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Abstract
With the rapid development ofmodern communication and automatic control technologies, unmanned aerial vehicles
(UAVs) have increasingly gained importance in both military and civilian domains. Path planning, a critical aspect for
achieving autonomous aerial navigation, has consistently been a focal point in UAV research. However, traditional ant
colony algorithms need to be improved for the drawbacks of susceptibility to local optima andweak convergence capa-
bilities. Consequently, a novel path planning methodology is proposed based on a dual-strategy ant colony algorithm.
In detail, an improved state transition probability rule is introduced, redefining ant movement rules by integrating the
state transition strategy of deterministic selection during the iterative process. Additionally, heuristic information on
adjacent node distance and mountain height is added to further improve the search efficiency of the algorithm. Then,
a new dynamically adjusted pheromone update strategy is proposed. The update strategy is continuously adjusted
during the iteration process, which is beneficial to the algorithm’s global search in the early stage and accelerated
convergence in the later stage, preventing the algorithm from falling into local optimality and improving its conver-
gence. Based on the above improvements, a new variation of ant colony optimization (ACO) called dual-strategy
ACO algorithm is formed. Experimental results prove that dual-strategy ACO has superior global search capabilities
and convergence characteristics from four key aspects: path length, fitness values, iteration number, and running
time.
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1. INTRODUCTION
Due to their unique technical attributes, unmanned aerial vehicles (UAVs) can be equipped with diverse sensor
devices to achieve real-time environmental monitoring, self-position determination, continuous flight attitude
adjustments, and obstacle avoidance. Consequently, UAVs exhibit a remarkable capacity to accomplish their
designated tasks efficiently [1]. The primary objective of UAV path planning is to find an optimal and feasible
path within a known environment that is free of conflicts andmeets the optimization criteria, given predefined
start and end point locations [2]. In real-world settings, UAV flight missions are subject to many uncontrollable
factors due to the inherent uncertainty and dynamics of the environment. Hence, research on UAV path
planning holds profound practical significance.

Scholars have developed a plethora of algorithms to address the problem of two-dimensional path planning,
such as the element decompositionmethod [3], the potential fieldmethod [4], andDijkstra’s algorithm [5], among
others. Nevertheless, these algorithms typically overlook height constraints and may not align with the practi-
cal flight requirements of real UAVs. Therefore, three-dimensional (3D) path planning, which systematically
accounts formany constraints, has emerged as the central research focus in path planning. Wu et al. introduced
a multi-step A* search algorithm for offline and online path planning for UAVs in a four-dimensional context,
encompassing three spatial and temporal dimensions [6]. Shorakaei et al. devised a path planningmethodology
that leverages probability graphs, integrating themwith genetic algorithms and introducing novel genetic oper-
ators to select apt chromosomes for crossover operations [7]. Roberge et al. proposed using genetic algorithms
and particle swarm algorithms to solve autonomous UAV path planning problems in complex 3D environ-
ments, taking into account the width of the UAV and the optimal trajectory criterion in 3D environments to
reduce the execution time of the solution [8]. Abeywickrama et al. presented an artificial potential field model
that demonstrates remarkable efficiency in reducing collisions among UAVs [9]. Vanegas et al. proposed a
method for optimizing 3D UAV path planning using a non-holonomic constraint path planning approach [10].
Lastly, Jain et al. introduced an innovative algorithm based on the Multiverse Optimizer algorithm to en-
hance the time efficiency and precision of UAV path planning within a 3D environment [11]. This approach
incorporates the Munkres algorithm into UAV path planning, further augmenting its effectiveness. Wang et al.
introduced an optimized list-based simulated annealing (LBSA) algorithm tailored to address the challenges
posed by the large-scale traveling salesman problem (TSP) [12]. Li presented a refined tabu search algorithm
incorporating a greedy algorithm for addressing the random vehicle routing problem [13]. Kala et al. integrated
a fuzzy inference system with an A* algorithm to address challenges in robot path planning [14]. Since Dorigo
et al. proposed ant colony optimization (ACO), it has gradually been applied in logistics and path planning [15].
The algorithm benefits from strong robustness and good information feedback by imitating the principle of
ant colony foraging, which helps solve the challenge of complex path planning. In the 1990s, the prominent
representatives of ACO algorithms were the Ant System (AS) [16] and the two most successful variants: MAX-
MIN Ant System (MMAS) [17] and Ant Colony System [18]. ACO algorithms have constantly been modified
and extensively developed up to this day. Li et al. used the geometric optimization method to guide the ants,
accelerating the convergence speed [19]. However, there was an issue with individual ants becoming disori-
ented. Literature [20,21] combines self-adaptation and ACO algorithms to improve the algorithm’s capability
to find the global optimum through adaptive parallelism and information updating strategies. Despite these
advancements, it is worth noting that the resulting path generated by this algorithm still exhibits non-smooth
characteristics. Chen et al. incorporated Poisson distribution to simulate the influence of unknown factors
and established a three-color raster map [22]. The improved algorithm can design the optimal route safely and
effectively in the environment under the influence of unknown factors. Yi et al. introduced a multi-factor
heuristic function strategy to improve ACO’s global search capability and convergence [23]. Ning et al. de-
signed an enhanced pheromone update mechanism based on ACO, strengthening pheromones on edges and
enhancing global search capabilities and convergence [24]. Wang et al. transformed ACO into a Time-Sensitive
Network (TSN), resulting in better convergence speed, optimization ability, and reduced susceptibility to lo-
cal optima compared to traditional ACO [25]. Miao et al. proposed an improved Adaptive ACO (IAACO)
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strategy for integrated global optimization in robot path planning [26]. Lyridis presented an enhanced fuzzy
logic ACO method, demonstrating superior performance to traditional ACO [27]. Hou et al. introduced an
enhanced ACO approach with a communication mechanism, accelerated convergence through an extended
roulette wheel, and designed an adaptive sigmoid decay function to optimize heuristic information in different
stages [28]. Although the research above has improved ACO and achieved preliminary results, they have not
fully considered the maneuverability constraints of UAVs in real-world scenarios. To improve the algorithm’s
ability to search globally, speed up the convergence rate, and generate safe and smooth paths, which will lead
to more efficient UAV path planning that meets practical requirements, it is necessary to optimize the existing
research further.

In this paper, we propose a novel path planning method based on a dual-strategy ACO (DSACO) algorithm.
Our approach centers on optimizing the state transition function and pheromone update rules to enhance the
algorithm’s performance. Firstly, we refine the heuristic factor of the state transition function by incorporating
3D characteristics, which include adding heuristic information regarding the distances between adjacent nodes
and the heights of the mountains. Then, a path evaluation function is proposed based on distance, height,
and turning cost. The dynamically adjusted pheromone update strategy helps ants to conduct a global search
in the early stage of the algorithm, accelerates convergence in the later stage of the algorithm, and guides
ants towards the path of the global optimal solution. Doing so effectively steers the ants towards the path
leading to the global optimal solution. Based on the above improvements, a new variation of ACO called the
DSACO algorithm is formed. Subsequently, it is compared with other algorithms based on different terrain
environments. Experimental results prove thatDSACOhas superior global search capabilities and convergence
characteristics from four aspects: path length, fitness values, iteration number, and running time.

2. PROBLEM STATEMENT
This paper primarily addresses the issue of static path planning. In this context, static path planning entails
the establishment of an environment model for UAV path planning while simultaneously considering the per-
formance constraints and a comprehensive assessment of the costs associated with the UAV. The ultimate
objective is to pre-plan the path before the UAV embarks on its flight mission.

2.1 3D path planning environment modeling
In static path planning, the UAV’s flight environment can be ascertained before takeoff. Consequently, en-
vironment modeling is vital as it serves as the cornerstone upon which the UAV can base its search for the
optimal path, ultimately facilitating the efficient execution of tasks.

2.1.1 Mountain modeling
This paper studies the problem of UAV path planning in the 3Dmountain environment. Given that mountains
can be approximated as cones, the mountainous terrain is characterized by multiple cones with distinct posi-
tions and shapes. We employ a 3D figure described by a natural exponential function with the base number
“e” to elucidate this concept. In this representation, the xOy plane serves as the horizontal reference, and a
point on the mountain is denoted as (x, y, z). The terrain of the natural mountain is described through an
exponential function, as illustrated in Equation (1):

𝑍 (𝑥, 𝑦) =
𝑛∑
𝑖=1

ℎ𝑖𝑒
− (𝑥−𝑥𝑜𝑖 )2

𝑥2
𝑠𝑖

− (𝑦−𝑦𝑜𝑖 )2

𝑦2
𝑠𝑖 (1)

Among them, 𝑍 (𝑥, 𝑦) represents the height value at the point (𝑥, 𝑦), 𝑛 represents the number of peaks in the
mountain environment, (𝑥𝑜𝑖 , 𝑦𝑜𝑖) represents the center coordinates of the 𝑖𝑡ℎ peak, ℎ𝑖 represents the maximum
height of the 𝑖𝑡ℎ mountain, and (𝑥𝑠𝑖 , 𝑦𝑠𝑖) represents the slope of the mountain. The advantage of simulating
mountain peaks with a two-dimensional normal distribution function is that it allows for convenient simula-
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Figure 1. Schematic diagram of UAV path.

tion of mountain topography with varying heights and numbers by adjusting parameters.

2.1.2 Search area rules
In the 3D coordinate system, the x-axis represents the longitude direction, the y-axis represents the latitude
direction, and the z-axis represents the altitude dimension. When defining the operational space for the UAV’s
task execution, its path space within this 3D coordinate system is also established. By utilizing 𝑥𝐺𝑟𝑖𝑑 , 𝑦𝐺𝑟𝑖𝑑 ,
and 𝑧𝐺𝑟𝑖𝑑 as the step sizes, we partition the x, y, and z dimensions into equal intervals. This process yields a
discretized set of 3D points within the path planning space. Consequently, the UAV’s path planning task can be
abstractly interpreted as selecting path points from these 3D coordinates, ultimately determining the optimal
path from the initial point S (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) to the destination point T (𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇 ).

To streamline the path planning process, we establish the primary direction for ant movement as the longitude
direction. This means that the UAV moves along the x-axis with a fixed step of 𝑥𝐺𝑟𝑖𝑑 . Additionally, the ants
are limited to a maximum allowable distance in the latitudinal and altitudinal directions, 𝐷𝑦𝑚𝑎𝑥 and 𝐷𝑧𝑚𝑎𝑥 ,
respectively. This restriction reduces the search space for the ants when selecting the next path point, resulting
in improved algorithm efficiency.

2.2 Maneuverability constraints of UAV
To ensure the feasibility and practical relevance of UAV path planning, it is crucial to consider both envi-
ronmental conditions and the performance constraints of the UAV itself. This paper considers several key
performance constraints, including the following aspects:

(1) Maximum path distance
Themaximumpath distance is the farthest distance that the UAV can fly while utilizing its total energy capacity.
The path obtained by planning generally refers to the total length of each node on the search path. Assuming
that the number of nodes in a certain path is 𝑁 , 𝑙𝑖 is the length of the 𝑖𝑡ℎ path, 𝐿 is the total path distance, and
𝐿𝑚𝑎𝑥 is the maximum path distance. The schematic diagram of the UAV path is shown in Figure 1, and the
constraint expression that the path length must satisfy is shown in Equation (2).

𝐿 =
𝑁∑
𝑖=1

𝑙𝑖 ≤ 𝐿𝑚𝑎𝑥 (2)

(2) Minimum segment length
When the UAV changes its flight direction, it needs to maintain the original direction and continue flying for
a certain distance due to the influence of inertia. The minimum segment length is the shortest distance to
continue flying in the original direction before changing. Let 𝐿𝑚𝑖𝑛 be the distance of the minimum segment,
and 𝑙𝑖 be the length of the 𝑖𝑡ℎ segment of the path. The length of each flight path should satisfy Equation (3):

𝐿 = 𝑙𝑖 ≥ 𝐿𝑚𝑖𝑛 (3)
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Figure 2. Pitch angle diagram of UAV path point.

(3) Maximum and minimum flight altitudes
UAVs must fly at a specific altitude above the ground to ensure safety for both themselves and their operators.
Since the flight altitude varies with the path, imposing a minimum altitude constraint is necessary. At the
same time, to maintain regular communication with the ground, reduce energy consumption, and ensure its
protection, the maximum altitude of the flight needs to be limited. Let 𝐻𝑚𝑖𝑛 be the minimum flight altitude,
𝐻𝑚𝑎𝑥 be the maximum flight altitude, and ℎ𝑖 be the altitude of the path point i. At this time, the UAV flight
altitude constraint can be expressed by Equation (4):

𝐻𝑚𝑖𝑛 ≤ ℎ𝑖 ≤ 𝐻𝑚𝑎𝑥 (4)

(4) Maximum pitch angle
Due to the influence of the UAV’s physical performance, cargo weight, and obstacle avoidance ability, it is
necessary to limit its pitch angle. If the pitch angle is too large, it can easily cause overturning and compromise
safety. Let (𝑥𝑖−1, 𝑦𝑖−1, 𝑧𝑖−1) be the position coordinates of path point i-1, (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) be the position coordinates
of path point i, and 𝛼𝑚𝑎𝑥 is the maximum pitch angle of the UAV. The schematic diagram of the pitch angle of
the UAV in flight is shown in Figure 2, and the mathematical expression of the constraint equation is shown
in Equation (5):

tan−1

[
|𝑧𝑖 − 𝑧𝑖−1 |√

(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2

]
≤ 𝛼𝑚𝑎𝑥 (5)

(5) Maximum horizontal turning angle
UAVs are limited by their mechanical properties and must adhere to a specified angle range when changing
flight direction. The smaller the turning angle, the more stable the flight of the UAV. Let 𝛽𝑚𝑎𝑥 be the maximum
horizontal turning angle; the constraints to be satisfied are shown in Equation (6), and the schematic diagram
is shown in Figure 3.

𝛽 ≤ 𝛽𝑚𝑎𝑥 (6)

3. BASELINE ANT COLONY OPTIMIZATION ALGORITHM
The ACO algorithm draws inspiration from the foraging behavior observed in ant species. In this natural
behavior, ants deposit pheromones on the ground to mark favorable paths that other colony members should
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Figure 3. UAVmaximum turning angle.

follow. The core principle of this algorithm involves representing potential solutions to a problem through
paths selected by the simulated ants. These paths collectively constitute the space of feasible solutions, and
within this space, the optimal solution corresponds to the shortest path.

3.1 State transition function
Theant starts its journey from the initial point, calculating the transition probabilities to various states. It selects
the next node based on the pheromone level 𝜏𝑖 𝑗 and the heuristic function 𝜂𝑖 𝑗 until it reaches the target point. In
the early stages of the ACO algorithm, pheromone accumulation isminimal, and path selection primarily relies
on the heuristic function. As pheromone concentrations reach a certain threshold, the heuristic function and
the pheromone level influence path selection. In the traditional ACO algorithm, the probability of a transition
from node 𝑖 to node 𝑗 for ant k can be expressed using Equation (7):

𝑃𝑘𝑖 𝑗 (𝑡) =


[
𝜏𝑖 𝑗 (𝑡)

]𝛼 [
𝜂𝑖 𝑗 (𝑡)

] 𝛽∑
𝑠∈𝐶 [𝜏𝑖𝑠 (𝑡)]𝛼 [𝜂𝑖𝑠 (𝑡)]𝛽

𝑗 ∈ 𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑠

(7)

where 𝐶 is the set of next nodes that the current node can choose, 𝛼 and 𝛽 are the weight parameters of
pheromone and heuristic function, respectively, reflecting the weight of the ant colony’s prior knowledge and
unexplored paths. 𝜏𝑖 𝑗 represents the pheromone concentration, 𝜂𝑖 𝑗 represents the heuristic function, 𝑖 repre-
sents the current ant, and 𝑗 represents the candidate node.

3.2 Pheromone update rules
Pheromone concentrations naturally diminish over time. The pheromone update process occurs once all ants
have finished their path search from the starting point to the target point. This pheromone update involves
two components: the residual pheromone and the freshly released pheromone. The update process is shown
in Equations (8)-(10):

𝜏𝑖 𝑗 (𝑡 + 1) = (1 − 𝜌)𝜏𝑖 𝑗 (𝑡) + Δ𝜏𝑖 𝑗 (𝑡) (8)

Δ𝜏𝑖 𝑗 =
𝑚∑
𝑘=1

Δ𝜏𝑘𝑖 𝑗 (9)

Δ𝜏𝑘𝑖 𝑗 =

{
𝑄/𝐿𝑘 𝐴𝑛𝑡 𝑘 𝑢𝑠𝑒𝑑 𝑒𝑑𝑔𝑒(𝑖, 𝑗) 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑠

(10)

In Equations (8)-(10), 𝜏𝑖 𝑗 denotes the total amount of pheromones, 𝜌 is the evaporation rate, Δ𝜏𝑖 𝑗 represents
the increment of pheromone, Δ𝜏𝑘𝑖 𝑗 is the quantity of pheromone laid on edge (𝑖, 𝑗) by ant k, Q is a constant,
and 𝐿𝑘 is the length of the tour constructed by ant k.
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4. PATH PLANNING BASED ON DUAL STRATEGY ACO ALGORITHM
The traditional ACO algorithm often relies on a stochastic mechanism to choose the next node, which can lead
to an indiscriminate search during the initial phase of the algorithm and result in slow convergence. While
the algorithm does possess positive feedback traits, if it initially identifies a sub-optimal solution, this positive
feedback can subsequently trap the algorithm in a local optimum. To address the aforementioned issues, en-
hancements are implemented in two critical aspects: (1) the method for selecting candidate nodes; and (2) the
rules governing pheromone updates.

4.1 State transition strategy of deterministic selection
While searching for the next feasible node, the heuristic values for candidate nodes are determined using the
Equation 𝑄𝑠𝑒𝑎𝑟𝑐ℎ = 𝑆 ∗ 𝑀 ∗ 𝐷. The specific equations for S, M, and D are provided in Equations (11)-(13),
respectively.

𝑆 =

{
1 ℎ𝑡+1 ≥ 𝐻 + ℎ𝑐
0 𝑜𝑡ℎ𝑒𝑟𝑠

(11)

𝑀 =
1

1 + ℎ𝑡+1
(12)

𝐷 =
1√

1 + Δ𝑦2 + Δℎ2 +
√

1 + (𝑥𝐵 − 𝑥𝑡+1)2 + (𝑦𝐵 − 𝑦𝑡+1)2 + (ℎ𝐵 − ℎ𝑡+1)2
(13)

Among them, S signifies the accessibility of the next node, taking the value 1 if the node is reachable and 0
otherwise. ℎ𝑐 is the safety threshold, and H represents the height of the mountain node. M represents the
probability of selecting a candidate node, 𝑥𝑡+1, 𝑦𝑡+1, and ℎ𝑡+1 represent the 3D coordinates of the candidate
node, 𝑥𝐵, 𝑦𝐵, and 𝑧𝐵 are the 3D coordinates of the mountain node, D is the correlation coefficient between
two nodes, Δ𝑦 represents the interpolation of the y-axis of the two nodes, and Δ𝑧 represents the interpolation
of the z-axis of the two nodes.

The traditional ACO algorithm employs a probabilistic transition strategy where transition probabilities be-
tween nodes are calculated, and the roulette method is commonly used to select the next node. As the algo-
rithm progresses into its later stages, paths with clear advantages become more evident, and a deterministic
node transition strategy can be applied to expedite algorithm convergence. In light of this, we have designed
a novel state transition function to choose the subsequent node at the later stage of the algorithm, as shown in
Equation (14):

𝑃𝑘𝑖 𝑗 (𝑡) =


𝑎𝑟𝑔𝑚𝑎𝑥𝑠∈𝐶 [𝜏𝑖𝑠 (𝑡)]𝛼 [𝜂𝑖𝑠 (𝑡)]𝛽 𝑞 ≤ 𝑞0

[
𝜏𝑖 𝑗 (𝑡)

]𝛼 [
𝜂𝑖 𝑗 (𝑡)

] 𝛽∑
𝑠∈𝐶 [𝜏𝑖𝑠 (𝑡)]𝛼 [𝜂𝑖𝑠 (𝑡)]𝛽

𝑗 ∈ 𝐶

0 𝑜𝑡ℎ𝑒𝑟𝑠

𝑞 ≥ 𝑞0
(14)

where q is a tunable parameter within the interval [0, 1] that represents the probability of using a deterministic
node transition strategy. 𝑞0 determines the probability of selecting either the deterministic or random selection
modes. Consequently, 𝑞0 plays a crucial role in influencing the convergence speed and the global search
capability. A higher value of 𝑞0 favors the likelihood of choosing the deterministic mode for selecting the
next point, resulting in an accelerated convergence speed. However, this comes at the cost of reduced global
search capability. Conversely, a smaller 𝑞0 inclines the path shift towards the randommode, introducing more
randomness in the selection process and enhancing the global search capability. A rule for setting the 𝑞0
value must be established to balance between deterministic and random modes. 𝑞0 is calculated as shown in
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Equation (15): 
𝑞0 =


𝐾 − 𝑘
𝐾

𝑞0_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑘 < 𝑘0

𝑘 − 𝑘0

𝐾
𝑞0_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑞0_𝑖𝑛𝑖𝑡𝑖𝑎𝑙

2 𝑘 ≥ 𝑘0

𝑘0 = 0.7𝐾

(15)

where 𝑘 is the current number of iterations, 𝐾 is themaximumnumber of iterations, and 𝑞0_𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the original
value of 𝑞0.

4.2 Dynamically adjusted pheromone update strategy
In traditional ACO algorithms applied to path planning, there is a risk that if the pheromone level on a particu-
lar path becomes excessively high, it can lead to a higher probability of subsequent ants choosing that path. This
can constrain exploring other potentially more feasible paths, causing the algorithm to stagnate prematurely.
We have introduced improvements to the pheromone update strategy to address this concern. Specifically, we
now update the pheromone solely on the path traversed by the optimal ant in the current iteration. Addition-
ally, we enforce maximum and minimum limits on the pheromone values to prevent them from becoming
overly dominant or negligible, as shown in Equations (16)-(18):

𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 (𝑡 + 1) = (1 − 𝜌)𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 (𝑡) + Δ𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 (𝑡) (16)

Δ𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 (𝑡) = 𝑄

(1 − 𝑝)𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑜𝑤 + 𝑝𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑔𝑙𝑜𝑏𝑎𝑙
(17)

𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 (𝑡 + 1) =


𝜏𝑚𝑎𝑥 𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 (𝑡 + 1) ≥ 𝜏𝑚𝑎𝑥
𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 (𝑡 + 1) 𝜏𝑚𝑖𝑛 < 𝜏

𝑏𝑒𝑠𝑡
𝑖 𝑗 (𝑡 + 1) < 𝜏𝑚𝑎𝑥

𝜏𝑚𝑖𝑛 𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 (𝑡 + 1) ≤ 𝜏𝑚𝑖𝑛

(18)

Among them, Δ𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 represents the change in pheromone concentration between two nodes under the current
optimal path, 𝜌 is the pheromone evaporation parameter, which determines the pheromone attenuation ratio
at the current point after each update, 𝑝 represents the weight of the global optimal fitness value as the basis
for pheromone update,𝑄 is the pheromone constant. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑛𝑜𝑤 represents the fitness value corresponding to
the current path, and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑔𝑙𝑜𝑏𝑎𝑙 represents the global optimal fitness value. 𝜏𝑚𝑎𝑥 represents the maximum
pheromone concentration, 𝜏𝑚𝑖𝑛 represents the minimum pheromone concentration, and 𝜏𝑏𝑒𝑠𝑡𝑖 𝑗 (𝑡 + 1) is the
pheromone concentration at the 𝑡 + 1 iteration.

In order to ensure that ants have more opportunities to explore new paths at the beginning of the iteration and
optimize the optimal path in the later stages of the iteration, the probability 𝑝 decreases proportionally as the
number of iterations increases. We set the attenuation ratio, represented as 𝛾𝑝 , to 0.9, as shown in Equation
(19):

𝑝(𝑡 + 1) =
{
𝑝(𝑡) 𝑚𝑜𝑑 (𝑡, 100) ≠ 0
𝑝(𝑡) ∗ 𝛾𝑝 𝑚𝑜𝑑 (𝑡, 100) = 0

(19)

𝑝 ∈ [0, 1] represents the weight of the global optimal fitness value as the basis for pheromone update.

4.3 Path evaluation function
The heuristic function is crucial in determining the search path, and its strengths and weaknesses directly in-
fluence the algorithm’s convergence speed during iterations. Due to the traditional heuristic function having
fewer constraints, the blind search phenomenon will occur in the early search for ants. Therefore, the algo-
rithm exhibits slow convergence and requires many iterations to reach a solution. Considering the distinctive
application environment of UAVs, this paper introduces an evaluation function grounded in distance, height,
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Figure 4. UAV path planning flow chart based on dual-strategy ant colony algorithm.

and turning costs, as depicted in Equation (20). The calculation methods of distance, height, and number of
turns are shown in Equations (21)-(23), respectively.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓1𝐷0 + 𝑓2𝐷ℎ + 𝑓3𝐷𝑇 (20)

𝐷0 =
𝑁∑
𝑖=1

𝑙𝑖 (21)

𝐷ℎ =
𝑁∑
𝑖=1

ℎ𝑖 (22)

𝐷𝑇 =
𝑁∑
𝑖=1
𝑇𝑖 (23)

where 𝑙𝑖 is the length of the 𝑖𝑡ℎ flight segment, N is the number of flight segments, ℎ𝑖 is the height of the 𝑖𝑡ℎ

flight segment, 𝑇𝑖 is the angle between the 𝑖𝑡ℎ flight segment and the previous one, and 𝑓1, 𝑓2, and 𝑓3 are the
adjustment coefficients of each factor.

Based on the above improvements, a new variation of ACO called the DSACO algorithm is formed. This
algorithm is summarized and detailed in Algorithm 1. Moreover, the overall flow chart of UAV path planning
based on the DSACO algorithm is shown in Figure 4.
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Algorithm 1: dual-strategy ant colony optimization (DSACO)
Data: Mountain Information, Set of ants
Result: The optimal path

1 Initialization parameter information;
2 for i=1 to the size of the map do
3 if the grid is free then
4 Initialize pheromone concentration;
5 end
6 end
7 for k=1 to population size do
8 Place all ants at the start point S;
9 for iter=1 to the Maximum number of iterations do
10 for p= -𝐷𝑦𝑚𝑎𝑥 to 𝐷𝑦𝑚𝑎𝑥 do
11 for q=-𝐷𝑧𝑚𝑎𝑥 to 𝐷𝑧𝑚𝑎𝑥 do
12 if the position is in the map then
13 Calculate the heuristic function value according to Equation 19;
14 Calculate the state transition probability of the next node according to

Equation 14;
15 end
16 end
17 end
18 Select the next point, update the current location of ants;
19 Dynamically updated pheromones according to Equation 15;
20 if pheromone concentration ≥ 𝜏𝑚𝑎𝑥 then
21 pheromone concentration=𝜏𝑚𝑎𝑥 ;
22 else
23 if pheromone concentration ≤ 𝜏𝑚𝑖𝑚 then
24 pheromone concentration=𝜏𝑚𝑖𝑛;
25 end
26 end
27 end
28 end
29 Output the final optimal path.
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Table 1. Simple mountain environment parameters

Serial number of peaks Location(x,y)/km Height/km Slope/km

1 (30,9) 0.66 (4,3)
2 (16,17) 1.64 (7,8)
3 (35,32) 1.3 (5,8)

Table 2. Medium complex mountain environment parameters

Serial number of peaks Location(x,y)/km Height/km Slope/km

1 (40,10) 1.8 (4,3)
2 (12,17) 0.66 (2,1)
3 (21,25) 1.86 (4,4)
4 (33,34) 1.64 (7,8)
5 (10,41) 0.3 (5,8)
6 (14,32) 0.96 (12,8)
7 (6,26) 1.3 (6,5)
8 (33,15) 2.3 (4,12)

Table 3. Complex mountain environment parameters

Serial number of peaks Location(x,y)/km Height/km Slope/km

1 (40,10) 1.08 (4,3)
2 (35,45) 0.66 (2,2)
3 (36,25) 1.86 (3,5)
4 (15,40) 1.64 (2,3)
5 (10,25) 0.3 (8,5)
6 (33,44) 1.12 (10,8)
7 (47,30) 1.6 (6,6)
8 (20,24) 0.64 (7,8)
9 (10,41) 1.34 (5,8)
10 (14,32) 0.96 (12,8)
11 (6,26) 1.3 (6,5)
12 (33, 42) 1.5 (4, 8)

4.4 Complexity analysis
In this section, the time complexity and space complexity of DSACO are analyzed. Simple instructions in the
algorithm are omitted, which does not affect its computational complexity. The time complexity of the DSACO
mainly depends on the problem size, the number of iterations, and the number of ants in each iteration. The
time complexity of the DSACO algorithm is𝑂 (𝐼 ·𝑀 ·𝑁), where 𝐼 is the number of iterations, 𝑀 is the problem
size, and 𝑁 is the number of ants. The problem size is related to the search space. The space complexity of
DSACO is mainly affected by the pheromone matrix. Typically, the size of the pheromone matrix is 𝑀 × 𝑀 ,
where 𝑀 is the problem size. Therefore, the space complexity of DSACO is 𝑂 (𝑀2).

5. SIMULATION RESULTS
5.1 Mountain modeling and parameters setting
The experiment adopts the grid method to simulate the 3D mountain environment. The size of the terrain is
set to 50 km × 50 km × 2.4 km, the length and width of each grid in the horizontal plane are 1 km, and each
grid in the vertical direction is 0.2 km. To enhance applicability, simulations are conducted in environments of
varying complexity, including simple, moderately complex, and highly complex mountainous environments.
According to the parameters in Tables 1-3 and Equation (1), the mountain environment is modeled based on
MATLAB R2018a software, as shown in Figure 5.
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Figure5. Wepresentmountain terrain in different environments in Figure 5A-C. (A) Simple environment; (B)Mediumcomplex environment;
(C) Complex environment.

5.2 Parameter optimization of DSACO
The parameter selection of ACO directly influences its performance. Currently, no well-established theoretical
analysis method can decisively determine the optimal parameter combination. Therefore, to identify suitable
DSACO parameters, we conducted a statistical analysis of the critical parameters. Specific test parameters
include the pheromone evaporation rate 𝜌 in Equation (16) and 𝜏𝑚𝑎𝑥 and 𝜏𝑚𝑖𝑛 in Equation (17). In each exper-
iment, only one parameter was modified while keeping the other parameters constant. Ten simulations were
conducted for each selected parameter combination to minimize the impact of random errors. The experi-
ments use a complex mountainous terrain model, as shown in Figure 5C, with the parameter configurations
detailed in Table 3.

The first parameter is pheromone evaporation rate 𝜌. Value for 𝜌 is varied from 0.1 to 0.9 in increments of
0.1. Simultaneously, other critical parameters of DSACO are held constant: m = 10, n = 500, Q = 100, 𝛼 = 1,
𝛽 = 8, 𝜏𝑚𝑎𝑥 = 0.9, 𝜏𝑚𝑖𝑛 = 0.03, p = 1. The experimental results, including optimal path length, optimal fitness
value, and average convergence generation, are illustrated in Figure 6. Despite the negligible impact of 𝜌 on
the optimal path length, as shown in Figure 6A, the optimal fitness value and average convergence generation
reach their minimum when 𝜌 = 0.2. Therefore, it is recommended to set 𝜌 to 0.2.

The second parameter is 𝜏𝑚𝑎𝑥 . Values for 𝜏𝑚𝑎𝑥 are varied from 0.5 to 0.9 in increments of 0.05, and other critical
parameters of DSACO are held constant: m = 10, n = 500, Q = 100, 𝛼 = 1, 𝛽 = 8, 𝜌 = 0.2, 𝜏𝑚𝑖𝑛 = 0.03, p = 1.
Experimental results for different values are illustrated in Figure 7. Figure 7A shows that the choice of 𝜏𝑚𝑎𝑥 has
minimal impact on the optimal path length. Ignoring the fluctuations depicted in Figure 7B, a larger value of
𝜏𝑚𝑎𝑥 is more likely to yield a smaller fitness value. Figure 7C indicates that a smaller value of 𝜏𝑚𝑎𝑥 increases the
average convergence generation, suggesting the need for a larger 𝜏𝑚𝑎𝑥 to enhance convergence speed. Overall,
the value of 𝜏𝑚𝑎𝑥 will be set to 0.9.

The third parameter is 𝜏𝑚𝑖𝑛. Values for 𝜏𝑚𝑖𝑛 are varied from 0.01 to 0.09 in increments of 0.01, and other critical
parameters of DSACO are held constant: m = 10, n = 500, Q = 100, 𝛼 = 1, 𝛽 = 8, 𝜌 = 0.2, 𝜏𝑚𝑎𝑥 = 0.9, p = 1.
The experimental results for different 𝜏𝑚𝑖𝑛 values are illustrated in Figure 8. Concerning the optimal path
length and fitness value, the influence of 𝜏𝑚𝑖𝑛 is not particularly pronounced, as depicted in Figure 8A and B.
Regarding the average convergence generation, a peak is observed when 𝜏𝑚𝑖𝑛 is set to 0.03, as shown in Figure
8C. Therefore, the value of 𝜏𝑚𝑖𝑛 will be set to 0.03 to attain improved DSACO performance.

5.3 Algorithm comparison imitation
After analyzing the influences of the main parameters of DSACO, an optimal combination of main parameters
is obtained, as shown in Table 4. Set the starting point A coordinates (1, 17, 0.6) and the target point B coordi-
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Figure 6. The influences of 𝜌 on path length, fitness values, and mean convergence generation.

Table 4. The values of the experimental parameters

Symbol Description Value

m Number of ants 10
n Number of iterations 500
Q Pheromone intensity 100
𝛼 Pheromone incentive factor 1
𝛽 Expected heuristic factor 8
𝜌 Pheromone evaporation rate 0.2

𝜏𝑚𝑎𝑥 The maximum value of pheromone 0.9
𝜏𝑚𝑖𝑛 The minimum value of pheromone 0.03
p The weight of the global optimal fitness value 1

nates (50, 42, 0.6). The maximum single moving distance of the UAV in the horizontal plane is two grids, and
the maximum moving distance in the vertical direction is one grid. To ensure that the height of the UAV is
within the safe range, the height constraint is set to 50 m < h < 2 km.

In order to illustrate the superiority of the method in this paper, the well-known improved ACO approaches:
AS andMMAS, the improved ACO by Chen et al., and the DSACO in this paper are introduced for simulation
and comparison research[22].

Figures 9-11 show the path planning simulation diagrams of four different algorithms in simple, medium,
complex, and complex environments, respectively. Through comparison, it is found that despite no apparent
difference between the paths obtained by the four algorithms in simplemountain environments, DSACO seeks
the shortest path compared to other approaches inmedium complex and complexmountain environments due
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Figure 7. The influences of 𝜏𝑚𝑎𝑥 on path length, fitness values, and mean convergence generation.

Table 5. Simulation results in complex terrain environment

AS MMAS Improved ACO by Chen et al. DSACO

Optimal path length 79.9710 79.2324 77.4436 74.1204
Optimal fitness value 90.7962 89.5247 84.5741 83.0249
Number of iterations 421 407 398 383

Running time/s 3.3321 3.7479 4.2152 3.9541

to optimizing the pheromone update mechanism and limiting the pheromone value, the approximate global
optimal path is found.

Figures 12-14 show the best individual fitness trends of the four different algorithms under simple, medium,
complex, and complex environments, respectively. By comparing the simulation results, we found that the tra-
ditional ACO algorithm has a good convergence speed in a simple environment. By comparing the simulation
results, we found that AS andMMAS have an excellent convergence speed in a simple environment. However,
they are prone to get stuck in local optima in a complex environment. Compared with the improved ACO
algorithm by Chen et al., the fitness of DSACO can be reduced to a lower level, indicating that the algorithm
has a better path search capability[22]. At the same time, DSACO can reach a smaller fitness with fewer
iterations, which indicates that the algorithm has a faster convergence speed.

In order to minimize errors, we conducted 30 experiments and calculated the average values of the optimal
path length, the optimal fitness value, the number of iterations required to reach the optimal fitness value, and
the running time for the four different algorithms in complex mountain environments, as shown in Table 5.

[22]
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Figure 8. The influences of 𝜏𝑚𝑖𝑛 on path length, fitness values, and mean convergence generation.

Figure 9. The path of four algorithms in simple mountain environments.

To sum up, DSACO has advantages in path length, fitness values, and number of iterations. At the same time,
due to the increase in heuristic function constraints, the running time is better than the improved ACO and
slightly worse than AS and MMAS, but it is also within our acceptable range.

6. CONCLUSIONS
In this paper, we optimized and improved the traditional ACO algorithm, which is prone to getting stuck in
local optima and has a slow convergence speed. Employing the deterministic state transition strategy to re-
define the movement rules of the ants and implementing a dynamically adjusted pheromone update strategy
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Figure 10. The path of four algorithms in moderately complex mountain environments.

Figure 11. The path of four algorithms in complex mountain environments.

Figure 12. Convergence trend in simple environments.
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Figure 13. Convergence trend in medium complex environments.

Figure 14. Convergence trend in complex environments.

enhances the performance of path optimization, search efficiency, and convergence speed. This approach pre-
vents the occurrence of local optima and improves the path planning performance of the UAV.The simulation
results show that the path length of DSACO is reduced by 7.3%, 6.5%, and 4.3%, respectively, compared with
AS, MMAS, and improved AS. Compared with AS, MMAS, and improved AS, the fitness value of DSACO
decreased by 8.6%, 7.2%, and 2%, respectively. The algorithm reduces the number of iterations from 421, 407,
and 398 to 383, and the running time also increases slightly within the acceptable range.

However, the DSACO algorithm still has some shortcomings, such as not considering the influence of dynamic
obstacles when constructing the mountain model and not considering the complex kinematics and dynamics
constraints of UAVs, which limits its application. In the future, the path planning method can be improved
in the following aspects: (1) the current path planning method mainly deals with problems in static environ-
ments, and in the future, it should be extended to dynamic environments and consider the interaction effects
of the aircraft and other moving objects to realize smarter path planning; (2) machine learning technology can
be studied to be applied to path planning to improve the intelligence and adaptability of the path planning
algorithm by learning a large amount of historical path data and flight experience.
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