random variables modeled using parametric p-boxes, with interval variables specifying
their standard deviations, as shown in Table 11. Given the consideration of nonlinear behaviors in both beams
and columns, the corresponding LSF becomes more intricate. The findings from Table 12 reveal that a total
of 515 LSF evaluations are necessary to compute the conditional failure probabilities aligned with the initial
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Table 11. Statistical information of imprecise random variables

Variable Distribution Mean Standard deviation
𝐹6 (kN) Lognormal 54 [10.8, 11.88]
𝐹8 (kN) Lognormal 54 [10.8, 11.88]
𝐹5 (kN) Lognormal 42 [8.4, 9.24]
𝐹7 (kN) Lognormal 42 [8.4, 9.24]
𝐹11 (kN) Lognormal 30 [6, 6.6]
𝐹12 (kN) Lognormal 30 [6, 6.6]
𝐹19 (kN) Lognormal 18 [3.6, 3.96]
𝐹20 (kN) Lognormal 18 [3.6, 3.96]

1 2 3 4 9 14 19 24 29 34 39
Iteration

2.8

2.85

2.9

2.95

3

3.05

3.1

Initial 
U

L

Figure 10. Evolution of the bounds of reliability index (Example 4).

Table 12. Bounds of reliability index for Example 4

Method
𝛽𝐿 𝛽𝑈

𝑁𝑐𝑎𝑙𝑙

Value 𝜖 (%) Value 𝜖 (%)

LHS-IS 2.8208 - 3.0694 - 11204350
Proposed method 2.8638 1.52 3.0240 1.48 515+309+358

parameter sample pool. Regarding the determination of reliability index bounds, Figure 10 illustrates that 32
and 39 iterations are required. Notably, a total of 358 and 309 times of LSF evaluations are further required
to estimate the maximum and minimum values of reliability indexes, respectively. To alleviate computational
demands, the double-loop MCS approach is still employed, where the IS technique is utilized for the inner
loop for reliability analysis in a precise probability sense. Meanwhile, the LHS method is employed for the
outer loop, utilizing a parameter sample pool with 104 samples. The combination of IS and LHS is referred
to as LHS-IS, serving as reference results to validate the proposed method. The results, presented in Table
12, indicate a maximum reliability index error of merely 1.52%. Compared to the LHS-IS approach, which
requires 11,204,350 finite-element analyses of the structure, the proposed method significantly reduces the
computational burden, necessitating only 515 + 358 + 309 = 1182 model evaluations. These results underscore
the capacity of the proposed method to effectively balance computational accuracy and efficiency for practical
engineering structures.
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Figure 11. Four-bay eight-story reinforced concrete plane frame.

ENGINEERING APPLICATION
This section delves into the imprecise reliability analysis of progressive collapse in a practical frame structure,
showcasing the engineering application of the proposed method. The analysis takes into account both epis-
temic and aleatory uncertainties, providing a comprehensive assessment of the reliability of the structure under
progressive collapse conditions.

The investigation involves a planar four-bay eight-story reinforced concrete frame structure, as depicted in
Figure 11. This layout illustrates the elevation view of the structure, along with details of the sectional rein-
forcements of beams and columns. The constitutive laws governing the behavior of concrete and steel bars are
also presented. Given the intricacies of complex structural systems, conducting a progressive collapse anal-
ysis by removing each individual member proves impractical. Instead, in line with the provisions of Code
DoD2013 [54], the analysis focuses on key members. Eight distinct columns, denoted as 𝐸1 − 𝐸4 and 𝐶1 − 𝐶4,
are selected for this purpose, as highlighted in Figure 11.

The nonlinear static pushdownmethod is utilized for analyzing the progressive collapse of structures that have
been damaged due to column removal. The code DoD2013 specifies the combination of load effects to be
employed in the pushdown method in the following manner:

𝐺𝑁1 = Ω𝑁 (1.2𝐷 + 0.5𝐿 or 0.2𝑆)
𝐺𝑁2 = 1.2𝐷 + 0.5𝐿 or 0.2𝑆

(28)

where 𝐺𝑁1 denotes the combined value of load effects on the span connected to the column being removed
and the upper story; 𝐺𝑁2 denotes the combined value of load effects on the span disconnected to the column
being removed or on the span connected to the column removal with the lower story; 𝐷 is the dead load, 𝐿 is
the live load, 𝑆 is the snow load, and Ω𝑁 denotes the dynamic amplification factor, whose specific expression
is

Ω𝑁 = 1.04 + 0.45
𝛾pra

/
𝛾y + 0.48

(29)

where 𝛾pra is the plastic angle at the end of beam and 𝛾y is the yield angle of beam. For safety reasons, 𝛾pra
/
𝛾y
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Table 13. Statistical information of random variables for progressive collapse analysis

Variable Description Distribution Mean Coefficient of variation
𝑓𝑐 (MPa) Peak concrete stresses in non-core areas Lognormal [28, 28.8] 0.172

𝜖𝑐 Peak concrete strain in non-core areas Lognormal 0.0018 0.15
𝜖𝑢 Ultimate concrete strain in non-core areas Lognormal 0.005 0.15

𝑓𝑐,𝑐𝑜𝑟 (MPa) Peak concrete stresses in core areas Lognormal [31.5, 32] 0.172
𝜖𝑐,𝑐𝑜𝑟 Peak concrete strain in core areas Lognormal 0.005 0.14

𝑓𝑢,𝑐𝑜𝑟 (MPa) Ultimate concrete stresses in core areas Lognormal 14.7 0.15
𝜖𝑢,𝑐𝑜𝑟 Ultimate concrete strain in non-core areas Lognormal 0.02 0.15
𝑓𝑦 (MPa) Yield strength of rebar Lognormal [445, 455] 0.072
𝐸𝑠 (GPa) Initial elastic modulus of rebar Lognormal 200 0.034

𝑏 Strain-hardening ratio of rebar Lognormal 0.02 0.1
𝐷 (kN/m2 ) Dead load Normal [5.25, 5.5] 0.1
𝐿 (kN/m2 ) Live load Normal [3, 3.25] 0.47

Table 14. Bounds of reliability index under various working conditions

Working condition 𝛽𝐿 𝛽𝑈 𝑁𝑐𝑎𝑙𝑙

C1 2.0103 2.5427 189 + 74 + 117 = 380
C2 1.9954 2.5690 209 + 65 + 242 = 516
C3 2.0047 2.5690 350 + 124 + 467 = 941
C4 2.0084 2.6045 287 + 154 + 422 = 863
E1 1.8250 2.3867 194 + 122 + 466 = 782
E2 1.8184 2.3867 190 + 119 + 193 = 502
E3 1.8055 2.3781 195 + 90 + 93 = 378
E4 1.7829 2.3378 190 + 135 + 183 = 508

should take the minimum value for all members so that the dynamic amplification factor is specified as Ω𝑁 =
1.31 [55].

The deformation criterion serves as the basis for assessing the progressive collapse resistance of damaged struc-
tures. When reinforcement rupture takes place, the vertical displacement of the failed joint node at the column
removal typically ranges between 15% to 20% of the beam span, as documented in previous studies [56–58]. For
this study, the median value of 18% is utilized. The LSF capturing the progressive collapse can be formulated
as follows:

𝑍 = 𝐺 (X) = Δlim − Δ (X) (30)

The equation represents the vertical displacement of the failed joint node, denoted as Δ (X), with Δlim repre-
senting the maximum allowable vertical displacement for the failed node. In the case of the beam span being
6m, this value is calculated as Δlim = 0.18 × 6000mm = 1080mm. The comprehensive analysis encompasses
both epistemic and aleatory uncertainties, and the characteristics and probability distributions of the involved
random variables are outlined in Table 13.

The proposed method yields reliability index intervals for various working conditions, as presented in Table
14. The efficiency of this method shines through, with just a few hundred finite-element analyses needed
for each working condition to determine the reliability index intervals for progressive collapse analyses of
structures. A visual representation of the differences between these reliability index intervals is depicted in the
histograms displayed in Figure 12. The histograms suggest that the reliability index intervals exhibit relatively
minor fluctuations across different damaged floors on the same axis when column removal takes place. Notably,
the upper and lower boundaries of the reliability index for side column removals are smaller than those for
middle column removals. This observation underscores the importance of reinforcing side columns against
progressive collapse from a reliability standpoint.

Typically, robustness pertains to the ability of a structure to maintain satisfactory load-bearing capacity despite
the random perturbation of specific parameters, ensuring overall performance meets the required standards.
The assessment of structural robustness after a progressive collapse event employs the logarithmic ratio of
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Table 15. Bounds of robustness index under different working conditions

Working condition C1 C2 C3 C4 E1 E2 E3 E4
𝑅𝐿 0.563 0.558 0.561 0.563 0.500 0.498 0.494 0.487
𝑅𝑈 0.770 0.781 0.781 0.796 0.705 0.705 0.702 0.686

anteroposterior failure probabilities. The robustness index is formally defined as follows [55]:

𝑅 =
ln 𝑃 𝑓 ,𝑑

ln 𝑃 𝑓 ,0
(31)

where 𝑃 𝑓 ,𝑑 signifies the failure probability of the structure following localized damage, while 𝑃 𝑓 ,0 represents
the failure probability of an undamaged structure. Evidently, the robustness index 𝑅 falls within the range
[0, 1]. As the likelihood of progressive collapse in the structure rises, or in other words, as 𝑃 𝑓 ,𝑑 approaches 1,
the robustness index 𝑅 tends toward 0. This signifies that the capacity of the structure to withstand progressive
collapse weakens, indicating lower post-damage robustness.

For the sake of simplicity, the failure probability of the undamaged structure is assumed to range between
1/3 and 1/5 of the target failure probability for the member, as outlined in [59]. Consequently, 𝑃 𝑓 ,0 = 1.16 ×
10−3 is adopted as a specific value. By employing Equation (31), the limits of the robustness index for the
structure under epistemic uncertainty are determined accordingly. The findings are presented in Table 15. A
similar conclusion can be drawn, indicating that robustness design for columns along the lateral axes should
be reinforced, as the boundaries of the robustness index with lateral column removal are distinctly smaller
than those with central column removal.

CONCLUDING REMARKS
This paper presents a novel approach for conducting imprecise structural reliability analysis, addressing both
epistemic and aleatory uncertainties through a hierarchical model represented by p-boxes. The proposed
method introduces a new learning function based on RE within an AK-MCS. This new learning function, re-
ferred to as the REF, efficiently and accurately evaluates failure probabilities in the context of precise probability
analysis.
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The REF learning function effectively guides the selection of optimal sampling points, contributing to im-
proved accuracy and efficiency when compared to existing learning functions. Notably, the ability of REF to
determine optimal points enhances reliability assessment in precise probability analysis. Additionally, when
tackling the challenge of calculating failure probabilities associated with distributed parameters within p-boxes,
the proposed approach capitalizes on the information acquired from prior AK-MCS-REF iterations. This al-
lows for leveraging the LSF evaluations of previous AK-MCS-REF as an initial DoE for subsequent iterations.
Consequently, the establishment of a second-level Kriging meta-model becomes straightforward, centered on
distribution parameters and their corresponding failure probabilities. The application of an EI function facil-
itates the identification of optimal distribution parameter points for further exploration. Ultimately, through
an EGO algorithm, the method culminates in obtaining bounds for failure probabilities or reliability indexes.

The effectiveness and accuracy of the proposed method are demonstrated through four numerical examples,
validating its performance. Furthermore, the method is practically applied to analyze the imprecise reliability
of a frame structure under progressive collapse. Key findings include (1) the superiority of the REF learning
function over existing alternatives, leading to enhanced accuracy and efficiency in precise probability analysis;
(2) the substantial reduction in computational efforts compared to traditional double-loop MCS in imprecise
reliability analysis; and (3) the utility of the method in providing practical insights for robustness design in
scenarios such as a progressive collapse of engineering structures.

It is crucial to acknowledge that the proposed method comes with certain limitations that warrant considera-
tion and potential future developments. Firstly, in scenarios where distribution parameters encompass large
intervals or involve small-scale failure problems, the method may necessitate a substantial number of LSF eval-
uations to ensure desired accuracy. Consequently, this could result in time-intensive and resource-demanding
computations. Secondly, the method’s foundation on the Kriging metamodel implies that the challenge of di-
mensionality, commonly referred to as the curse of dimensionality, might still pose obstacles. This becomes
especially pertinent as the number of interval and random variables exceeds 20. As such, accurately capturing
intricate relationships between variables and the LSF could become more challenging in high-dimensional
spaces. To address these limitations and enhance the method’s applicability, future research endeavors may
focus on refining strategies to mitigate the computational burden associated with large parameter intervals or
small failure scenarios. Additionally, exploring advanced techniques for managing high-dimensional spaces,
such as dimension reduction methods, could prove beneficial for more effectively handling complex relation-
ships and improving efficiency.
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APPENDIX: ANALYTICAL DERIVATION OF THE LEARNING FUNCTION H
Since �̂� (x) ∼ 𝑁

(
𝜇�̂�, 𝜎

2
�̂�

)
, the analytical expression of the learning functionH can be derived from the Equation

9 as follows
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APPENDIX B:
Actually, Equation (12) can be derived as follows
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In conclusion, the analytical expression of the learning function REF is
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