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Abstract
The microbiota changes as the host ages, but also the relationship between host and bacteria impacts host aging 
and life expectancy. Differences in the composition of certain bacterial species in the human gut and skin 
microbiome have been identified between the elderly and the young. In this sense, it has been suggested that the 
manipulation of the microbiota of older adults would be an innovative strategy in the prevention and treatment of 
age-related comorbidities.
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INTRODUCTION
Humans are practically sterile during gestation, but, as early as birth, the whole body surface, including the 
oral cavity, gut, and skin, are colonized by an enormous variety of microbes, fungal, archaeal, bacterial, and 
viral[1]. There is a very complex relationship between the resident microbial communities and the human 
cells. These species and their metabolic products play an important role in a wide range of biological 
functions[2]. In normal life, these microbes are necessary for many functions, such as developing and 
maintaining our immune system or digesting food. However, the dysfunction of the human microbiota is 
considering a relevant factor in many diseases[1,3].
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The skin, the largest organ of the human body[3], is in direct and continuous contact with the external 
environment, and, consequently, it is exposed to the microorganisms that inhabit it[4]. In addition, these skin 
commensal microbial communities interact with each other, as well as with the host cells and the immune 
system[3]. In this sense, it is clear that the immunological system of the host modulates the composition of 
these communities, and, conversely, the microbes present on the skin have a great impact on human 
immune system[3,5].

Different factors influence the diversity in the composition of this ecosystem. In fact, the anatomy and 
physiology of the skin determine the skin bacterial diversity, such as the axillae, forehead, palms, fingers, or 
feet[2]. Even on a particular niche of the body, the skin microbiota is still complicated by a combination of 
both external and internal factors, including, but not limited to, gender, age, environmental conditions such 
as pollution and the climate, genetics, hormones, cosmetics, diet, immune response, and lifestyles in 
general[5-8].

In this regard, different distributions of microorganism species have been identified in sebaceous, moist, or 
dry locations[6,8,9]. In addition, areas more exposed to the outside environment may contain a greater 
proportion of “transitory” microorganisms, compared to less exposed ones[6,9].

The perception of the skin as an ecosystem can help us to understand the delicate balance between host and 
microorganisms and how the alteration of any of them can result in skin diseases or infections[4].

The objective of this article is to review the existing evidence in relation to the microbiome and aging, 
especially that of the skin, and the possibility of manipulating the microbiome to prevent and treat age-
related comorbidities and premature skin aging.

This is a narrative review of the subject. We obtained the articles by searching in PubMed. The search terms 
were microbiome, aging, skin, and skin cancer. To identify the articles relevant to the purposes of the review, 
we read abstracts, results, and, when necessary, the full texts to ascertain which ones contain pertinent 
information.

THE TECHNIQUES FOR SKIN MICROBIAL ANALYSIS
There are two main sampling methods for collecting resident skin microbiota. On the one hand, skin 
swabbing using a sterile cotton swab is a simple, quick, and non-invasive method for large-scale skin 
sampling. However, this method can accurately collect only resident microbiota from the stratum corneum; 
therefore, it does not provide a full spectrum picture of the skin microbiota, particularly in some specific 
subniches, such as the dermis. On the other hand, punch biopsies are invasive but offer the best 
representation of skin microbiota in deep epidermis, dermis, and glands such as the sebaceous gland. 
Nevertheless, due to its invasive nature, the latter is rarely used for qualitative analyses[10].

Regarding the technique, it must be sterile to ensure that bacterial DNA sequences are not introduced into 
the sample from sampling equipment, lab reagents, clinicians, etc.[11]. Additionally, cold storage at -20 or 
-80 ℃ or in liquid nitrogen is a standard practice to limit further microbial growth and long-term DNA 
degradation[10].

Once the samples are obtained and properly stored, there are several methods to extract DNA, including the 
REPLI-g Midi kit (Qiagen, Limberg, The Netherlands), Qiagen DNA Extraction Kit (Qiagen), and DNeasy 
DNA Extraction kit (Qiagen)[11]. These techniques recognize the specific DNA or RNA (16S ribosomal 
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RNA) fingerprint sequences that each organism contains, which allows identifying, characterizing, and 
measuring the true relative abundance of each bacterial operational taxonomic units[10].

Finally, the essential portion of accurate microbiome analysis is the bioinformatics processing. Generally, 
large-scale computing clusters and specific bioinformatic pipelines must be established to understand and 
analyze these diverse bacterial communities from the millions of sequencing reads[11].

THE MICROBIOME OF THE SKIN
The majority of the “regular” bacterial inhabitants of the skin are included in four phyla: Actinobacteria, 
Proteobacteria, Bacteroidetes, and Firmicutes[3]. The three most common genera are Propionibacteria, 
Corynebacteria, and Staphylococci[6].

The commensal microbes of the skin have also been classified as resident or transient depending on if they 
belong to the fixed microbiota or not[3,10]. The fixed microbiota tends to reestablish after disturbance. It is 
considered as commensal, which means that these microorganisms are normally harmless and most likely 
provide some benefit to the host. Transient microorganisms are temporarily found in the skin. They come 
from the environment and persist for hours or days and then disappear[10]. Under normal circumstances, 
both groups are nonpathogenic[10]. Recent research has shown that, even though the skin is constantly 
exposed to the environment, the healthy human skin microbiome is stable[12,13].

The body site is one of the most influential factors in the types of microbes inhabiting the skin[3]. The three 
main types of environments on the human skin are sebaceous, dry, and moist. Moist areas mostly include 
the body folds: the navel, axilla, antecubital and popliteal fossa, or groin. Sebaceous areas include the 
forehead, nasolabial folds, retroauricular crease, middle chest, and back, whereas the upper buttock area, 
forearm, and hypothenar palm are drier sites[3,6,8-10]. Other microenvironments include the hair follicles, 
sweat glands, and dermal layers[10].

The microbial communities found in these cutaneous environments are different. Corynebacterium and 
Staphylococcus genera, of the phyla Actinobacteria and Firmicutes, respectively, are the most abundant 
microbes colonizing moist regions. The diversity of the microbes present in sebaceous sites is lower. In this 
anaerobic lipid-rich environment, there is a higher density of Propionibacterium, a lipophilic genus. The dry 
areas of the skin show the highest diversity in microbial inhabitants, predominantly Staphylococcus, 
Propionibacterium, Micrococcus, Corynebacterium, Enhydrobacter, and Streptococcus species[3,10]. Addition-
ally, even microenvironments such as sebaceous, apocrine, and eccrine glands and hair follicles are 
associated with their own singular microbiota. In this sense, whereas Propionibacterium is especially 
adapted to the anaerobic environment rich in lipids of the sebaceous follicles, Gram-positive bacteria of the 
genera Corynebacterium, Micrococcus, Staphylococcus, and Propionibacterium are the main microbiota of 
the axillar area, rich in sebaceous glands[10].

Although microbiota research has focused primarily on identifying bacteria, we have to keep in mind that 
other types of microorganisms also live on the skin[3,10]. The fungal community is similar all over the body 
regardless of physiology. The genus Malassezia predominates at the head, trunk, and upper extremities, 
whereas feet are colonized by a combination of Malassezia, Aspergillus, Epicoccum, Rhodotorula, 
Cryptococcus, and other genera[13]. Demodex is a tiny mite that is also present in normal skin, especially 
inside the follicles, although its role as a commensal organism remains uncertain[14]. To our knowledge, 
there is little information about the viral composition of the cutaneous microbiota.
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All these communities of bacteria, viruses, fungi, and mites present in different skin ecosystems can 
influence the health of the host in both senses, either as a protective mechanism disease or by contributing 
to the initiation or development of different dermatoses and cutaneous infections[11,15].

Regarding the biological mechanisms that could explain the relationship between the alteration in the skin 
microbiota and the development of disease, its role inducing inflammation and modulation of the immune 
response is considered very important[16-18]. All these microorganisms can produce beneficial or pathogenic 
substances, and the interaction among them can also participate in the pathophysiology of some 
dermatoses. Examples of dysbiosis related to skin diseases include: increase density of pathogenic bacteria, 
such as in atopic dermatitis; reduced bacterial diversity, such as in psoriasis; increase of commensal 
organisms, such as in acne; and alterations of microenvironments and colonization by unique species, such 
as in chronic wounds[11] [Table 1].

THE MICROBIOME AND AGING
The microbiota changes as the host ages, but also it seems that the relationship between the host and the 
microbiota impacts host aging and life expectancy[19]. The changes in the microbiota with age have been 
extensively studied in the human gut[20]. In this sense, there is a proliferation of opportunistic Proteobacteria 
at the cost of symbionts Firmicutes and Bacteroidetes with age, as well as less abundance of Bifidobacterium 
(Actinobacteria) compared to younger adults[21] [Table 2]. These changes associated with age have been 
related with different factors implicated in dysbiosis and disease: dietary changes, especially those related 
with a scarce consumption of fibrous foods, and increased antibiotic administration, among others[22]. 
Furthermore, aging and dysbiosis have in common the inflammation, which is a known risk factor for the 
progression of several diseases related with age. Smith et al.[23] conducted an interesting study in African 
turquoise killifish by recolonizing middle-age fish (after being treated with antibiotic) with the gut 
microbiota from young fish. Surprisingly, they found that this change was associated with a significant 
increase in life expectancy. In addition, they also performed the opposite experiment: they recolonized 
young fish with the microbiota from middle-aged fish, finding that the metabolism of hyaluronic acid, a 
fundamental component of the extracellular matrix associated with skin aging, was increased in this 
model[23].

THE MICROBIOME AND SKIN AGING
The skin structure and function change with age, and this could be due not only to intrinsic factors such as 
cellular metabolisms, the immune system, or hormone changes, but also to extrinsic factors such as 
ultraviolet irradiation[24]. In this sense, the microbiota also changes over the lifetime[5], not only due to age, 
but also due to geography, age, diet, lifestyle, and pollution, among others[8,25-27] [Figure 1].

Skin aging is characterized by a decrease in sebum and hydration levels as well as immune dysfunction, 
which results in significant alterations in skin physiology[28]. These physiological changes also imply changes 
in the cutaneous ecology, inducing a disbalance of cutaneous microbiota[29].

The composition of the microbiome is different in old and young skin[7,30,31]. In puberty, the density of 
lipophilic bacteria proportionally increases with the increase of sebum levels, whereas it is much lower in 
elderly skin[5,32]. Moreover, metagenomic studies have shown a decrease of Actinobacteria in older skin[32,33]. 
However, the number of total bacteria increases in older people; specifically, more Corynebacterium species 
are found on the aged skin[34]. Shibagaki et al.[33] found that the diversification of skin microbiome in older 
skin is related to chronological and physiological skin aging, but it is related to the oral bacteria 
composition. Another study suggests that gut, oral, and skin microbiomes predict chronological age, being 
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Table 1. Dysbiosis related to skin diseases

Atopic dermatitis Psoriasis Acne vulgaris Chronic wounds AK/cutaneous SCC

90% of AD patients are colonized with 
Staphylococcus aureus on both lesional and 
non-lesional skin (compared with less than 
5% of healthy individuals) 
There is an increase in anaerobic bacterial 
species, including Clostridium and Serratia

Higher levels of 
Proteobacteria on the trunk 
Higher levels of 
Streptococcus and 
Propionibacterium in lesions

Different Propionibacterium acnes strains between acne patients 
and healthy controls

Proliferation of several different 
anaerobic bacteria, including 
Staphylococcus, Serratia and 
Clostridium

Higher relative abundance of 
Propionibacterium and Malassezia on 
nonlesional skin than in AK/SCC 
lesions 
S. aureus overabundance in AK/SCC

Increased microbial load at the lesion site Less microbial diversity in 
psoriatic lesions

Similar relative abundance of P. acnes between both groups but 
colonization of the affected follicles by multiple bacterial species 
in addition to P. acnes, including other commensal 
microorganisms, such as Streptococcus epidermidis

Decreased bacterial diversity 
Opportunistic colonization of 
specifically adapted microbes

More studies are required to expand 
and confirm these findings

AK: Actinic keratosis; SCC: squamous cell carcinoma.

Table 2. Dysbiosis in aging

Actinobacteria Bacteroidetes Firmicutes Proteobacteria

Decrease of Bifidobacterium Unchanged or decrease 
Not seem to be related 
to the ageing

Changes in the proportion: decrease in 
Clostridium and increase in Bacilli

Enrichment in facultative anaerobes, notably “pathobionts” 
(opportunistic components that can induce pathology, such as 
Enterobacteriaceae)

Gut

Actinobacteria is not highly represented in the human gut Bacteroidetes and Firmicutes dominate the gut microbiota (93%-
95%)

There is a proliferation of opportunistic Proteobacteria at the cost 
of symbionts Firmicutes and Bacteroidetes

Lower abundance in the older group, in relation to the decrease in the 
Propionibacterium genus. However, Corynebacterium significantly 
increase in the elderly

Increase Increase; however, Staphylococcus genus 
is significantly decreased in the older 
group

Increase, especially the Acinetobacter genusSkin

Actinobacteria is the predominant phyla in the skin

Increase in Actinomyces Increase in Lactobacillales and 
Staphylococcus

Increase in Enterobacteriaceae and PseudomonasOral

Oral bacteria contribute to bacterial diversification and alteration in the older skin: Streptococcus and Veillonella (F), Rothia (A), Prevotella (B), Haemophilus (P), and Fusobacterium are members of the core taxa 
of the oral bacterial community that are significantly enriched in the older skin microbiome.

A: Actinobacteria; B: Bacteroidetes; F: Firmicutes; P: Proteobacteria.

the skin microbiome the most accurate to predict it, on average yielding predictions within 4 years of chronological age[35] [Table 1].

Nevertheless, some authors consider that changes in skin microbiota are also a consequence of aging, rather than a cause[34].
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Figure 1. External and internal factors that influence the composition of the microbiome.

As research on the skin microbiome progresses, there is growing interest in finding ways to help the skin to 
recover and regenerate from the numerous microorganisms living on it. In this sense, the manipulation of 
the gut microbiota of older adults could be an innovative strategy in the prevention and treatment of age-
related comorbidities; therefore, a balanced skin microbiota could help to prevent premature skin aging[26]. 
Recently, oral and topical probiotics have been proposed as a therapy for restoration of the microbiota 
balance, supporting skin barrier function, as well as protecting against environmental factors, especially 
ultraviolet radiation-induced skin damage[36-38]. The following are some examples of relevant effects in the 
skin caused by different microorganism: Streptococcus thermophiles enhance ceramide levels of the stratum 
corneum when is topically applied on the skin[39]; and some probiotics help to restore the balance between 
free radical removal and production, which may slow aging[40]. On the other hand, oral and topical 
compounds are being investigated to know their potential therapeutic effect on the modulation of the skin 
microbiome[41]: Orobanche rapum extract stimulates skin rejuvenation and protects the cutaneous 
microbiota, inducing healthier skin[42]. In addition, the term “Photobiomics” has recently been introduced, 
referring to the use of low levels of visible or near-infrared light to modify the gut microbiome through 
photobiomodulation[43].

THE MICROBIOME AND SKIN CANCER
The occurrence of malignancies increases with age. The association between the microbiome and 
malignancies is a recent and not very well studied hypothesis also in skin cancer. Different studies suggest 
the role of microbiome in the tumoral genesis and/or progression, especially the gastrointestinal one. 
Additionally, the gut microbiota seems to play an important role in the response to immunotherapy, and, 
perhaps, this could also be extrapolated to the skin microbiota[16,17].

Some of this work indicates that dysbiosis may promote cancer. In normal circumstances, the microbiome 
does not induce a pro-inflammatory response due to the tolerance that the immune system has developed to 
commensal bacteria, preserving homeostasis[17]. When these mechanisms are disrupted or new pathogenic 
microorganisms enter into this balanced system, dysbiosis occurs and the immune system is activated 
towards the microbiome, causing inflammation[18,44] or modifying the local immune response, which can 
trigger the tumoral growth in the intestine[16,17]. It has also been reported that intestinal inflammation 
enhances the possibility of the microbiota to produce genotoxins that cause damage to DNA, promoting the 
development of tumors[45].
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Focusing on skin cancer, Mrázek et al.[46] conducted a study on pigs, showing that the bacterial diversity was 
significantly different between normal skin and melanoma surface. They found that Trueperella and 
Fusobacterium genera were present in the microbiome of melanoma samples, which also had an increased 
amount of Streptococcus and Staphylococcus compared to the microbiome of normal skin. Moreover, 
Fusobacterium nucleatum increased with age in animals with progressive melanoma, whereas it diminished 
when animals had regressive disease. The authors concluded that Fusobacteria might be associated with 
tumor progression, and, as a possible mechanism, they proposed a tumor-based immune evasion: F. 
nucleatum - bound tumors are protected against the immune system, inhibiting natural killer cell 
cytotoxicity through the interaction of the fusobacterial protein Fap2 with the inhibitory receptor TIGIT of 
the immune cells. F. nucleatum can bind to different tumor types, including melanoma[46].

Recent studies suggest that some microorganisms of the skin microbiome can suppress tumor growth[47]. In 
this sense, dysbiosis would be potentially harmful because the host microbiota loses its protective function 
and/or gains a harmful microbial community. This study describes a strain of Staphylococcus epidermidis 
common in the microbiota of the skin that produces 6-N-hydroxyaminopurine (6-HAP), a molecule that 
inhibits DNA polymerase activity[47]. In culture, 6-HAP selectively inhibited the proliferation of tumor cell 
lines but did not inhibit normal keratinocytes. Intravenous injection of 6-HAP in mice suppressed 
melanoma growth without evidence of systemic toxicity. Colonization of mice with a strain of S. epidermidis 
producing 6-HAP reduced the chronic ultraviolet radiation skin damage and developing of tumors 
compared to mice colonized by a control strain that did not produce 6-HAP[47]. S. epidermidis strains 
producing 6-HAP have been found in the metagenome from the skin of multiple healthy human subjects, 
suggesting that the microbiome of some individuals may protect against skin cancer[47]. These findings show 
a new role for skin commensal bacteria in host defense against skin cancer induced by ultraviolet radiation.

Wang et al.[48] proposed an in vitro model irradiating with co-cultures of human melanocytes and 
commensal skin bacteria containing Propionibacterium acnes and S. epidermidis. Commensal S. epidermidis 
and its byproduct lipoteic acid (LPA or TLR2 ligand, which has specific anti-inflammatory action on 
keratinocytes, increasing UVB resistance) promote melanocyte survival after UVB irradiation; this effect is 
due to an upregulation of TRAF1, CASP5, CASP14, and TP73; however, P. acnes induces apoptosis of UVB-
irradiated melanocytes mediated by TNF-alpha production. The apparently opposite effects can be 
explained by the different location and concentration of P. acnes in the normal skin. P. acnes is found 
primarily in hair follicles, whose environment is critical for the maintenance of stem cells. Considering that 
DNA damage in these cells can result in severe mutations, P. acnes may have been accepted during 
evolution in the hair follicle niche to contribute to the health of the stem cell niche. By contrast, S. 
epidermidis is more present in dry areas of the body, especially on the inter-follicular epidermis. As 
mentioned above, LTA helps melanocytes to escape from UVB-induced apoptosis, which is crucial to 
preserve viable inter-follicular melanocytes during sun exposure, preventing their transformation into 
tumoral cells[48]. Other studies that support this perspective include previous observations from the 
intestinal microbiome probing that microbes may suppress tumor growth by the production of short-chain 
free fatty acids[49,50]. Additionally, skin microbiota potentially produce cis-urocanic acid by degrading L-
histidine, which plays a role in the immunosuppression induced by UV radiation and suppresses melanoma 
growth[47].

To our knowledge, there are few human studies investigating the relationship between the skin microbiome 
and skin cancer. One of them did not find significant differences in the diversity or abundance of bacterial 
genera between the microbiome of cutaneous melanomas and melanocytic nevi, although the cohort was 
relatively small (17 nevi and 15 melanoma)[51].
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Regarding non-melanoma skin cancer, a recent study investigated the microbiomes of actinic keratosis 
(AK) and cutaneous squamous cell carcinoma (SCC) in immunocompetent men either longitudinally or 
cross-sectionally[52]. Propionibacterium and Malassezia were relatively most frequently found in healthy 
perilesional areas, whereas Staphylococcus was more abundant in both AK and SCC, with a predominance 
of the S. aureus species. Particularly, eleven Operational Taxonomic Units (OTUs) of S. aureus were 
identified in the participating subjects; six of these were significantly associated with SCCs, with OTUs 50 
and 216 present in all patients, suggesting their specific involvement in progression from AK to SCC[52]. 
Lately, these results have been confirmed, finding an overabundance of S. aureus in SCC and AK compared 
with basal cell carcinoma samples. Consequently, as Malassezia was decreased in SCCs, it is hypothesized 
that this yeast could be protective against S. aureus over-colonization[53] [Table 1].

According to this local possible pathogenic effect of the skin microbiota in the promotion and/or 
progression of skin cancer, a recent study established the role of the gut microbiota in the response to anti-
PD-1 immunotherapy in patients with metastatic melanoma. A significant association between the presence 
of some specific bacteria such as Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium 
and a positive clinical response to the therapy was found[54]. According to this, reconstitution of germ-free 
mice with fecal material from responders improved tumor control, enhanced T cell responses, and 
increased efficacy of anti-PD-L1 therapy. These results suggest that commensal microbiome may modulate 
anti-tumor immunity in cancer patients[54].

CONCLUSION
Multiple studies indicate that age plays a critical role in modifying the human microbiota.

Furthermore, it appears that the microbiota may interact with ultraviolet radiation, facilitating skin damage 
and skin cancer or protecting against them. This knowledge opens the possibility of modulating the 
microbiota to maintain or improve health during aging. Thus, topical and oral probiotics are a promising 
therapy in the prevention of premature skin aging.
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