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Abstract
In this paper, asymptotical synchronization in mean square, 𝐻∞-synchronization, and almost sure exponential syn-
chronization are developed for a class of stochastic switched networks withMarkov switching and Brown noise using
a delay feedback controller that depends on the past state. By utilizing some inequality techniques, It𝑜 formula and
Borel-Cantelli Lemma, we show that the stochastic switched network model can achieve asymptotical synchroniza-
tion in mean square, 𝐻∞-synchronization, and almost sure exponential synchronization when the delay of the control
is smaller than a given upper bound. Finally, the effectiveness of the theory is verified by a numerical simulation.

Keywords: Delay feedback control, Markov switching, asymptotical synchronization in mean square, almost sure
exponential synchronization, 𝐻∞-synchronization

1. INTRODUCTION
Complex networks are ubiquitous in society and nature because they can abstractly describe almost all actual
complex systems, such as the relationship between bacteria and cells, cooperation among academia, intelli-
gent systems, Internet communication, biological engineering, power systems, Brownian motion, and others
(see, e.g., [1–3] and reference therein). Therefore, they have become an irreplaceable framework and natural phe-
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nomenon inmany complex social studies, which provides us with a new perspective andmethod of complexity
research [4,5]. So, the research on complex networks is of great significance.

At present, the research content of complex networks mainly focuses on the following aspects: the formation
mechanism of the network, the geometric nature of the network, the nature of the network model, the stability
of the network, the synchronization and consistency of the network, and other issues [6–12]. Synchronization
is a common collective behavior phenomenon in nature. In recent years, the synchronization theory and ap-
plication research of complex networks have received extensive attention from domestic and foreign scholars.
In terms of application research, synchronization mechanisms are applied to issues such as secure communi-
cations, nervous systems, superconducting materials, transportation networks, the Internet, and so on [13–17].
The most common synchronization problems in life are the glow of fireflies, the behavior of fish swimming
in the ocean, and the gradual regular applause when the audience applauds. Therefore, the synchronization
study of complex networks is of great significance in revealing the universal laws of network dynamics.

In the existing literature, people have studied various synchronization problems of the networkmodel. Inmost
of the literature, a commonly used and taken-for-granted method is to design a controller to synchronize the
network. However, a more practical problem is the difference between the time to observe the state and the
time to control the system. The time interval is greater than zero, so a more reasonable explanation is to set
a controller with a time delay for the system. The paper [18] first proposed feedback control with time delays
and applied it in the study of the stabilization of stochastic differential equations (SDEs). As we know, the
delay feedback has not been used in the study of the synchronization issue for Markov switched stochastic
networks. However, there are a large number of time-delay feedbacks in reality, such as monetary policy in
economic systems, control systems in industrial processes, and neural systems in biology. Therefore, we study
time-delay feedback control in Markov switching stochastic networks.

In addition, the existing research on Markov switching networks mainly focuses on the exponential mean
square synchronization, such as [19]. Although exponentialmean square synchronization provides convergence
characteristics, it cannot guarantee that every orbit can be synchronized. In contrast, almost sure exponential
synchronization has more advantages, because it not only ensures that all orbits are synchronized but also
enables the synchronization speed to be faster in comparison. We not only study almost sure exponential
synchronization but also investigate asymptotical synchronization in mean square and 𝐻∞-synchronization.

Based on the theory of SDEs, the properties of Markov processes, and the It𝑜 formula by designing a delay
feedback controller, the almost sure exponent is established with stochastic synchronization of noisy complex
networks. Next, we will introduce the contribution of this article:

1.We design a suitable controller with time delay to achieve almost sure exponential synchronization, asymp-
totical synchronization in mean square and 𝐻∞-synchronization in the Markov switched stochastic networks,
which is more consistent with the actual situation and differs from the previous control strategies.

2.From a practical point of view, almost sure exponential convergence is almost certainly more effective, be-
cause it can ensure that each orbit of the stochastic process reaches convergence. The synchronization problem
of complex networks with random noise and Markov switching under time-delay feedback control discussed
in this paper is an infinite-dimensional problem, which is more difficult than a finite-dimensional problem.

3.Developing almost sure convergence in network synchronization is inherently challenging due to the need
for estimating the time tail probability. As far as our current knowledge extends, there has not been any study
addressing the almost sure convergence for complex networks involving a controller with time delay in the
existing literature.
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2.PROBLEM FORMULATION AND PRELIMINARIES
The notion diag {𝑝1, 𝑝2, · · · , 𝑝𝑛} denotes the diagonal matrix with entries 𝑝1, 𝑝2, · · · , 𝑝𝑛 on the diagonal. 𝐼𝑁
stands for the identity matrix with dimension 𝑁 . 1𝑛 is a 𝑛-dimension vector whose entries are 1. The notions
𝜆𝑚𝑖𝑛 (·), 𝜆𝑚𝑎𝑥 (·) represent the minimum and maximum eigenvalue of a given matrix, respectively. For a vector
𝑥, let 𝑥> denote the transpose vector and ‖𝑥‖ denote 𝐿2-vector norm. Let R be the set of real numbers, N =
{1, 2, 3, · · · } be the set of natural numbers, R𝑛 be the n-dimensional Euclidean space and R𝑛×𝑛 be the set of all
𝑛 × 𝑛 real matrices. The symbol ⊗ denotes the standard Kronecker product.

Let 𝐵𝑖 (𝑡) = [𝐵1(𝑡), 𝐵2(𝑡), . . . , 𝐵𝑚 (𝑡)]𝑇 be an F𝑡 -adapted Brownian motion and {𝜎(𝑡), 𝑡 ≥ 0} be a continuous
time Markov process, where the state space of 𝜎(𝑡) is S = {1, 2, · · · , 𝑚}. The generator 𝑄 = (𝑞𝑖 𝑗 )(𝑚×𝑚) of
Markov process is given by

P{𝜎(𝑡 + Δ𝑡) = ℓ | 𝜎(𝑡) = 𝑟} =
{
𝑞𝑟ℓΔ𝑡 + 𝑜(Δ𝑡), if ℓ ≠ 𝑟 ,
1 + 𝑞𝑟ℓΔ𝑡 + 𝑜(Δ𝑡), if ℓ = 𝑟 ,

where limΔ𝑡→0+ 𝑜(Δ𝑡)/Δ𝑡 = 0, 0 ≤ 𝑞𝑟ℓ, (ℓ ≠ 𝑟), and 𝑞ℓℓ = −∑𝑚
𝑟=1,𝑟≠ℓ 𝑞𝑟ℓ .

Assume that 𝜎(·) and 𝐵(·) are independent of each other. By using a delay pinning feedback controller, we
study the Markovian switched stochastic network as follows:

𝑑𝑥𝑖 (𝑡) = ℎ(𝑥𝑖 (𝑡), 𝜎𝑡)𝑑𝑡+𝑟 (𝑥𝑖 (𝑡), 𝜎𝑡)𝑑𝐵(𝑡) + 𝑐
𝑀∑
𝑗=1

𝑎𝑖 𝑗 (𝜎𝑡)𝑥 𝑗 (𝑡)𝑑𝑡 + 𝑢(𝑥𝑖 (𝑡 − 𝜏), 𝜎𝑡)𝑑𝑡, (1)

𝑢(𝑥𝑖 (𝑡 − 𝜏), 𝜎𝑡) = −𝜌𝑑𝑖 (𝜎𝑡) (𝑥𝑖 (𝑡 − 𝜏) − 𝑠(𝑡 − 𝜏)), (2)

where 𝑖 = 1, 2, 3, · · · , 𝑀, 𝑥𝑖 (𝑡) ∈ R𝑛 represents the state vector of the 𝑖th node; ℎ(𝑥𝑖 (𝑡), 𝜎𝑡) and 𝑟 (𝑥𝑖 (𝑡), 𝜎𝑡 , 𝑡)
are continuous functions, and they separately describe the dynamics and noise intensity. The coupling matrix
𝐴(𝜎𝑡) = (𝑎𝑖 𝑗 (𝜎𝑡))𝑁×𝑁 is irreducible, which also satisfies: 𝑎𝑖 𝑗 (𝜎𝑡) ≥ 0, 𝑎𝑖 𝑗 (𝜎𝑡) = 𝑎 𝑗𝑖 (𝜎𝑡), 𝑖 ≠ 𝑗 and 𝑎𝑖𝑖 (𝜎𝑡) =
−∑𝑀

𝑗=1, 𝑗≠𝑖 𝑎𝑖 𝑗 (𝜎𝑡); where 𝑑𝑖 (𝜎𝑡) = 𝐼𝑖∈D(𝜎𝑡 ) is the indication function for the pinned node subset D(𝜎𝑡) ⊂
{1, 2, · · · , 𝑁}, 𝜌 is the control gain, 𝑢(0, 𝑖, 𝑡) ≡ 0. The initial data are {𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0 } = 𝜉 ∈ 𝐶 ( [−𝜏, 0]; 𝑅𝑛)
and 𝜎(0) = 𝜎0 ∈ 𝑆.

Denote 𝑠(𝑡) as a desirable state solution that satisfies:

𝑑𝑠(𝑡) = 𝐻 (𝑠(𝑡), 𝜎𝑡)𝑑𝑡 + 𝑅(𝑠(𝑡), 𝜎𝑡)𝑑𝐵(𝑡), (3)

The set 𝑠(𝑡) × 1𝑛 is used as the synchronization manifold. The initial value of 𝑠(𝑡) is given by 𝑠(𝑡) = 𝜓(𝑡) ∈
𝐶𝑏F0

([−𝜏, 0],R𝑛). The error system of this network can be written as follows:

𝑑𝑒(𝑡) = 𝐻̂ (𝑒(𝑡), 𝜎𝑡)𝑑𝑡 + 𝑅̂(𝑒(𝑡), 𝜎𝑡)𝑑𝐵(𝑡) + 𝑐𝐴(𝜎𝑡)𝑒(𝑡)𝑑𝑡 − 𝜌𝐷 (𝜎𝑡)𝑒(𝑡 − 𝜏)𝑑𝑡, (4)

where: 𝑒(𝑡) = (𝑒>1 (𝑡), · · · , 𝑒>𝑁 (𝑡))>, 𝐻̂ (𝑒(𝑡), 𝜎𝑡) = 𝐻 (𝑥(𝑡), 𝜎𝑡) − 𝐻 (𝑠(𝑡), 𝜎𝑡), 𝑅̂(𝑒(𝑡), 𝜎𝑡) = 𝑅(𝑥(𝑡), 𝜎𝑡) −
𝑅(𝑠(𝑡), 𝜎𝑡). 𝐻 (𝑥(𝑡), 𝜎𝑡) = (ℎ(𝑥1(𝑡), 𝜎𝑡), · · · , ℎ(𝑥𝑁 (𝑡), 𝜎𝑡))>, 𝑅(𝑥(𝑡), 𝜎𝑡) = (𝑟 (𝑥1(𝑡), 𝜎𝑡), · · · , 𝑟 (𝑥𝑁 (𝑡), 𝜎𝑡))>,
𝐻 (𝑠(𝑡), 𝜎𝑡) = (ℎ(𝑠(𝑡), 𝜎𝑡) × 1𝑁 )>, 𝑅(𝑠(𝑡), 𝜎𝑡) = (ℎ(𝑠(𝑡), 𝜎𝑡) × 1𝑁 )>, 𝐷 (𝜎𝑡) =diag[𝑑 (𝜎𝑡), 𝑑 (𝜎𝑡), · · · , 𝑑 (𝜎𝑡)] .

Definition 1. [20] (𝐻∞-Synchronization) The network (4) achieves 𝐻∞-synchronization, if we have∫ ∞

0
𝐸 ‖𝑒(𝑡)‖2𝑑𝑡 < ∞.

Definition 2. [20] (Synchronization in Mean Square) The solution of the network (4) satisfies

lim
𝑡→+∞

𝐸 ‖𝑒(𝑡)‖2 = 0,

http://dx.doi.org/10.20517/ces.2024.14
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for ∀ 𝜓(𝑡), namely, the network (1) achieves synchronization in mean square.

Definition 3. [16] (Exponential Synchronization) System (1) is said to achieve exponential synchronization, if
there exist constants 𝜀 > 0 and 𝐺 > 0 such that

𝐸 ‖𝑒(𝑡)‖2 ≤ 𝐺𝑒−𝜀𝑡 .

Definition 4. [16] (Almost Surely Exponentially Synchronization)The solution of the network (1) with the initial
has the property that:

lim sup
𝑡→∞

1
𝑡

log(‖𝑒(𝑡)‖) < 0, 𝑎.𝑠.

That is, the network (1) is almost surely exponentially synchronization.

Definition 5. (𝑄𝑈𝐴𝐷 Condition) The function ℎ(𝑥, ℓ) is said to satisfy the 𝑄𝑈𝐴𝐷 condition, denoted as
ℎ(𝑥, ℓ) ∈ 𝑄𝑈𝐴𝐷 (𝑃ℓ,Δℓ, 𝜑ℓ), if we can find positive define diagonal matrices 𝑃ℓ and Δℓ , for ℓ = 1, 2, · · · , 𝑚
and a positive constant 𝜑ℓ , such that for any 𝑥, 𝑦 ∈ R𝑛, the following condition holds:

(𝑥 − 𝑥)>𝑃ℓ [ℎ(𝑥, ℓ) − ℎ(𝑥, ℓ) − Δℓ (𝑥 − 𝑥)] ≤ −𝜑ℓ (𝑥 − 𝑥)>𝑃ℓ (𝑥 − 𝑥).

Assumption 1. [21] If we can find 𝜂ℓ > 0 and 𝛼ℓ > 0 such that

‖ℎ(𝑥, ℓ) − ℎ(𝑥, ℓ)‖2 ≤ 𝜂ℓ (‖𝑥 − 𝑥)‖2),

‖𝑟 (𝑥, ℓ) − 𝑟 (𝑥, ℓ)‖2 ≤ 𝛼ℓ (‖𝑥 − 𝑥)‖2).

Assumption 2. [9,18] The function 𝑟 (𝑥, ℓ) satisfies the Lipschitz condition and we can find 𝜔𝑙 > 0 such that for
𝑙 = 1, 2, . . . , 𝑁 ,

trace[𝑟 (𝑥, ℓ) − 𝑟 (𝑥, ℓ)]𝑇 [𝑟 (𝑥, ℓ) − 𝑟 (𝑥, ℓ)] ≤ 𝜔ℓ (𝑥 − 𝑥)2.

Assumption 3. [20] If we can find 𝛾 > 0 such that

‖𝑢(𝑥, ℓ) − 𝑢(𝑥, ℓ)‖ ≤ 𝛾‖𝑥 − 𝑥‖,

for all (𝑥, ℓ) ∈ 𝑅𝑛 and 𝑡 ≥ 0. This assumption, together with 𝑢(0, ℓ) ≡ 0, implies

‖𝑢(𝑥, ℓ)‖ ≤ 𝛾‖𝑥‖.

Assumption 4. [22] If we can find 𝐾 > 0 such that

‖ℎ(𝑥, ℓ)‖ ≤ 𝐾 (1 + ‖𝑥‖) 𝑎𝑛𝑑 ‖𝑟 (𝑥, ℓ)‖ ≤ 𝐾 (1 + ‖𝑥‖), (5)

for all (𝑥, ℓ) ∈ 𝑅𝑛 × 𝑆.

Assumption 5. [20] If we can choose functions𝑊 and Λ, as well as a positive number 𝑐 and 𝑞 ≥ 2, such that

|𝑥 |2 ≤ 𝑊 (𝑥, ℓ) ≤ Λ(𝑥) ∀(𝑥, ℓ) ∈ 𝑅𝑛 × 𝑆, (6)

and

L𝑊 (𝑥, ℓ) :=𝑊𝑡 (𝑥, ℓ) +𝑊𝑥 (𝑥, ℓ)𝑢(𝑥, ℓ) +
1
2
𝑡𝑟𝑎𝑐𝑒[𝑅𝑇 (𝑥, ℓ)P(𝑙)𝑟 (𝑥, ℓ)] + 1

2

𝑚∑
𝑙=1

𝑞𝜎𝑡 𝑙𝑒
𝑇 (𝑡)P(𝑙)𝑒(𝑡)

≤ − 𝑐Λ(𝑥), (7)

for all (𝑥, ℓ) ∈ 𝑅𝑛 × 𝑆,𝑊 ∈ 𝐶2,1(𝑅𝑛 × 𝑆; 𝑅+), Λ ∈ 𝐶 (𝑅𝑛 × [−𝜏,∞)).

http://dx.doi.org/10.20517/ces.2024.14
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3 SYNCHRONIZATION ANALYSIS
For studying the problem of the synchronization of the controlled complex network system (4), we define two
segments: 𝑒𝑡 := 𝑒(𝑡 + 𝑠) : −𝜏 ≤ 𝑠 ≤ 0 and 𝜎̂𝑡 := 𝜎(𝑡 + 𝑠) : −𝜏 ≤ 𝑠 ≤ 0 for 𝑡 ≥ 0. For 𝑒𝑡 and 𝜎̂𝑡 to be well
defined for 0 ≤ 𝑡 ≤ 𝜏, we set 𝑒(𝑠) = 𝑒0 and 𝜎𝑠 = 𝜎0 for 𝑠 ∈ [−𝜏, 0) .

We choose the Lyapunov-Krasovskii function as follows:

𝑉 (𝑒𝑡 , 𝜎̂𝑡) =𝑈 (𝑒(𝑡), 𝜎𝑡) +
2𝛾2

𝛽

∫ 0

−𝜏

∫ 𝑡

𝑡+𝑠
[𝜏‖𝐻̂ (𝑒(𝑣), 𝜎𝑣) + 𝑐𝐴(𝜎𝑣)𝑒(𝑣) − 𝜌𝐷 (𝜎𝑣)𝑒(𝑣 − 𝜏)‖2

+ ‖ 𝑅̂(𝑒(𝑣), 𝜎𝑣)‖2]𝑑𝑣𝑑𝑠, (8)

where for 𝑡 ≥ 0,𝑈 (𝑒(𝑡), 𝜎𝑡) = 1
2𝑒

>(𝑡)P(𝜎𝑡)𝑒(𝑡), P(𝜎𝑡) = 𝐼𝑁 ⊗ 𝑃(𝜎𝑡) .

We claim that𝑉 (𝑒𝑡 , 𝜎̂𝑡) is an It𝑜 process on 𝑡 ≥ 0, In fact, according to the generalized It𝑜 formula [22], we have

𝑑𝑉 (𝑒(𝑡), 𝜎𝑡) = L𝑉 (𝑒(𝑡), 𝜎𝑡)𝑑𝑡 + 𝑑𝑀 (𝑡). (9)

For 𝑡 ≥ 0, where 𝑀 (𝑡) is a martingale, with the initial value is 0, and

L𝑉 (𝑒𝑡 , 𝜎̂𝑡) =L𝑈 (𝑒(𝑡), 𝜎𝑡) + 𝐼 (𝑡). (10)

where 𝐼 (𝑡) = 𝑈𝑥 (𝑒(𝑡), 𝜎𝑡) [𝑢(𝑒(𝑡 − 𝜏), 𝜎𝑡) − 𝑈 (𝑒(𝑡), 𝜎𝑡)] + 2𝛾2

𝛽 𝜏[𝜏‖𝐻̂ (𝑒(𝑡), 𝜎𝑡) + 𝑐𝐴(𝜎𝑡)𝑒(𝑡) − 𝜌𝐷 (𝜎𝑡)𝑒(𝑡 −
𝜏)‖2 + ‖ 𝑅̂(𝑒(𝑡), 𝜎𝑡)‖2] − 2𝛾2

𝛽

∫ 𝑡
𝑡−𝜏 [𝜏‖𝐻̂ (𝑒(𝑣), 𝜎𝑣) + 𝑐𝐴(𝜎𝑣)𝑒(𝑣) − 𝜌𝐷 (𝜎𝑣)𝑒(𝑣 − 𝜏)‖2 + ‖ 𝑅̂(𝑒(𝑣), 𝜎𝑣)‖2]𝑑𝑣.

Lemma 1. Under Assumptions (1)-(6), then we have the following inequality:

L𝑈 (𝑒(𝑡), 𝜎𝑡) ≤
(
− 𝜌𝑝𝜆 − 𝜆1 +

𝑝𝜔

2
+ 𝜋

)
‖𝑒(𝑡)‖2,

where 𝜆1 = 𝜆𝑚𝑖𝑛 [𝜑P(𝜎𝑡) − 𝐼𝑁 ⊗𝑃(𝜎𝑡)Δ] .

Proof: Step 1, for 𝑢(𝑥, ℓ), we will let 𝑈𝑡 (𝑥, ℓ) = 𝜕𝑢(𝑥,ℓ)
𝜕𝑡 ,𝑈𝑥 (𝑥, ℓ) =

(
𝜕𝑢(𝑥,ℓ)
𝜕𝑥1

, · · · , 𝜕𝑢(𝑥,ℓ)𝜕𝑥𝑛

)
, and L𝑈:𝑅𝑛 × 𝑆 −→ 𝑅

is defined by

L𝑈 (𝑒(𝑡), 𝜎𝑡) =𝑈𝑥 (𝑒(𝑡), 𝜎𝑡)𝑈 (𝑒(𝑡), 𝜎𝑡) + 𝑒>(𝑡)P(𝜎𝑡) [𝐻̂ (𝑒(𝑡), 𝜎𝑡) + 𝑐𝐴(𝜎𝑡)𝑒(𝑡) − 𝜌𝐷 (𝜎𝑡)𝑒(𝑡 − 𝜏)]

+ 1
2
𝑡𝑟 [𝑅̂>(𝑒(𝑡), 𝜎𝑡)P(𝜎𝑡) 𝑅̂(𝑒(𝑡), 𝜎𝑡)] +

1
2

𝑚∑
𝑙=1

𝑞𝜎𝑡 𝑙𝑒
𝑇 (𝑡)P(𝑙)𝑒(𝑡)

≜L𝑈1(𝑡) + L𝑈2(𝑡)+L𝑈3(𝑡) + L𝑈4(𝑡). (11)

Step 2, we compute theL𝑈1(𝑡)−L𝑈4(𝑡) respectively. For theL𝑈1(𝑡),𝑈𝑥 (𝑒(𝑡), 𝜎𝑡) = 𝑒>(𝑡)P(𝜎𝑡),𝑈 (𝑒(𝑡), 𝜎𝑡) =
−𝜌𝐷 (𝜎𝑡)𝑒(𝑡), we obtain that

L𝑈1(𝑡) ≤ −𝜌𝑝𝜆‖𝑒(𝑡)‖2, (12)

where 𝑝 = 𝜆𝑚𝑎𝑥{𝑃(𝜎𝑡)}, 𝑝 = 𝜆𝑚𝑖𝑛{𝑃(𝜎𝑡)}, 𝜆̄ = 𝜆𝑚𝑎𝑥{𝐷 (𝜎𝑡)}, 𝜆 = 𝜆𝑚𝑖𝑛{𝐷 (𝜎𝑡)}. For the L𝑈2(𝑡), one can see

L𝑈2(𝑡) = 𝑒>(𝑡)P(𝜎𝑡)𝐻̂ (𝑒(𝑡), 𝜎𝑡) + 𝑐𝑒>(𝑡) (P(𝜎𝑡) ⊗ 𝐴(𝜎𝑡))𝑒(𝑡) − 𝜌𝑒>(𝑡)P(𝜎𝑡)𝐷 (𝜎𝑡)𝑒(𝑡 − 𝜏). (13)
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From the definition of 𝐴(𝑟), we know that 𝜆(𝐴(𝑟)) ≤ 0, which yields

𝑐𝑒>(𝑡) (P(𝜎𝑡) ⊗ 𝐴(𝜎𝑡))𝑒(𝑡) ≤ 0. (14)

According to Assumption 2, we obtain

𝑒>(𝑡)P(𝜎𝑡)𝐻̂ (𝑒(𝑡), 𝜎𝑡) − 𝜌𝑒>(𝑡)P(𝜎𝑡)𝐷 (𝜎𝑡)𝑒(𝑡 − 𝜏)
≤ − 𝜑𝑒>(𝑡)P(𝜎𝑡)𝑒(𝑡) + 𝑒>(𝑡) (𝐼𝑁 ⊗𝑃(𝜎𝑡)Δ)𝑒(𝑡)
≤ − 𝜆1‖𝑒(𝑡)‖2, (15)

where 𝜆1 = 𝜆𝑚𝑖𝑛 [𝜑P(𝜎𝑡) − 𝐼𝑁 ⊗𝑃(𝜎𝑡)Δ]. By substituting (14), (15) into (13), we then obtain

L𝑈2(𝑡) ≤ −𝜆1‖𝑒(𝑡)‖2. (16)

Furthermore, by Assumption 3, one can see

L𝑈3(𝑡) ≤
𝑝𝜔

2
‖𝑒(𝑡)‖2𝑅(𝑥(𝑡), 𝜎𝑡) − 𝑅(𝑠(𝑡), 𝜎𝑡), (17)

where 𝜔 = 𝑚𝑎𝑥{𝜔ℓ}. Based on the properties of the Markov process, we can obtain

L𝑈4(𝑡) =
1
2

𝑚∑
𝑙=1

𝑞𝜎𝑡 𝑙𝑒
𝑇 (𝑡)P(𝑙)𝑒(𝑡)

≤ 1
2

𝑚∑
𝑙=1,𝑙≠𝜎𝑡

𝑝𝑞𝜎𝑡 𝑙𝑒
𝑇 (𝑡)𝑒(𝑡) + 𝑞𝑙𝑙 𝑝𝑒𝑇 (𝑡)𝑒(𝑡)

≤ 𝜋‖𝑒(𝑡)‖2, (18)

where 𝜋 = 1
2
∑𝑚
𝑙=1,𝑙≠𝜎𝑡 𝑝𝑞𝜎𝑡 𝑙 + 𝑝𝑞𝑙𝑙 .

Step 3, substituting (12)-(18) into (11), we can get;

L𝑈 (𝑒(𝑡), 𝜎𝑡) ≤ −𝑐‖𝑒(𝑡)‖2, (19)

where 𝑐 = [𝜌𝑝𝜆 + 𝜆1 − 𝑝𝜔
2 − 𝜋] .

The proof of Lemma 1 is, therefore, completed.

Lemma 2.

Given that Assumptions (5) and (6) hold, the solution of the complex (4) satisfies

sup
−𝜏≤𝑡<∞

𝐸 ‖𝑒(𝑡)‖𝑞 < ∞. (20)

Theorem 1. Under Assumptions (1)-(6), if𝑈𝑥 (𝑒(𝑡), 𝜎𝑡) satisfies that𝑈𝑥 (𝑒(𝑡), 𝜎𝑡) ≤ ‖𝑒(𝑡)‖2, the delay pinning
feedback control and 𝑑 > 0, the coupled network (1) can achieve 𝐻∞-synchronization.

Proof: Step 1: According to (19) and (10), one can see that

L𝑉 (𝑒𝑡 , 𝜎̂𝑡) ≤ −𝑐‖𝑒(𝑡)‖2 + 𝐼 (𝑡). (21)
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By Assumption 4, it is easy to see that

𝑈𝑥 (𝑒(𝑡), 𝜎𝑡) [𝑢(𝑒(𝑡 − 𝜏), 𝜎𝑡) − 𝑢(𝑒(𝑡), 𝜎𝑡)] ≤
𝛽

2
𝑈𝑥 (𝑒(𝑡), 𝜎𝑡)2 + 1

2𝛽
|𝑢(𝑒(𝑡 − 𝜏), 𝜎𝑡) − 𝑢(𝑒(𝑡), 𝜎𝑡) |2

≤ 𝛽

2
‖𝑒(𝑡)‖2 + 𝛾2

2𝛽
‖𝑒(𝑡) − 𝑒(𝑡 − 𝜏)‖2. (22)

According to the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) and Assumption 1,

2𝛾2

𝛽
𝜏[𝜏‖𝐻̂ (𝑒(𝑡), 𝜎𝑡) + 𝑐𝐴(𝜎𝑡)𝑒(𝑡) − 𝜌𝐷 (𝜎𝑡)𝑒(𝑡 − 𝜏)‖2 + ‖ 𝑅̂(𝑒(𝑡), 𝜎𝑡)‖2]

≤4𝛾2𝜏2

𝛽
‖𝐻̂ (𝑒(𝑡), 𝜎𝑡)‖2 + 4𝛾2𝜏2𝜌2𝜆

2

𝛽
‖𝑒(𝑡 − 𝜏)‖2 + 2𝛾2𝜏

𝛽
‖ 𝑅̂(𝑒(𝑡), 𝜎𝑡)‖2

≤4𝛾2𝜏2

𝛽
‖𝐻 (𝑥(𝑡), 𝜎𝑡) − 𝐻 (𝑠(𝑡), 𝜎𝑡)‖2 + 4𝛾2𝜏2𝜌2𝜆

2

𝛽
‖𝑒(𝑡 − 𝜏)‖2 + 2𝛾2𝜏

𝛽
‖𝑅(𝑥(𝑡), 𝜎𝑡) − 𝑅(𝑠(𝑡), 𝜎𝑡)‖2

≤2𝛾2

𝛽
(2𝜏2𝜂 + 𝜏𝛼)‖𝑒(𝑡)‖2 + 4𝛾2𝜏2𝜌2𝜆

2

𝛽
‖𝑒(𝑡 − 𝜏)‖2. (23)

where 𝜂 = max{𝜂1, 𝜂2, · · · , 𝜂𝑁 }, 𝛼 = max{𝛼1, 𝛼2, · · · , 𝛼𝑁 },ℓ = 1, 2, · · · , 𝑁 , 𝜂ℓ and 𝛼ℓ are defined in Assump-

tion 1. Noting 𝜏 ≤
√

𝛽

16𝜌2𝜆
2 , we have

4𝛾2𝜏2𝜌2𝜆
2

𝛽2 ‖𝑒(𝑡 − 𝜏)‖2 ≤8𝛾2𝜏2𝜌2𝜆
2

𝛽2 ‖𝑒(𝑡)‖2 + 8𝛾2𝜏2𝜌2𝜆
2

𝛽2 ‖𝑒(𝑡) − 𝑒(𝑡 − 𝜏)‖2

≤8𝛾2𝜏2𝜌2𝜆
2

𝛽2 ‖𝑒(𝑡)‖2 + 𝛾2

2𝛽
‖𝑒(𝑡) − 𝑒(𝑡 − 𝜏)‖2. (24)

Substituting (22), (23), (24) into (21), we can obtain

L𝑉 (𝑒𝑡 , 𝜎̂𝑡) < − 𝜒‖𝑒(𝑡)‖2 + 𝛾
2

𝛽
‖𝑒(𝑡) − 𝑒(𝑡 − 𝜏)‖2 − 2𝛾2

𝛽

∫ 𝑡

𝑡−𝜏
(𝜏‖𝐻̂ (𝑒(𝑣), 𝜎𝑣) + 𝑐𝐴(𝜎𝑣)𝑒(𝑣)

− 𝜌𝐷 (𝜎𝑣)𝑒(𝑣 − 𝜏)‖2 + ‖ 𝑅̂(𝑒(𝑣), 𝜎𝑣)‖2)𝑑𝑣, (25)

where 𝜒 = [𝑐 − 𝛽𝑝2

2 − 8𝛾2𝜏2𝜌2𝜆
2

𝛽2 − 2𝛾2

𝛽 (2𝜏2𝜂 + 𝜏𝛼)].

Follows from the error system (4) that, for 𝑡 ≥ 𝜏

‖𝑒(𝑡) − 𝑒(𝑡 − 𝜏)‖2

=





 ∫ 𝑡

𝑡−𝜏
[𝐻̂ (𝑒(𝑣), 𝜎𝑣) + 𝑐𝐴(𝜎𝑣)𝑒(𝑣) − 𝜌𝐷 (𝜎𝑣)𝑒(𝑣 − 𝜏)]𝑑𝑣 +

∫ 𝑡

𝑡−𝜏
𝑅̂(𝑒(𝑣), 𝜎𝑣)𝑑𝐵(𝑣)





2

≤2
∫ 𝑡

𝑡−𝜏
(𝜏‖𝐻̂ (𝑒(𝑣), 𝜎𝑣) + 𝑐𝐴(𝜎𝑣)𝑒(𝑣) − 𝜌𝐷 (𝜎𝑣)𝑒(𝑣 − 𝜏)‖2 + ‖ 𝑅̂(𝑒(𝑣), 𝜎𝑣)‖2)𝑑𝑣. (26)

Substituting (26) into (25), we can obtain

L𝑉 (𝑒𝑡 , 𝜎̂𝑡) < −𝜒‖𝑒(𝑡)‖2. (27)

Step 2: Using a similar method in Theorems 3 and 4 [23], we define the stopping time as follows

𝜁𝑘 = 𝑖𝑛 𝑓 {𝑡 ≥ 0 : ‖𝑒(𝑡)‖ ≥ 𝑘}. (28)
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According to Lemma 1,𝑈 (𝑒(𝑡), 𝜎𝑡) satisfied assumption 6, and ℎ(𝑥, ℓ) satisfied assumption 5; by lemma 2, 𝜁𝑘
is increasing to infinity almost surely as 𝑘 → ∞. Where 𝑡 ≥ 0, 𝐻 ∈ 𝐶2,1(𝑅𝑛 × 𝑆; 𝑅+).
Then, we can obtain

𝐸𝑉 (𝑒𝑡∧𝜁𝑘 , 𝜎̂𝑡∧𝜁𝑘 ) ≤ 𝑉 (𝑒0, 𝜎̂0) + 𝐸
∫ 𝑡∧𝜁𝑘

0
L𝑉 (𝑒𝑠, 𝜎̂𝑠)𝑑𝑠. (29)

for any 𝑡 ≥ 0 and 𝑘 ≥ 𝑘0, we can let 𝑘 → ∞ and then apply the Fubini theorem to get

𝐸𝑉 (𝑒𝑡 , 𝜎̂𝑡) ≤𝑉 (𝑒0, 𝜎̂0) +
∫ 𝑡

0
𝐸L𝑉 (𝑒𝑠, 𝜎̂𝑠)𝑑𝑠, (30)

for any 𝑡 ≥ 0, substituting (27) into (30), we obtain

𝐸𝑉 (𝑒𝑡 , 𝜎̂𝑡) ≤𝑉 (𝑒0, 𝜎̂0) − 𝜒
∫ 𝑡

0
𝐸 ‖𝑒(𝑠)‖2𝑑𝑠. (31)

We can get from (31)

𝜒

∫ 𝑡

0
𝐸 ‖𝑒(𝑠)‖2𝑑𝑠 ≤ 𝑉 (𝑒0, 𝜎̂0). (32)

Step 3: Noting that 𝜒 > 0, we see from the above inequality that∫ 𝑡

0
𝐸 ‖𝑒(𝑠)‖2𝑑𝑠 ≤ 𝑉 (𝑒0, 𝜎̂0)

𝜒
. (33)

Letting 𝑡 → ∞, we obtain that ∫ ∞

0
𝐸 ‖𝑒(𝑠)‖2𝑑𝑠 < +∞. (34)

The proof is, therefore, complete.

Theorem 2. Under Assumptions (1)-(6), the solution of the controlled network (4) for any given initial data,
the controlled system (1) is asymptotical synchronization in mean square.

Proof: For any 0 ≤ 𝑡1 < 𝑡2 < ∞, according to Assumptions 4 and 5, we can apply the It𝑜 formula to show

|𝐸 ‖𝑒(𝑡2)‖2 − 𝐸 ‖𝑒(𝑡1)‖2 |

≤
∫ 𝑡2

𝑡1

2𝐾 sup
−𝜏≤𝑡<∞

𝐸 ‖𝑒(𝑡)‖ + 2𝐾 sup
−𝜏≤𝑡<∞

𝐸 ‖𝑒(𝑡)‖2 + 2𝛾 sup
−𝜏≤𝑡<∞

𝐸 ‖𝑒(𝑡)‖‖𝑒(𝑡 − 𝜏)‖ + 𝐾2 sup
−𝜏≤𝑡<∞

(1 + ‖𝑒(𝑡)‖)2

≤Θ(𝑡2 − 𝑡1), (35)

where Θ is a constant independent of 𝑡1 and 𝑡2. That is, lim𝑡→+∞ 𝐸 ‖𝑒(𝑡)‖2 = 0.

Lemma 3.(Hanalay inequality) Let w(t) be a nonnegative function defined on the interval [𝑡0 − 𝜏,∞), and be
continuous on the subinterval [𝑡0,∞). If there exist two positive constants 𝑎, 𝑏 satisfying 𝑎 > 𝑏, such that:

¤𝑤(𝑡) ≤ −𝑎𝑤(𝑡) + 𝑏𝑤(𝑡 − 𝜏), 𝑡 ≥ 𝑡0,

then 𝑤(𝑡) ≤ 𝑤𝑡0𝑒
−𝛾(𝑡−𝑡0) , 𝑡 ≥ 𝑡0, there 𝑤𝑡0 = sup𝑡0−𝜏≤𝑡≤𝑡0 𝑤(𝑡). 𝛾 > 0 is the smallest real root of the equation

𝑎 − 𝛾 − 𝑏𝑒𝛾𝜏 = 0.
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Theorem 3. Under Assumptions (1)-(6), and the delay feedback pinning control given by (2). 𝜀𝜏 ≤ 1
2 exists;

the coupled network (1) can achieve exponential synchronization.

Proof: We choose Lyapunov function 𝑉 (𝑒𝑡 , 𝜎̂𝑡) as defined by (8). Similar to the proof in Step 2 of Theorem 1
and according to the formula (30), we can show that

𝑒𝜀𝑡𝐸𝑉 (𝑒𝑡 , 𝜎̂𝑡) ≤ 𝑉 (𝑒0, 𝜎̂0) +
∫ 𝑡

0
𝑒𝜀𝑠𝐸

(
𝜀𝑉 (𝑒𝑠, 𝜎̂𝑠) + L𝑉 (𝑒𝑠, 𝜎̂𝑠)

)
𝑑𝑠. (36)

Let ℎ1 = min
ℓ∈𝑆

𝑝
ℓ
, ℎ2 = max

ℓ∈𝑆
𝑝ℓ . From (8), we can get

𝑉 (𝑒𝑠, 𝜎̂𝑠) ≤
ℎ2

2
‖𝑒(𝑠)‖2 + 𝐽1, (37)

where

𝐽1 =
2𝛾2

𝛽

∫ 0

−𝜏

∫ 𝑡

𝑡+𝑠
[𝜏‖𝐻̂ (𝑒(𝑣), 𝜎𝑣) + 𝑐𝐴(𝜎𝑣)𝑒(𝑣) − 𝜌𝐷 (𝜎𝑣)𝑒(𝑣 − 𝜏)‖2 + ‖ 𝑅̂(𝑒(𝑣), 𝜎𝑣)‖2]𝑑𝑣𝑑𝑠.

Similar to what we did in Theorem 1, we can show that:

L𝑉 (𝑒𝑠, 𝜎̂𝑠) ≤ −Φ‖𝑒(𝑠)‖2 + 𝛾2

2𝛽
‖𝑒(𝑠) − 𝑒(𝑠 − 𝜏)‖2 + 4𝛾2𝜏2𝜌2𝜆

2

𝛽2 ‖𝑒(𝑠 − 𝜏)‖2 − 𝐽2, (38)

where: 𝐽2 = 2𝛾2

𝛽

∫ 𝑠

𝑠−𝜏 (𝜏‖𝐻̂ (𝑒(𝑣), 𝜎𝑣) + 𝑐𝐴(𝜎𝑣)𝑒(𝑣) − 𝜌𝐷 (𝜎𝑣)𝑒(𝑣 − 𝜏)‖2 + ‖ 𝑅̂(𝑒(𝑣), 𝜎𝑣)‖2)𝑑𝑣,Φ = [𝑐 − 𝛽𝑝2

2 −
2𝛾2

𝛽 (2𝜏2𝜂 + 𝜏𝛼)] . For all 𝑡 ≥ 0, where 𝜀 is a sufficiently small positive number to be determined later. Substi-
tuting (37) and (38) into (36), then we have

𝑒𝜀𝑡
ℎ1

2
𝐸 (‖𝑒(𝑡)‖2) ≤ 𝑉 (𝑒0, 𝜎̂0) +

∫ 𝑡

0
𝑒𝜀𝑠𝐸

(
𝜀
ℎ2

2
‖𝑒(𝑠)‖2 + 𝜀𝐽1 −Φ‖𝑒(𝑠)‖2 + 𝛾2

2𝛽
‖𝑒(𝑠) − 𝑒(𝑠 − 𝜏)‖2

+ 4𝛾2𝜏2𝜌2𝜆
2

𝛽2 ‖𝑒(𝑠 − 𝜏)‖2 − 𝐽2

)
𝑑𝑠

≤ 𝑉 (𝑒0, 𝜎̂0) +
∫ 𝑡

0
𝑒𝜀𝑠𝐸

(
(𝜀 ℎ2

2
−Φ)‖𝑒(𝑠)‖2 + 𝛾2

2𝛽
‖𝑒(𝑠) − 𝑒(𝑠 − 𝜏)‖2

+ 4𝛾2𝜏2𝜌2𝜆
2

𝛽2 ‖𝑒(𝑠 − 𝜏)‖2 + 𝜀𝐽1 − 𝐽2

)
𝑑𝑠. (39)

Making use of (26), we can see:

𝛾2

2𝛽
‖𝑒(𝑠) − 𝑒(𝑠 − 𝜏)‖2 ≤ 1

2
𝐽2. (40)

According to the definitions of 𝐽1 and 𝐽2, we can get

𝐽1 ≤ 𝜏𝐽2. (41)

Substituting (41) and (40) into (39), we can get

𝑒𝜀𝑡
ℎ1

2
𝐸 (‖𝑒(𝑡)‖2) ≤𝑉 (𝑒0, 𝜎̂0) − (Φ − 𝜀ℎ2

2
)
∫ 𝑡

0
𝑒𝜀𝑠𝐸 (‖𝑒(𝑠)‖2)𝑑𝑠 + 4𝛾2𝜏2𝜌2𝜆

2

𝛽2

∫ 𝑡

0
𝑒𝜀𝑠𝐸 (‖𝑒(𝑠 − 𝜏)‖2)𝑑𝑠

+ (𝜀𝜏 − 1
2
)
∫ 𝑡

0
𝑒𝜀𝑠𝐸 (𝐽2)𝑑𝑠. (42)
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We can choose a sufficiently small 𝜀 > 0, such that:

𝜀𝜏 ≤ 1
2

, Φ − 𝜀ℎ2

2
>

4𝛾2𝜏2𝜌2𝜆
2

𝛽2 .

According to Lemma 3, we can then easily show that

𝐸 (‖𝑒(𝑡)‖2) ≤ 𝐺𝑒−𝜀𝑡 . (43)

Where: 𝐺 = 2
ℎ1

(
𝑉 (𝑒0, 𝜎̂0) + sup

−𝜀≤𝑠≤0
𝐸 ‖𝑒(𝑠)‖2

)
.

The proof is complete.

Theorem 4. Under the same condition of Theorem 3, the network (1) is almost surely exponentially synchro-
nization.

Proof: Let 𝑘 be any nonnegative integer. According to Assumption 1, the Hölder inequality and the Doob
martingale inequality, we can obtain that

𝐸

(
sup

𝑘≤𝑡≤𝑘+1
‖𝑒(𝑡)‖2

)
≤ 3𝐸 ‖𝑒(𝑘)‖2 + 3

∫ 𝑘+1

𝑘
𝐸

(
‖𝜂𝑒(𝑡) − 𝜌𝜆𝑒(𝑡 − 𝜏)‖2

)
𝑑𝑡 + 12𝛼2

∫ 𝑘+1

𝑘
𝐸 ‖𝑒(𝑡)‖2𝑑𝑡.

By the inequality (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2, it is then to show that

𝐸

(
sup

𝑘≤𝑡≤𝑘+1
‖𝑒(𝑡)‖2

)
≤3𝐸 ‖𝑒(𝑘)‖2 + (6𝜂2 + 12𝛼2)

∫ 𝑘+1

𝑘
𝐸 ‖𝑒(𝑡)‖2𝑑𝑡 + 6𝜌2𝜆2

∫ 𝑘+1

𝑘
𝐸 ‖𝑒(𝑡 − 𝜏)‖2𝑑𝑡.

According to (43), we can get

𝐸

(
sup

𝑘≤𝑡≤𝑘+1
(‖𝑒(𝑡)‖2

)
≤3𝐺𝑒−𝜀𝑘 + 𝐺 [6𝜂2 + 12𝛼2]

∫ 𝑘+1

𝑘
𝑒−𝜀𝑡𝑑𝑡 + 6𝐺𝜌2𝜆2

∫ 𝑘+1

𝑘
𝑒−𝜀(𝑡−𝜏)𝑑𝑡

≤3𝐺𝑒−𝜀𝑘 + 𝐺 [6𝜂2 + 12𝛼2]𝑒−𝜀𝑘 + 6𝐺𝜌2𝜆2𝑒
1
2 𝑒−𝜀𝑘

=𝐶𝑒−𝜀𝑘 .

where 𝐶 = 3𝐺 [1 + 2𝜂2 + 4𝛼2 + 2𝜌2𝜆2𝑒
1
2 ]. According to Chebyshev’s inequality, consequently:

∞∑
𝑘=0

𝑃

(
sup

𝑘≤𝑡≤𝑘+1
‖𝑒(𝑡)‖ > 𝑒−0.25𝜀𝑘

)
≤

∞∑
𝑘=0

𝐶𝑒−0.5𝜀𝑘 < ∞.

By Borel-Cantelli lemma, for almost all 𝜔 ∈ Ω, there is positive integer 𝑘0 = 𝑘0(𝜔) such that

sup
𝑘≤𝑡≤𝑘+1

‖𝑒(𝑡)‖ ≤ 𝑒−0.25𝜀𝑘 , 𝑘 ≥ 𝑘0.

Then, for almost all 𝜔 ∈ Ω

1
𝑡

log(‖𝑒(𝑡)‖) ≤ −0.25𝜀𝑘
𝑘 + 1

, 𝑡 ∈ [𝑘, 𝑘 + 1], 𝑘 ≥ 𝑘0.
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Figure 1. Time evolution of Markov chain {𝜎𝑡 |𝑡 ∈ [0, 3] } that switches between the three states with generator 𝑄.

This implies

lim sup
𝑡→∞

1
𝑡

log(‖𝑒(𝑡)‖) ≤ −0.25𝜀 < 0, 𝑎.𝑠.

The proof is complete.

Remark. Our new result in this paper has removed the restrictive condition of existing research, which enables
us to design a delay feedback control in order to stabilize a given unstable hybrid SDE. Furthermore, our new
result can be used to achieve synchronization conditions for stochastic switched networks with Lévy noise.

4. EXAMPLE
Let us consider a linear n-dimensional unstable stochastic coupled network with delay pinning adaptive feed-
back control:

𝑑𝑥𝑖 (𝑡) = ℎ(𝑥𝑖 (𝑡), 𝜎𝑡)𝑑𝑡 + 𝑟 (𝑥𝑖 (𝑡), 𝜎𝑡)𝑑𝐵(𝑡) + 𝑐
5∑
𝑗=1

𝑎𝑖 𝑗 (𝜎𝑡)𝑥 𝑗 (𝑡)𝑑𝑡 + 𝑢(𝑥𝑖 (𝑡 − 𝜏), 𝜎𝑡)𝑑𝑡 (44)

𝑢(𝑥𝑖 (𝑡 − 𝜏), 𝜎𝑡) = −𝜌𝑑𝑖 (𝜎𝑡)(𝑥𝑖 (𝑡 − 𝜏) − 𝑠(𝑡 − 𝜏)) (45)

where 𝑥𝑖 (𝑡) = (𝑥1
𝑖 (𝑡), 𝑥2

𝑖 (𝑡), 𝑥3
𝑖 (𝑡)) ∈ R2; 𝑑𝑖 (𝜎𝑡) = 𝐼𝑖∈D(𝜎𝑡 ) is the indication function for the pinned node

subset D(𝜎𝑡) ⊂ {1, 2, 3, 4, 5}. Let 𝑐 = 0.84 and the control strength gain be 𝜌 = 8. The desirable trajectory
𝑠(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡))> is described by (3).

http://dx.doi.org/10.20517/ces.2024.14
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Figure 2. The topological structures 𝐴𝑖 (𝑖 = 1, 2, 3) of the complex network.

The state space of the Markov chain 𝜎𝑡 is S = {1, 2, 3} with generator as 𝑄 =


8 −3 −5
−2 5 −3
−4 −5 9

 . The time

evolution of Markov chain 𝜎𝑡 is depicted in Figure 1, showing the underlying switching. And the coupling
matrix 𝐴(𝜎𝑡) = (𝑎𝑖 𝑗 (𝜎𝑡))5×5 is switched according to 𝜎𝑡 as follows: 𝜎𝑡 = ℓ, then 𝐴(ℓ) = 𝐴ℓ ; one of possible
topological structures is shown in Figure 2.

The coupling matrix corresponding to Figure 2 is shown as follows,

𝐴1 =



−3 0 1 1 1
0 −1 0 0 1
1 0 −3 1 1
1 0 1 −2 0
1 1 1 0 −3


, 𝐴2 =



−2 0 1 0 1
1 −1 0 0 1
1 0 −3 1 1
0 0 1 −1 0
1 1 1 0 −3


, 𝐴3 =



−3 0 1 1 1
0 −1 0 1 0
1 0 −2 0 1
1 1 0 −2 0
1 0 1 0 −2


The noise is described by Brownian motion 𝐵𝑖 (𝑡), which is given in Figure 3.

Consider a network of Chua’s circuits. The individual node dynamics of Chua’s circuit can be expressed as
follows:

ℎ(𝑥𝑖 (𝑡), 𝜎𝑡) =
©­­«
𝑧1(𝜎𝑡)(−𝑥1(𝑡) + 𝑥2(𝑡) − ℎ1(𝑥1(𝑡)))

𝑥1(𝑡) − 𝑥2(𝑡) + 𝑥3(𝑡)
−𝑧2(𝜎𝑡)𝑥2(𝑡)

ª®®¬
where ℎ1(𝑥) = 𝜎1𝑥 + 1/2(𝜎2 − 𝑟1)( |𝑥 + 1| − |𝑥 − 1|), 𝑧1(1) = 9.78, 𝑧1(2) = 3.38, 𝑧1(3) = 9.98, 𝑧2(1) =
100.24, 𝑧2(2) = 30.24, 𝑧2(3) = 1.4, 𝜎1(1) = −0.3, 𝜎1(2) = −0.5, 𝜎1(3) = −2.35, 𝜎2(1) = −0.1, 𝜎2(2) =
−1.6, 𝜎2(3) = 0.6.
𝑟 (𝑥𝑖 (𝑡), 𝜎1) = 𝑡𝑎𝑛ℎ(𝑥), 𝑟 (𝑥𝑖 (𝑡), 𝜎2) = 𝑡𝑎𝑛ℎ(𝑥) − 1, 𝑟 (𝑥𝑖 (𝑡), 𝜎3) = 𝑡𝑎𝑛ℎ(𝑥) − 2. In order to make ℎ(𝑥𝑖 (𝑡), 𝜎𝑡)
and 𝑟 (𝑥𝑖 (𝑡), 𝜎𝑡) satisfies Assumption 1, we choose 𝜂 = 3.421. 𝛼 = 2.854.

Let 𝑃 = 𝐼3,Δ = 12.6𝐼3 and 𝜑 = 2.9846, 𝛾 = 0.2437, 𝛽 = 0.427, 𝜆 = 0.143, 𝑝 = 1.06, 𝜌 = 12.4, ℎ2 = 8.37, Then,
𝐻̃ (𝑥(𝑡), 𝜎𝑡) satisfied Assumption 2; 𝑢(𝑥, 𝑖) satisfied Assumption 4.

Considering the intensity functions 𝑅(·), we select 𝑅(𝑥𝑖 (𝑡), 𝜎𝑡) = 0.1 · 𝜎𝑡 · diag{𝑥1
𝑖 (𝑡), 𝑥2

𝑖 (𝑡), 𝑥3
𝑖 (𝑡)}. Then, we

can get trace(𝑅𝑇𝑅) ≤ 0.03𝑒𝑇𝑖 (𝑡)𝑒𝑖 (𝑡). Let 𝜔 = 0.03, then Assumption 3 holds
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Figure 3. Time evolution of Brownian motion 𝐵(𝑡 ).

Figure 4. Shows that asymptotical synchronization in mean square(A) and almost surely exponentially synchronization(B) of asymptotical
synchronization in mean square and almost surely exponentially synchronization of the State trajectories 𝑥

𝑗
𝑖 (𝑡 ) (𝑖 = 1, 2, · · · , 5, 𝑗 = 1, 2, 3) for

networks system (44) under delay pinning feedback control in [0,3] separately.

According to Theorem 1, we can see 𝜏 ≤
√

𝛽

16𝜌2𝜆
2 ≈ 0.3366. FromTheorem 3, 𝜀𝜏 ≤ 1

2 , then 𝜀 ≤ 1
2𝜏 ≈ 1.4854.

Then, it follows that Φ = [𝑐 − 𝛽𝑝2

2 − 2𝛾2

𝛽 (2𝜏2𝜂 + 𝜏𝛼)] ≈ 0.1337 and Φ − 𝜀ℎ2
2 > 4𝛾2𝜏2𝜌2𝜆

2

𝛽2 .
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Figure 5. The trajectory of synchronization error 𝐸 (𝑡 ) of asymptotical synchronization in mean square (A) and almost surely exponentially
synchronization (B) networks system (44) under delay pinning feedback control in [0,3] separately.

As demonstrated by Figure 4, Figure 4A shows that the State trajectories for networks system (44) under The-
orem 2; Figure 4B presents that the State trajectories for networks system (44) under Theorem 4; the state
variables of all nodes of the Markov switched stochastic complex networks can achieve the synchronization in
a very short time.

Denote the total synchronization error 𝐸 (𝑡) by 𝐸 (𝑡) =
√∑5

𝑖=1
∑3
𝑗=1(𝑥

𝑗
𝑖 (𝑡) − 𝑠 𝑗 (𝑡))2.

Figure 5 demonstrates that the total error converges to zero after a very short time. Figure 5A illustrates that all
nodes in the stochastic complex network (44) achieve the asymptotical synchronization inmean square, which
also indicates the convergent efficiency under the proposed framework. Figure 5B shows the complex network
(44) achieves the almost surely exponentially synchronization; 𝐸 (𝑡) converges to zero after a very short time.

5. CONCLUSION
By using a time-delay feedback controller that depends on the past state, we study a class of Stochastic Switched
Networks with Markov switching and Brown noise in this paper. We obtain the sufficient condition of asymp-
totical synchronization in mean square, 𝐻∞-synchronization and almost sure exponential synchronization in
our framework. The main method includes inequality techniques, It𝑜 formula and Borel-Cantelli Lemma. Fi-
nally, we illustrate our theory with an example of simulation. Our future effort will focus on the asymptotical
synchronization in mean square, 𝐻∞-synchronization and almost sure exponential synchronization of highly
nonlinear Markov switched stochastic network. If Assumptions (1) - (6) do not hold, the delay feedback con-
trolmethod in this article will be inapplicable and newmethods need to be introduced for exploration. General
feedback control may need to be set up, which will be our next consideration.
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