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Abstract
Understanding the dynamic behavior of domain structures is critical to the design and application of super-elastic 
freestanding ferroelectric thin films. Phase-field simulations represent a powerful tool for observing, exploring and 
revealing the domain-switching behavior and phase transitions in ferroelectric materials at the mesoscopic scale. 
This review summarizes the recent theoretical progress regarding phase-field methods in freestanding ferroelectric 
thin films and novel buckling-induced wrinkled and helical structures. Furthermore, the strong coupling relationship 
between strain and ferroelectric polarization in super-elastic ferroelectric nanostructures is confirmed and 
discussed, resulting in new design strategies for the strain engineering of freestanding ferroelectric thin film 
systems. Finally, to further promote the innovative development and application of freestanding ferroelectric thin 
film systems, this review provides a summary and outlook on the theoretical modeling of freestanding ferroelectric 
thin films.

Keywords: Freestanding ferroelectric thin films, super-elastic, mechanical structure, topological domain structure, 
phase-field simulations

INTRODUCTION
The advancement of semiconductor materials and micro-/nanofabrication technologies has promoted the 
growth of the modern electronics industry. Various materials with excellent qualities which meet the needs 
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of the automated and intelligent manufacturing industries have been designed and prepared gradually. In 
recent decades, silicon-based complementary metal-oxide-semiconductor (CMOS)-centric design 
procedures have played a critical role in the modern electronics industry. However, the emergence of 
flexible electronic devices has presented new challenges for the traditional CMOS processing technique and 
new opportunities for the existing electronic manufacturing industry[1-3]. Flexible electronic materials can be 
applied to fabricate flexible displays[4-6], nanosensors[7-9], health monitors[10-12] and other electronic devices for 
intelligent processing and human-computer interactions[13]. For example, flexible electronic materials can 
integrate cutting-edge technologies, including intelligent signal processing, real-time information sensing 
and nanogenerators, to improve the intelligence level of biocompatible electronics. As a result, they play an 
increasingly critical role in the intelligent monitoring of human health and biomedical applications, which 
will significantly change the future of healthcare and the relationship between patients and electronics. 
Furthermore, with the rise and combination of artificial intelligence and the Internet of Things (AI and IoT, 
i.e., AIoT), these electronic devices have an increasingly wide range of applications.

However, most traditional inorganic materials with excellent electronic properties show poor stability in 
complex stress environments, thereby severely limiting their application prospects in flexible electronic 
devices. Therefore, finding and preparing basic materials with excellent electronic and flexible properties is 
one of the keys to developing the flexible electronics industry. Generally, two complementary approaches 
can be applied to obtain electronic materials with superior mechanical and electrical properties. The first is 
the design and innovation of flexible materials by developing novel materials, including polymers[14,15], 
hydrogels[16,17], liquid metals[18,19] and freestanding films[20,21]. The second is structural optimization design by 
designing traditional high-performance electronic materials into appropriate mechanical structures[22,23], 
including wrinkled[24,25], origami[26,27], kirigami[28,29] and textile[30,31] structures.

Ferroelectric perovskite oxides are indispensable materials in the modern electronics industry because of 
their abundance of excellent physical properties, extensive research value and long-term practical 
application prospects. High-performance ferroelectric oxides are critical components in the current 
electronics industry because they have outstanding electrical properties, including ferroelectricity, 
piezoelectricity, pyroelectricity and dielectricity. They are widely applied in high-efficiency memories[32-35], 
microsensors[36,37], high-frequency filters[38,39], energy harvesting systems[40,41], high-energy-density 
capacitors[42-45], ultrasonic medical treatment[46,47] and other related devices[48-51], and are also expected to be 
applied in the field of high-temperature superconductivity[52,53]. However, perovskite ferroelectrics are 
generally considered to be brittle and unbendable[54,55]. Therefore, if they can be transformed into flexible 
structures through the above two approaches, it will significantly accelerate the growth of the flexible 
electronics industry and occupy increasingly widespread applications. In addition, organic ferroelectric 
polymer materials[56-60], such as poly(vinylidene fluoride) and its copolymers, have excellent properties and 
can achieve sizeable mechanical deformation, such as stretching, bending and twisting, without being 
damaged. Therefore, for the design and processing of flexible electronic materials, ferroelectric materials 
with flexibility and super-elasticity have received extensive attention due to their excellent mechanical and 
electrical properties.

This review mainly focuses on super-elastic freestanding ferroelectric thin films. First, current super-elastic 
freestanding ferroelectric films and their experimental characterization results are summarized. 
Subsequently, the origin of the super-elasticity of freestanding ferroelectric thin films is revealed and 
explained on the basis of phase-field simulations. The designed mechanical structures based on super-elastic 
ferroelectric thin films, such as two-dimensional (2D) wrinkles and three-dimensional (3D) nanosprings, 
are then introduced [Figure 1]. Finally, the outlook and prospects for super-elastic flexible freestanding 
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Figure 1. Novel mechanical structures and applications of super-elastic/flexible freestanding ferroelectric thin films. Novel mechanical 
structures include 2D bending (Left : reprinted with permission[61]. Copyright 2019, The American Association for the Advancement of 
Science. Right: reprinted with permission[62]. Copyright 2020, AIP Publishing), 2D zigzag-wrinkling (Top: reprinted with permission[63]. 
Copyright 2020, Wiley-VCH. Bottom: reprinted with permission[64].Copyright 2022, American Chemical Society), 2D toroidal-wrinkling 
(reprinted with permission[65]. Copyright 2021, The American Association for the Advancement of Science), and 3D twisting (reprinted 
with permission[66]. Copyright 2022, Wiley-VCH) structures. Flexible applications include non-volatile memories (reprinted with 
permission[67]. Copyright 2013, Wiley-VCH), flexible displays (reprinted with permission[68]. Copyright 2004, Elsevier), nano-sensors 
(reprinted with permission[69]. 2018, CC BY license), health monitors (reprinted with permission[70]. Copyright 2016, Wiley-VCH), 
nano-generators (reprinted with permission[71]. Copyright 2020, American Chemical Society), and energy harvesters (reprinted with 
permission[72]. 2016, CC BY license).

ferroelectric thin films are presented.

SUPER-ELASTIC FREESTANDING FERROELECTRIC FILMS
Preparation of flexible ferroelectric thin films
Due to the clamping effect of the rigid substrates during the traditional process of preparing ferroelectric 
thin films, they often show far poorer electrical performance, in terms of piezoelectric constant, switching 
speed and switching voltage[73-76], than those of freestanding materials. With the rapid development of new 
fabrication techniques for thin films[77], high-quality flexible freestanding ferroelectric thin films with 
excellent mechanical elastic and electrical properties[78,79] can be fabricated. Since many excellent 
reviews[21,80-83] have discussed the preparation of flexible freestanding ferroelectric films, we only briefly 
summarize the methods for obtaining them here.

Direct growth. Ferroelectric thin films can be directly grown on flexible substrates, including metals (such as 
foils), organic polymers (such as polyimide (PI)) and 2D layered materials (such as mica and graphene). 
Metal foils have low brittleness, excellent electrical conductivity and outstanding thermal stability as flexible 
substrates. Due to the unfavorable thermal expansion mismatch and ion diffusion between the ferroelectric 
thin film and the metal foil, a buffer layer is usually grown on the surface of the substrate to solve these 
problems. For instance, Won et al. used LaNiO3, which has closely matched lattice parameters (~0.38 nm) 
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with most perovskite ferroelectric materials, as a conductive buffer layer and the prepared Pb(Zr,Ti)O3 films 
exhibited superior ferroelectricity and piezoelectricity than those on conventional Pt/Ti/SiO2/Si 
substrates[84]. Although PI substrates have better mechanical ductility and flexibility, the temperature they 
can withstand (< 400 °C) cannot reach the crystallization temperature of ferroelectric oxides (> 600 °C). 
Bretos et al. proposed a series of solution-based approaches to realize the low-temperature crystallization of 
ferroelectric thin films, such as BiFeO3 and Pb(Zr,Ti)O3

[85-89]. In addition to the aforementioned direct 
growth on flexible substrates, mechanical exfoliation along heterointerfaces after the deposition of 
ferroelectric thin films onto 2D layered materials has also been developed. Through van der Waals epitaxy, 
weak bonds are formed between the thin film and the 2D layered substrate, providing an opportunity for 
mechanical exfoliation to obtain freestanding ferroelectric thin films with minimal internal stress. Mica[90-92] 
and graphene[93,94] are promising 2D layered materials as flexible substrates with atomic-level surface 
roughness, good stability and mechanical flexibility. High-quality flexible ferroelectric films with good 
mechanical integrity can be grown on mica and graphene substrates by van der Waals epitaxy, 
demonstrating their potential for next-generation electronics.

Laser lift-off process. The laser lift-off method was initially proposed and developed for transferring 
epitaxial GaN films from substrates[95,96] and was later utilized to prepare and obtain flexible freestanding 
ferroelectric oxide films. The specific process is to first deposit a ferroelectric oxide film (such as via a sol-gel 
method) on a wide band gap substrate (such as sapphire). A laser then irradiates the sample from the back 
of the substrate to partially vaporize the interface between the ferroelectric film and the substrate. Finally, a 
freestanding ferroelectric oxide film is obtained. However, this stripping method ablates the ferroelectric 
thin film, forming a thermally damaged layer at the interface of the thin film, so it is necessary to introduce 
a sacrificial layer[97,98] and further anneal to recover the surface structure[99].

Wet etching. Obtaining freestanding ferroelectric thin films by wet etching is a promising approach with 
significant advantages. According to the parts to be etched, wet etching can be divided into wet etching of 
the substrate, wet etching of the interface layer between the thin film and substrate and wet etching of the 
sacrificial layer, with the latter being the more cost-effective method[99]. Single-crystal ferroelectric thin films 
have been grown on sacrificial buffer layer (e.g., La0.7Sr0.3MnO3

[100,101], Sr3Al2O6
[102-106] and BaO[107])-coated 

SrTiO3 (STO) substrates. Subsequently, the sacrificial buffer layer is dissolved by selective etching to release 
the freestanding ferroelectric oxide film. Finally, the freestanding thin films can be transferred to flexible 
substrates, such as polyethylene terephthalate[75,108] or polydimethylsiloxane (PDMS)[61,105,109-111]. They can also 
be transferred to silicon (Si) substrates and combined with Si-based electronics. For example, Han et al. 
selected water-soluble Sr3Al2O6 as the sacrificial layer to grow a series of (PbTiO3)m/(SrTiO3)n bilayers on 
STO substrates. After the Sr3Al2O6 sacrificial layer was dissolved, the bilayer films were laminated on a 
platinized Si (001) substrate[112]. Exotic skyrmion-like polar nanodomains are observed in bilayer films, 
which provide a new strategy for integration into Si-based high-density storage technologies.

Super-elastic behavior of freestanding single-crystal ferroelectric thin films
Ferroelectric oxides are generally considered to be brittle and non-bendable because of their grain 
boundaries and the small ductility of ionic or covalent bonds within the crystal. In addition, the low fracture 
toughness (in the order of 1 MPa·m1/2)[55] means that ferroelectric oxides are prone to fracture. Nevertheless, 
the high-quality freestanding single-crystal ferroelectric thin films obtained by the above freestanding 
methods have attractive mechanical flexibility and super-elasticity. Dong et al. fabricated freestanding 
single-crystal BaTiO3 (BTO)[61] and BiFeO3 (BFO)[110] ferroelectric thin films by pulsed-laser deposition 
(PLD) when using Sr3Al2O6 as a sacrificial layer that was dissolved in water. As shown in Figure 2A and B, 
the fabricated BTO films could undergo a ~180° folding without any cracks in in-situ scanning electron 
microscopy (SEM) bending tests and also recover to their original shape after removing the bending load. 
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Figure 2. (A) In situ SEM image of the BTO film folded to about 180°. (B) SEM images of bending and recovery process of a BTO film. 
(C) The c/a ratio of freestanding PTO films as a function of uniaxial strain. The inset is schematics of as-grown and stretched 
polarization state. (D) Electromechanical coupling responses of freestanding BTO films folded and unfolded under an electron beam-
induced field. (E) Open circuit voltage (Voc) and short circuit current density (Jsc) of freestanding BFO device as a function of strain 
gradient. (F) The bending-expansion and bending-shrinkage effects were observed in upward and downward bent BFO films. Panels A 
and B reprinted with permission[61]. Copyright 2019, The American Association for the Advancement of Science. Panel C reprinted with 
permission[106]. Copyright 2020, Wiley-VCH. Panel D reprinted with permission[113]. Copyright 2020, American Chemical Society. Panel 
E reprinted with permission[109], 2020, CC BY license. Panel F reprinted with permission[114], 2022, CC BY license.

This behavior demonstrates their super-elasticity and flexibility. Similarly, the BFO film could withstand 
cyclic folding tests of up to 180° and the largest bending strain was observed to reach 5.42% during the 
bending process. Furthermore, freestanding flexible multiferroic BiMnO3 films were synthesized by 
Jin et al., which could maintain mechanical integrity under nearly 180° folding[111].

Freestanding thin films, in contrast to epitaxial thin films, are free from the clamp of the substrate and 
therefore provide ideal and unique flexible platforms for continuously controllable strain engineering. For 
example, Han et al. applied a continuous uniaxial tensile strain as high as 6.4% to freestanding PbTiO3 
(PTO) films, far exceeding the realizable value for epitaxial PTO films [Figure 2C][106]. This demonstrates the 
efficient and meaningful strain tunability of freestanding ferroelectric films, which deserves further 
exploration and design. Flexible freestanding oxides also provide a new direction for exploring outstanding 
performance, including piezoelectricity and flexoelectricity. By PLD, Elangovan et al. fabricated 30-nm-
thick flexible freestanding piezoelectric BTO thin films with good electromechanical-coupling 
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properties[113]. As shown in Figure 2D, under an external electric field, the thin film could fold gradually and 
continuously by 180° and the fold-unfold cycles were reversible. The contribution of the flexoelectric effect 
caused by the strain gradient induced by bending in flexible films is considerable. Guo et al. demonstrated 
the tunable photovoltaic effect in freestanding single-crystal BFO films and obtained multilevel 
photoconductance in BFO by altering the bending radius of the flexible device [Figure 2E][109]. As shown in 
Figure 2F, Cai et al. observed a giant flexoelectric response at strain gradients of up to ~3.5 × 107 m-1 in a 
wrinkled structure based on high-quality flexible freestanding BFO perovskite oxides[105,114]. Furthermore, the 
unusual bending expansion and shrinkage observed in bent freestanding BFO are also never seen in 
crystalline materials. Corresponding theoretical models show that these novel phenomena are attributed to 
the combined action of flexoelectricity and piezoelectricity. These experimental observations and theoretical 
models may provide a new path toward the strain and strain-gradient engineering of super-elastic 
freestanding ferroelectric thin films.

PHASE-FIELD METHOD OF FERROELECTRICS
The mechanical, electrical, optical, magnetic and other macroscopic physical properties of a material are not 
only related to its chemical composition but also largely depend on the characteristics of its internal 
microstructure. Such microstructures can be phase structures composed of crystalline structures, grains 
with different orientations, ferroelectric domains and dislocations, which are usually at the mesoscopic 
scale, ranging from nanometers to micrometers[115]. In material processing and service, external stimuli may 
cause the microstructure to move away from equilibrium. Furthermore, the corresponding theoretical 
description requires a combination of non-equilibrium thermodynamics and kinetic theories. 
Thermodynamic theory and kinetic principles determine the evolution direction and path of the 
microstructure, respectively. Due to the complexity and nonlinearity of microstructural evolution, we 
usually use numerical simulation methods to predict the evolution process. Compared to traditional 
modeling methods involving the explicit tracking of interface locations, the phase-field method has become 
one of the most powerful methods for simulating the evolution process of various microstructures. The 
phase-field method is based on the Landau theory of phase transitions, which holds that one of the standard 
features of a phase transition is a change in the symmetry of a system. Changes in symmetry imply changes 
in the degree of order, which can be measured by the order parameter (as a space function). According to 
the selection of order parameters, ferroelectrics are classified as proper or improper. For BTO, PTO and 
other proper ferroelectrics, the selected order parameter is the ferroelectric polarization P that can explain 
the symmetry change in the phase transition. However, for improper ferroelectrics, such as hexagonal 
manganites h-REMnO3 (RE = rare earth), the primary order parameter is the amplitude Q and phase Φ 
characterizing the structural trimerization and the secondary order parameter is the polarization P induced 
by the trimerization[116,117].

Theoretical fundamentals of phase-field method
The phase-field method with diffusive interfaces considers the non-local energy of the polarization gradient, 
which is different from the homogeneous assumption in thermodynamic models. By solving the phase-field 
equations, the order parameters in the space and time distribution can be calculated, the spatially 
continuous but inhomogeneous polarization distribution in the ferroelectric at different times can be 
determined and the evolution process of the microstructure can be obtained. The evolution process is a 
direct consequence of the minimization of the total free energy of the entire system, where ferroelectric 
polarization switching and phase transitions can be simulated by solving the time-dependent Ginzburg-
Landau equation[118-122]:
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where Pi(r,t) is the spontaneous polarization, r is the spatial coordinate, t is the evolution time, L is the 
kinetic coefficient that is related to the domain evolution and F is the total free energy that includes the 
contributions from the Landau, gradient, elastic, electric and flexoelectric coupling energies:

The Landau energy density fLand and the gradient energy density fgrad are given by:

where αij, αijkl and αijklmn are the Landau coefficients, Gijkl is the gradient energy coefficient and Pi,j = ∂Pi/∂xj.

The electric energy density felec is expressed as:

where Ei is the electric field component, ε0 is the vacuum permittivity and κij is the dielectric constant. The 
electrical quantities should satisfy the electrostatic equilibrium (Poisson’s) equation:

where φ is the electric potential and ρ represents the total space charges. The electric field is related to the 
potential through Ei = -φ,i.

The elastic energy density felas and the flexoelectric coupling energy density fflexo can be written as:

where Cijkl is the elastic stiffness tensor, eij is the elastic strain and εij and  are the total local strain and 
eigenstrain, respectively. Moreover, , where Qijkl represents the electrostrictive coefficients. fijkl is the 
flexoelectricity tensor and there are three independent flexoelectric coupling coefficients for a material of 
cubic point group, namely, the longitudinal coupling coefficient f1111, the transversal coupling coefficient f1122 
and the shear coupling coefficient f1212.
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The mechanical quantities are satisfied by solving the mechanical equilibrium equation:

where σij is the stress tensor and bi is the external force per unit volume.

Phase-field model of freestanding ferroelectric thin films
The phase-field model of a freestanding ferroelectric thin film differs from that of an epitaxial ferroelectric 
thin film with a substrate. As shown in Figure 3A and B, the lattice points of traditional epitaxial 
ferroelectric thin film models are subjected to compressive (or tensile) misfit strains induced by the 
substrate. The lattice points in the new phase-field model of the freestanding ferroelectric thin film have 
deformability characteristics, which can change the volume and shape following the bending deformation of 
the thin film.

The deformation of freestanding ferroelectric films can be set by applying displacement or stress (strain) 
boundary conditions. For instance, Guo et al. achieved the bending deformation of a freestanding film by 
applying displacement boundary conditions, explicitly adjusting the rotational inclination  of the left and 
right end of the film along the neutral surface[62]. Moreover, Peng et al. stabilized the film to a bending state 
by applying stress (strain) boundary conditions, explicitly introducing a bending strain state that exhibits a 
gradient distribution along the film thickness[110,123,124]. In addition, the top and bottom layers of the film are 
set as stress-free boundaries to satisfy the freestanding boundary conditions. Therefore, as shown in 
Figure 3C, for the phase-field method of freestanding ferroelectric thin films, by using the well-established 
phase-field model of deformable lattices, considering the freestanding boundary conditions and the 
complex strain (and strain gradient) states caused by the deformation of novel mechanical structures, the 
nanodomains corresponding to the freestanding ferroelectric structure can be obtained. The mechano-
electric coupling relationship and electrical properties (including piezoelectricity and electrocaloric 
performance) of the freestanding ferroelectric system can then be explored.

MODEL-GUIDED UNDERSTANDING OF SUPER-ELASTICITY IN FREESTANDING 
FERROELECTRIC THIN FILMS
Freestanding thin films demonstrate the advantages of tunable strain states compared with epitaxial growth 
on lattice-mismatched substrates. The source of the superior super-elasticity of freestanding films needs to 
be further explored because it is crucial for their further application in flexible electronics. The super-
elasticity of freestanding ferroelectric membranes may originate from the mesoscale ferroelectric domain 
evolution in the presence of the external deformation. However, the direct observation of the domain 
structure evolution of nanoscale freestanding films during continuous deformation is challenging by current 
experimental methods.

The phase-field method can simulate the dynamic evolution of freestanding ferroelectric films during 
mechanical deformation under external loads and the ferroelectric phase transition behavior under various 
strains and temperatures. Unlike the domain structure of ferroelectric films under a single strain in previous 
studies, more complex nanodomains appear due to the coexistence of tensile and compressive strains in 
bent freestanding films. For instance, Guo et al. and Peng et al. performed phase-field simulations on the 
bending deformation process of freestanding ferroelectric films to reveal the theoretical origin of the super-
elasticity of freestanding ferroelectric films from the perspective of domain evolution[62,123]. During the 
continuous bending process of a freestanding BTO film, the mixed tensile and compressive stress generated 
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Figure 3. (A) Phase-field model of the epitaxial ferroelectric thin film with a substrate. The dashed box is a schematic of the model 
lattice under compressive misfit strain. (B) Phase-field model of the bent freestanding ferroelectric thin film. The dashed box is a 
schematic of the deformable model lattice under bending strain, and the purple line represents the neutral layer of the model. (C) The 
structural schematic of the phase-field method for freestanding ferroelectric thin films.

by the bending [Figure 4A] caused the electric dipole to rotate continuously in the transition region, thereby 
connecting the a and c domains to form “vortex-like” domain structures [Figure 4B]. The formation of 
“vortex-like” domains essentially eliminates the sharp stress caused by lattice mismatch, allowing the 
freestanding film to maintain mechanical integrity during the bending process. The continuous rotation of 
the electric dipole can be explained by the phenomenological Landau theory[61]. As seen from Figure 4C, 
four minima in the energy landscape exist in a bulk stress-free state of BTO, corresponding to two a 
domains and two c domains. When in the bending state, the energy barrier between the a and c domains 
decreases, indicating that the polarization transition between the a and c domains becomes easier. The 
appearance of “vortex-like” domains has apparent size effects and the a/c phase with a vortex-like structure 
emerges when the film thickness reaches 12 nm [Figure 4D]. This may indicate that the super-elasticity of 
freestanding ferroelectric films has a specific relationship with the film thickness.

From the perspective of phase-field energy minimization, the generation of a local ferroelectric vortex and 
the ferroelectric polarization rotation can effectively promote the reduction in elastic energy and modulate 
the mechanical stress on the freestanding ferroelectric film during bending, which contributes to the 
accommodation of the large deformation and super-elasticity. As shown in Figure 4E, Peng et al. 
investigated the dynamic domain evolution process of bent freestanding BFO films, with an exotic 
ferroelectric vortex generated by local ferroelastic switching when the bending angle was higher than the 
critical value (e.g., 17.19° for a thickness of 80 nm)[123]. By comparing the dynamic evolution of different 
energy densities during the phase-field simulation [Figure 4F], the intrinsic energy barrier 
(Δfbarrier = 1076.19 kJ/m3) is overcome by reducing the elastic energy (Δfelastic =1157.65 kJ/m3) when vortex 
domains are generated, which indicates that the minimization of elastic energy drives the generation of the 
vortex. As reviewed above from the perspective of domain structure evolution, the excellent mechanical 
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Figure 4. (A) Strain distribution of n-shape bent freestanding films. (B) Domain structures and surface strain of freestanding BTO thin 
film at different bending angles. (C) Schematic illustration of free energy landscape of bulk BTO (top) and freestanding thin films upon 
bending (bottom). (D) Size effect on domain patterns of BTO thin film under bending. (E) Dynamic evolution of ferroelectric domains in 
freestanding BFO thin films during bending. (F) Dynamic evolution of volume average energy density of freestanding BFO thin films 
under θ = 17.19° with time step. Panels A, B and D reprinted with permission. Copyright 2020, AIP Publishing[62]. Panel C reprinted with 
permission. Copyright 2019, American Association for the Advancement of Science[61]. Panels E and F reprinted with permission. 
Copyright 2021, Elsevier[123].

elasticity of freestanding ferroelectric films can be attributed to the strong coupling effects between the 
bending strain state and electric dipoles, including the continuous rotation of polarization, the emergence of 
polar vortex domains and ferroelectric phase transitions.

FUNCTIONAL MECHANICAL STRUCTURES BASED ON SUPER-ELASTIC 
FERROELECTRIC THIN FILMS
Freestanding ferroelectric thin films are ideal for studying the distortion of crystal structures and future 
applications of ferroelectric materials. Taking flexible carriers for memory logic devices as an example, 
Chen et al. systematically investigated the stability of 180° cylindrical domains in bent freestanding 
ferroelectric nanofilms and explored the possibility of mechanical erasure of bit information (“0” and 
“1”)[125]. Ferroelectrics are potential candidates for data storage due to their switchable spontaneous 
polarization. Figure 5A shows a freestanding PTO thin film divided into rectangular memory units, where 
the bit information “1” is represented by a cylindrical domain with downward polarization of radius r. From 
the phase diagram in Figure 5B, the bending deformation can effectively control the stability of the 
cylindrical domain and regulate the erasing of bit information. By changing the strain state of freestanding 
ferroelectric thin films, cylindrical domains can be erased, thereby providing a new theoretical idea for 
flexible memory devices. In addition to bending structures based on super-elastic freestanding ferroelectric 
films, other mechanical structures, such as 2D wrinkled and 3D nanospring structures, are also paving the 
way for novel flexible electronics.
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Figure 5. (A) Schematic illustration of a ferroelectric nanofilm with rectangular memory units (upper left), a single basic memory unit 
(upper right), and a bent single memory unit (bottom). (B) Phase diagram of the domain pattern in memory units under bending. All 
panels reprinted with permission[125], 2014, CC BY license.

2D wrinkled structure of freestanding ferroelectric thin films
The buckling instability mode, which leads to out-of-plane deformation, is prone to occur in thin film 
structures under certain environmental stimuli (e.g., mechanical forces[126-130], temperature[131], van der Waals 
interactions[132] and localized diffusion of the solvent[133,134]). For example, when the film is subjected to in-
plane compressive stress, it is in an unstable state with high energy. As a result, the film and substrate 
deform to release compressive stress, thereby reducing the energy of the system. Moreover, because the film 
thickness h is small, its bending rigidity D = Ef h3/12 is minimal compared to Young’s modulus Ef. Films 
generally deform via out-of-plane wrinkling to release internal compressive stress by generating bending 
energy. For the simplest sinusoidal wrinkling mode w(x,y) = Acos(kx), both the wavelength and amplitude 
are related to the mechanical quantities of the film-substrate system[135-139]:

where Ef and Es are Young’s modulus of the film and substrate, respectively, v is the Poisson’s ratio and λ 
and A are the wavelength and amplitude of the wrinkle, respectively [Figure 6A].

The buckling instability of wrinkles is a fascinating nonlinear mechanical model and is very effective in 
understanding their formation mechanism from an energy perspective. For a film bonded to a compliant 
substrate, Huang et al. obtained the wavelength and amplitude of the wrinkles for substrates with different 
moduli and thicknesses by minimizing the energy[137]. As shown in Figure 6B, when the strain of the film εfilm 
is less than εc, the system minimizes at the state A = 0, and when the strain of the film εfilm exceeds εc, the 
system wrinkles to an equilibrium amplitude Aeq. The occurrence of buckling modes may lead to structural 
and functional failure of the membranes, potentially limiting the performance of materials and is often 
considered to be avoided. In contrast, stress-driven buckling instability can self-assemble ordered surface 
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Figure 6. (A) A thin film on a compliant substrate undergoes surface wrinkling. (B) Schematic of the total energy of the thin film system 
as a function of the wrinkle amplitude A at small (left) and large (right) film strains (reprinted with permission[137]. Copyright 2005, 
Elsevier).

topographies, including sinusoidal, zigzag, labyrinthine, triangular and checkerboard patterns. The physical 
properties of wrinkles show broad application prospects in the design of flexible electronic devices, the 
assembly of 3D complex microstructures[140], the morphological control of innovative optoelectronics and 
integrated systems[141-143], the measurement of mechanical properties of materials[144,145] and even medical 
assistance in diagnosis and treatment[146].

The formation of various wrinkled structures has been reported in thin film systems such as metals[126], 
graphene[132], organics[130,131,133,134], gels[147], biological tissues[148] and more recently in freestanding ferroelectric 
thin film systems. As shown in Figure 7A, Dong et al. successfully fabricated periodic wrinkle-patterned 
BTO/PDMS membranes based on an as-prepared super-elastic single-crystal freestanding BTO film[63,64]. 
Moreover, finely controlled wrinkle patterns, such as sinusoidal, zigzag and labyrinthine patterns, were 
obtained by changing the anisotropy and magnitude of the applied stress or adjusting the interfacial 
adhesion conditions. It is noteworthy that the thickness of the super-elastic BTO film significantly affected 
the period of the wrinkle pattern. The thicker the BTO film, the larger the wavelength, which also conforms 
to Equation (10), i.e., the wavelength and period of the wrinkle pattern are proportional to the thickness of 
the film.

Due to the peculiar morphology of wrinkled ferroelectric films, the strain state is different from the 
interfacial mismatch strain of conventional epitaxial films. Therefore, a unique ferroelectric domain 
structure distribution can be generated by applying external loads. For example, the strain field is 
introduced by a scanning probe, which is quite different from applying out-of-plane strain directly to the 
epitaxial film, as shown in Figure 7C. Zhou et al. found a periodic “braided” in-plane domain superstructure 
and opposite out-of-plane domains between peaks and valleys through the modulation of scanning probe 
microscopy (SPM) tip-induced loading forces, as seen in Figure 7B[64]. This unique domain depends on the 
strain state induced by the zigzag wrinkle morphology and the loading of the SPM tip. Due to the periodic 
“braided-like” strain state, the polarization is deflected to the direction parallel (perpendicular) to the tensile 
strain (compressive strain) εxx, resulting in the formation of the ferroelectric nanodomain structure, as 
shown in Figure 7D. In addition, some novel wrinkle structures also exist in flexible ferroelectric polymer 
systems. As shown in Figure 7E, Guo et al. found a periodic toroidal “target-like” wrinkle morphology in a 
flexible ferroelectric polymer poly(vinylidene fluoride-ran-trifluoroethylene) [P(VDF-TrFE)], as well as a 
peculiar toroidal topological texture using in-plane piezoresponse force microscopy (IP-PFM) 
measurements[65]. The distribution of the toroidal domain structure [Figure 7G] is caused by the strain state 
induced by the “target-like” wrinkle morphology under external tensile strain, which is a periodically 
alternating tensile and compressive strain [Figure 7F]. According to this calculation, the electric toroidal 
moment[149] Gz is much larger than Gx and Gy, indicating the existence of in-plane toroidal order 
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Figure 7. (A) Optical microscopy images of wrinkled BTO. The scale bar is 20 µm. (B) Piezoresponse force microscopy (PFM) phase 
color images of zigzag-wrinkled BTO under scanning force induced by the SPM tip. (C) Distribution of corresponding strain component 
εxx of zigzag-wrinkled BTO by the SPM tip from phase-field simulations considering the flexoelectric effect. (D) Distribution of “braided-
like” polarization of zigzag-wrinkled BTO by the SPM tip. The color bar represents the polarization component Px. (E) IP-PFM phase 
image showing the toroidal polar topology of wrinkled P(VDF-TrFE) film. (F and G) The in-plane strain and domain structure of the 
wrinkled P(VDF-TrFE) under an applied tensile strain of 7.3% from phase-field simulations, respectively. (H) The electric toroidal 
moments corresponding to the domain structure in (G) illustrate the presence of in-plane topological domains. Panel A reprinted with 
permission[63]. Copyright 2020, Wiley-VCH. Panels B-D reprinted with permission[64]. Copyright 2022, American Chemical Society. 
Panels E-H reprinted with permission[65]. Copyright 2021, The American Association for the Advancement of Science.

[Figure 7H]. Therefore, the morphology of freestanding ferroelectric wrinkled films can be developed as a 
degree of freedom for strain tuning the domains and physical properties of flexible ferroelectric systems.

3D nanospring structure of freestanding ferroelectric thin films
Ferroelectric materials display a range of individual polar topological states, including flux-closure 
domains[150,151], vortices[152-155], skyrmion bubbles[156,112,157], merons[158], center domains[159] and sixfold vortex 
networks[160], as a result of geometrical constraints between structural shape and material interface at the 
micro/nanoscale. The competition and coupling of elastic, electrostatic and gradient energies can lead to the 
induction of novel polar topologies that are not stable in conventional bulk ferroelectrics under the 
combined influence of a sharply increased depolarization field caused by size, noticeable interface and 
boundary constraint effects. With the demand for the miniaturization and multi-functionalization of 
functional ferroelectric devices, an increasing number of nanostructures with novel topological ferroelectric 
domains can be realized through top-down and bottom-up nanofabrication techniques. For example, 
Shimada et al. designed and studied 2D PTO nanostructures (including honeycomb, kagome and star 
shapes) by establishing a phase-field model based on a 2D Archimedes lattice[161]. Furthermore, the 
polarization was gradually rotated at the junctions of different repeating units in these nano-metamaterials 
to form a continuous flow pattern.

Among the unique nanostructures designed and produced, the emergence of nanosprings has received 
considerable attention. Nanosprings can achieve enormous amounts of mechanical deformation while 
maintaining mechanical integrity and are also an essential set of geometries among chiral structures. This 
3D helical structure can have broad potential applications in electromechanical devices such as 
nanoactuators, nanosensors and nanomotors. In contrast to the wrinkles reviewed in the previous section, 
mechanical buckling-induced self-assembled nanosprings can be obtained by removing the mechanical 
constraints in the out-of-plane direction and introducing a bilayer structure. Changes in these mechanical 
conditions enable the system not to be confined to 2D in-plane extended wrinkle deformation but to 3D 
deformation modes, such as rolling and twisting, leading to the formation of 3D rolled-up structures. This 
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unique buckling behavior has been utilized in various studies to obtain 3D structures from 2D bilayers, 
coupled with the characteristic that nanomembranes typically exhibit anisotropic mechanical properties and 
deform alongside a particular direction. From an energy perspective, the helical shape usually results from 
the competition between bending and in-plane stretching energy driven by some internal or external force 
(including surface stress, residual stress, mismatch strain, and so on). The strain gradient in the flexible layer 
leads to bending along the direction with the smallest Young’s modulus[162,163] and the twisting of the bilayer 
structure can be achieved by the strain gradient field introduced by the mismatch strain between the 
anisotropic bilayers.

Many helical structures have been found in many inorganic thin film systems[164] and have recently been 
reported in ferroelectric oxides. Despite the fragile ionic or covalent bonds in oxides, Dong et al. fabricated 
self-assembled La0.7Sr0.3MnO3/BaTiO3 (LSMO/BTO) ferroelectric nanosprings with excellent elasticity and 
recovering capability via a water-peeling off process[66]. The BTO nanospring could be stretched or 
compressed to the geometric limit without breaking failure, thereby achieving a considerable scalability of 
500% [Figure 8A and G]. The corresponding bilayer fabrication process with a strain gradient can produce 
high-quality spring structures of ferroelectric oxides, which have wide applicability. The phase-field 
simulations reveal that the excellent scalability originates from the continuously rotating ferroelastic domain 
structures, which provide displacement tolerance and energy to accommodate complex strains of mixed 
bending and twisting during mechanical deformation. Figure 8B and H show the strain component 
distribution εzz of nanosprings under compression and elongation, respectively. This unique strain state 
results in the transition of 180° strip domains distributed around the surface of the ferroelectric nanospring, 
as shown in Figure 8C and I. For example, during the compression/elongation process, the outer and inner 
surfaces of the nanospring are subjected to opposite strains, which results in different ferroelectric domain 
structures on the two surfaces [Figure 8D, E, J and K]. It is noteworthy that the bending moment is the 
largest in the region farthest laterally from the centerline of the 3D helix (i.e., the middle region of a single 
helical structure); therefore, the strain effect in this region is more evident. For example, when the 
nanospring is stretched, the compressive strain on the outer surface of the middle region is more evident 
than the tensile strain on the inner surface, so the electric dipoles in this region deflected perpendicular to 
the z-axis, forming a 180° domain structure in the out-of-plane of the BTO layer.

Figure 8F and L show the relationship between the polarization and the strain distribution on the outer 
surface of the BTO nanospring under compression and elongation, respectively. When the BTO thin films 
are twisted into the self-assembled nanosprings, the electromechanical coupling behavior differs from the 
direct relationship between polarization and strain in the previous ferroelectric film state [Figure 9]. 
Furthermore, the effect of shear strain is different in the two states. In the previous ferroelectric thin film 
state, the shear strain has almost no effect on the domain structure; however, when the BTO film is twisted 
into a nanospring state, the effect of shear strain cannot be ignored. Therefore, the nanospring design 
provides a novel conceptual framework and platform for the strain engineering of freestanding ferroelectric 
thin films. Regarding the 3D helical structure, many experimental and theoretical works[163,165-167] have 
reported the shape transition and regulation by external fields of the helical structure. Therefore, the helical 
structure of ferroelectric oxides can be further regulated in morphology and properties by changing the 
geometric parameters, modulus ratio and pre-strain of the bilayer film. For example, the mechanical 
deformation of the nanospring can also be regulated by applying an electron-beam-induced field, which is 
expected to be applied in flexible nanorobots.

Through the nonlinear mechanical model of Euler buckling, a series of novel functional mechanical 
structures can be realized, including other self-assembled superstructures (such as origami, kirigami and 
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Figure 8. (A and G) In situ SEM images of the BTO nano-spring in compressive and tensile deformation, respectively. (B-F and H-L) 
Distribution of the strain component εzz, the domain structure, the outer surface domain, the inner surface domain, and the polarization 
component Pθ and strain distribution εθ along the middle line of the outer surface of the BTO nano-spring during compression and 
stretching, respectively. All panels reprinted with permission[66]. Copyright 2022, Wiley-VCH.

Figure 9. (A and D) The polarization distribution of BTO freestanding thin films under compressive and tensile deformation, 
respectively. [(B and C) and (E and F)] The polarization-strain distribution on the centerline of BTO freestanding thin films during 
compression and elongation, respectively. All panels reprinted with permission[66]. Copyright 2022, Wiley-VCH.

textile shapes), in addition to the previously reviewed wrinkled and helical structures. This mechanical 
modeling strategy based on these self-assembled 3D structure concepts can provide additional and unique 
ideas and solutions for developing and designing high-performance flexible ferroelectric devices. 
Furthermore, utilizing external stimuli (such as an external force or electric field) can qualitatively or even 
quantitatively manipulate the deformation of these mechanically buckling structures, providing a new 
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approach for strain engineering and domain engineering of freestanding ferroelectric systems.

CONCLUSION AND OUTLOOK
As reviewed in this article, super-elastic ferroelectric materials are expected to be applied in a wide range of 
flexible electronic devices, including flexible memories, nanosensors, and nanogenerators. It is essential that 
ferroelectric materials maintain stable electrical performance under various mechanical deformations, such 
as stretching, compression, bending and twisting, which involves the dynamic behavior of mesoscopic 
domain structures in the ferroelectric materials. However, the direct observation of domain structure 
evolution during continuous deformation of freestanding ferroelectric thin films is challenging for current 
experimental methods. Moreover, phase-field simulations have become increasingly critical in revealing the 
super-elasticity of freestanding ferroelectric films and the dynamical behavior of domain structures in 
different nanostructures. Therefore, the combination of experimental observations and phase-field 
simulations plays a crucial role in expanding the research and application of super-elastic ferroelectric 
materials in the field of flexible electronics. To further play the guiding role of theoretical modeling in 
super-elastic freestanding ferroelectric thin films, the following crucial issues deserve attention and 
solutions:

Flexoelectric effect. The flexoelectric effect describes the coupling between the electric polarization and 
strain gradient. Since the strain gradient is inversely proportional to the spatial scale (i.e., the gradient of the 
strain concerning the spatial coordinate), the flexoelectric effect is size-dependent[168]. Therefore, the 
flexoelectric effect becomes increasingly evident and prominent as the size diminishes, and its contribution 
to the domain engineering of super-elastic freestanding ferroelectric thin films cannot be ignored. However, 
the theories and algorithms considering the flexoelectric effect in the phase-field model of super-elastic 
ferroelectrics still need further verification and improvement. For the freestanding ferroelectric system 
under mechanical deformation, it is necessary to establish a phase-field model considering the flexoelectric 
effect to study the origin, enhancement and application of the flexoelectric effect on super-elasticity.

Design, fabrication and regulation of novel and functional mechanical structures. In the regulation and 
application of freestanding ferroelectric systems, the design and preparation of novel and functional 
mechanical structures are also the focus of research. The influence of 3D superstructures (e.g., isometric 
helicoids, kagome shapes and hexagonal honeycombs) on the polarization distribution of ferroelectrics also 
requires systematic research and analysis.

Responsive behavior in multiple fields. Freestanding ferroelectric thin film systems exhibit several novel 
topological phenomena and it is essential to demonstrate the response and regulation of these topological 
structures in multi-physical fields (e.g., individual or mixed applications of mechanical, electric and 
magnetic fields). In contrast, the response behavior of super-elastic freestanding ferroelectric nanostructures 
under the external field still needs further research and analysis. For example, the stretching and 
compressing behavior of ferroelectric nano-springs may be modulated by an electron-beam-induced field, 
which could have potential applications in the design of flexible nanorobots.
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