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Abstract
An effective battery prognosticsmethod is fundamental for any application inwhich batteries have a critical role, such
as in unmanned aerial vehicles. Given the batteries’ variable nature, effectively predicting their End of Discharge or
End of Life can become a difficult task. Therefore, developing an accurate and efficient model becomes a key step of
this problem. The framework provided by traditionalmodeling techniques usually leads to inaccurate results, so newer
state-of-the-art methodologies are needed to successfully build a model from a dataset. This paper compares the
accuracy and time performance of three existing methods: a maximum likelihood optimal Support Vector Machine, a
BayesianRelevanceVectorMachine, and a Fuzzy Inference System. Through this research, we aim to implement a real-
time battery prognostics system in an Unmanned Aerial Vehicle. The three methods are used to model a Lithium-ion
(Li-ion) battery’s discharge curve while accounting for the State of Health of the battery for the estimation of voltage.
We show that the three methodologies are valid for the modeling of the discharge curve with similar accuracy values.
The Relevance Vector Machine proves to be the most computationally efficient method.
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1. INTRODUCTION
The electrical power system of an unmanned aerial vehicle (UAV) is one of the most critical subsystems in
such aircraft. With advanced air mobility (AAM) poised as one of the future paradigms of civil aviation, these
systems have been identified as key technologies for the successful integration of AAM [1]. Electrical Power
systems, batteries, and emerging energy dense solutions are highlighted as technologies to be further developed
and investigated for both safety as well as redundancy in the In-time Aviation Safety Management System
report [2,3]. Utilizing emerging artificial intelligence (AI) strategies to perform traditional pilot functions, such
as predicting the state of health (SOH) of electrical systems, offers safety mechanisms and failsafes required
before AAM reaches desired maturity levels [1,4].

An electrical power system is formed by several components, batteries being the most critical [4]. A failure
in a battery can result in catastrophic failure of the entire vehicle. Therefore, it is essential to have reliable
prognostics for a battery’s end of discharge (EOD) and end of life (EOL). Further, it is also interesting to assess
the confidence of the resulting prediction. The first step to solve such a problem is to have a reliable method
to model the state of charge – voltage (SOC-V) curve depending on the SOH of the battery.

One of the problems we encounter when working with batteries is their variable nature. Their performance
is strongly affected by environmental conditions, as well as its prior use cycles [5]. Therefore, modeling using
traditional methods is a difficult task. One of the possible alternatives is to use data-driven methods, which
utilize machine learning algorithms to establish battery degradation models [6,7]. This approach allows the
battery state estimation without a deep prior knowledge about the internal characteristics of the battery [8].
Examples of these methods are relevance vector machines (RVM), support vector machines (SVM), and Fuzzy
Inference Systems (FIS). Model-based methods build a set of rules that model the behavior of the system [8].
Their main disadvantage is the need for a deep knowledge about the system and a lengthy amount of time to
build the model. These methods often rely on internal parameters, which are inaccessible once a battery has
been manufactured [9]. Therefore, they are not well suited for UAV applications.

Previous work proved an RVM and particle filter (PF) algorithm to be successful in the prediction of the
remaining useful life (RUL), both for the state of charge (SOC) and SOH [10–12]. These methodologies have
also been tested for their application in UAVs [13]. Other research has shown that the combination of RVM and
SVMwith sample entropy has been provided as a valid framework for battery prognostics [14]. Regarding fuzzy
systems, previous research employed a fuzzy neural network for the estimation of the SOC with lithium iron
phosphate batteries [15]. Work has also been done with respect to the SOH assessment using a FIS to combine
the SOH assessment obtained from capacity measurements and internal resistance values [16]. Related to this
matter, another fuzzy granulation methodology was tested to obtain a minimum and maximum boundary in
the estimation of SOHby looking at the charging cycles [17]. Most of the work donewith SVM regarding battery
prognostics is aimed at the control of batteries [18,19] or grid-scale battery storage models [20,21]. Publications
for this topic include SVM applied to SOH estimation [22] in combination with PF [23], fuzzy entropy [24], or
incremental capacity analysis [25,26].

In this workwe are comparingRVM, aMamdani FIS and amaximum likelihood optimal SVM for themodeling
of the SOC-V curves in batteries. We generate the battery discharge models with each methodology and then
compare their accuracy and computational requirements. As mentioned above, this curve depends on the
SOH: a battery with a lower SOH will show a faster decaying SOC-V curve. For convenience, we substitute
the SOC with the state of discharge (SOD), which we define as 𝑆𝑂𝐷 = 1 − 𝑆𝑂𝐶. We will include the current
discharge cycle in the model as an estimation of the current SOH of the battery.
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2. METHODS
In this section we present the SVM, RVM and FIS methodologies which were evaluated to solve the regression
problem for a given dataset of battery discharge cycles. The general statement of the problem is as follows:
obtain a function 𝑓 (·) from a labeled dataset {(𝒙𝑠, 𝑦𝑠)}𝑁𝑠=1.

2.1. Support vector regression with lncosh loss function
To calculate a regression with SVR, we map the input data into a high-dimensional feature space by using a
kernel function 𝜑(·) : R𝑛 → R𝑚 and then perform a linear model

𝑓 (𝒙, 𝒘) = 𝒘𝑇𝜑(𝒙) + 𝑏 , (1)

where 𝒘 ∈ R𝑚 is the weight vector and 𝑏 is the offset.

The success of SVR depends on the choice of the loss function, which represents the noise model of the dataset.
This means that one must have some a priori information of the noise model in order to choose the proper loss
function [27]. The so-called lncosh loss function we are using makes no assumptions about this noise model.
Further, this function is convex and continuously differentiable. Thus, solving it with convex optimization
techniques guarantees a globally optimal minimum [28].

The optimization problem to solve is

min
𝒘,𝑏

{
1
2
∥𝒘∥2 + 𝐶

𝑁∑
𝑠=1

[
𝑙 (𝜉𝑠) + 𝑙 (𝜉∗𝑠 )

]}
, (2)

subject to

𝑦𝑠 − 𝑓 (𝒙𝑠, 𝒘) ≤ 𝜀 + 𝜉𝑠
−𝑦𝑠 + 𝑓 (𝒙𝑠, 𝒘) ≤ 𝜀 + 𝜉∗𝑠 (3)

𝜉𝑠, 𝜉
∗
𝑠 ≥ 0, 𝜀 ≥ 0 ,

where

𝑙 (𝜉𝑠) = 𝑙𝑛𝑐𝑜𝑠ℎ𝜀 (𝜉𝑠) =
{

0 if |𝜉𝑠 | < 𝜀
1
𝜆 ln (cosh𝜀 (𝜆𝜉𝑠)) otherwise ,

(4)

𝜉𝑠 are independent random errors, 𝜀 is the size of the insensitive area, 𝐶 is a parameter that determines the
trade-off between flatness and empirical error, and 𝜆 is a parameter belonging to the lncosh function that
controls the behavior of the loss function used [28].

Transformed using Lagrange multipliers, the dual-form problem is

min
𝒘,𝑏,𝛼𝑠 ,𝛼∗𝑠 ,𝛾𝑠 ,𝛾

∗
𝑠 ,𝜉𝑠 ,𝜉

∗
𝑠

𝐽 =
1
2
𝒘𝑇𝒘 + 𝐶

𝑁∑
𝑠=1

[
𝑙 (𝜉𝑠) + 𝑙 (𝜉∗𝑠 )

]
−

𝑁∑
𝑠=1

𝛼𝑠

(
𝜀 + 𝜉𝑠 − 𝑦𝑠 + 𝒘𝑇𝜑(𝒙𝑠) + 𝑏

)
(5)

−
𝑁∑
𝑠=1

𝛼∗𝑠

(
𝜀 + 𝜉∗𝑠 + 𝑦𝑠 − 𝒘𝑇𝜑(𝒙𝑠) − 𝑏

)
−

𝑁∑
𝑠=1

(
𝛾𝑠𝜉𝑠 + 𝛾∗𝑠 𝜉∗𝑠

)
,
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where 𝛼𝑠, 𝛼∗𝑠 , 𝛾𝑠, 𝛾∗𝑠 ≥ 0 are the Lagrange multipliers. Differentiating Equation (5) with respect to the primal
variables 𝒘, 𝑏, 𝜉𝑠, 𝜉∗𝑠 and operating with the newly obtained equations yields the dual loss function

min
𝛼𝑠 ,𝛼

∗
𝑠

𝐽 =
1
2
(𝜶 − 𝜶∗)𝑇 𝐾 (𝜶 − 𝜶∗)

+ 𝜀
𝑁∑
𝑠=1

(
𝛼𝑠 + 𝛼∗𝑠

)
− 𝒚𝑇 (𝜶 − 𝜶∗)

− 𝐶

𝜆

𝑁∑
𝑠=1

[
ln cosh𝜀

[
arctanh𝜀

(𝛼𝑠
𝐶

)]
(6)

− 𝛼𝑠
𝐶

arctanh𝜀
(𝛼𝑠
𝐶

)
+ ln cosh𝜀

[
arctanh𝜀

(
𝛼∗𝑠
𝐶

)]
− 𝛼𝑠
𝐶

arctanh𝜀
(
𝛼∗𝑠
𝐶

)]
that depends exclusively on the Lagrange multipliers 𝛼𝑠, 𝛼∗𝑠 , where 𝜶,𝜶∗ ∈ R𝑁 are vectors containing the
values of 𝛼𝑠, 𝛼∗𝑠 , 𝐾 is the kernel matrix with 𝐾𝑠,𝑟 = 𝜑𝑇 (𝒙𝑠) ·𝜑(𝒙𝑟 ), and 𝒚 ∈ R𝑁 is a vector containing the values
of 𝑦𝑠.

Equation (6) can be efficiently solved by an interior point optimization algorithm [29]. Once the values of 𝜶, 𝜶∗

are known, the weights can be computed using

𝒘 =
𝑁∑
𝑠=1

(
𝛼𝑠 − 𝛼∗𝑠

)
𝜑(𝒙𝑠) (7)

and the offset 𝑏 is found with [30]

𝑏 = 𝑦𝑖 − 𝒘𝑇𝜑(𝒙𝑖) − 𝜀 for 𝛼𝑖 ∈ (0, 𝐶) , (8)

where 𝑖 is picked from a multiplier 𝛼𝑖 that is not too close to 0 or 𝐶 [31].

2.2. Relevance vector machine
RVM provides a probabilistic approach to the regression problem [32]. The method is similar to SVR in that it
maps the inputs to a high-dimensional feature space and then computes a linear combination of weights with
certain kernel functions

𝑓 (𝒙, 𝒘) =
𝑀∑
𝑚=0

𝑤𝑚𝜑(𝑥, 𝑥𝑚) , (9)

where 𝑀 is the number of kernels used and 𝑤𝑚 is the weight of kernel 𝑚.

For a pair of input and target {(𝒙𝑠, 𝑦𝑠)}𝑁𝑠=1, it is assumed they follow a Gaussian distribution of mean 𝑓 (𝒙, 𝒘)
and variance 𝜎2. Therefore, the Gaussian function will depend on the weights. To prevent overfitting, a prior
distribution is set over the weights

𝑝 (𝒘 |𝜶) =
𝑀∏
𝑖=0

𝑁
(
𝑤𝑖 |0, 𝛼−1

𝑖

)
, (10)

where 𝒘 ∈ R𝑀 is the weight vector and 𝜶 = (𝛼1, 𝛼2, . . . , 𝛼𝑀 )𝑇 is a vector with an individual hyperparameter
for each of the weights. This prior distribution, with mean zero, makes the weights have low values, which
benefits sparsity [33]. The complete process to build a model using RVMwas described in detail by Fletcher [34].
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2.3. Fuzzy Inference System
Fuzzy logic was proposed in 1965 by Zadeh [35]. It distinguishes from other methodologies in two key con-
cepts. The first is the use of linguistic variables, i.e., variables whose content are words instead of numbers.
This concept allows for a granulation of the input and output data. The second concept is the use of if-then
linguistic rules [36]. Overall, the usage of variables close to natural language provides a comprehensible and
explainable approach for humans [37]. Moreover, explainability can become an essential matter in airborne sys-
tems [38]. Other AI algorithms are essentially black boxes with complex decision systems. This can be an issue
for certification organizations, since the inability to understand the insights of the decision-making process
can reduce the trust that end users have on any system. Therefore, a FIS introduces a significant advantage
with respect to other AI methodologies.

The FIS used for this work is a Mamdani-type FIS. In early trials of this work a Takagi-Sugeno algorithm
was tested, but its training took longer and its performance was worse than Mamdani’s dut to the difficulty
choosing initial model parameters and the genetic algorithm (GA) tuning processing used for the FIS, so it
was discarded. A Mamdani algorithm is characterized by fuzzy if-then rules with linguistic variables both in
the input and output variables. For example, a rule takes the form of

if 𝑥 is 𝐴 and 𝑦 is 𝐵, then 𝑧 is 𝐶 , (11)

where 𝑥, 𝑦, 𝑧 are input or output variables and 𝐴, 𝐵, 𝐶 are fuzzy subsets of those variables. In a 2-input 1-output
system, as the one showed in Equation (11), we can compute a membership function 𝜇𝑖 for every input with a
triangular function given the left 𝑙, right 𝑟 , and center 𝑐 points with

𝜇𝑖 =


𝑥𝑖−𝑙
𝑐−𝑙 if 𝑥𝑖 ≥ 𝑙 and 𝑥𝑖 < 𝑐
𝑟−𝑥𝑖
𝑟−𝑐 if 𝑥𝑖 ≥ 𝑐 and 𝑥𝑖 < 𝑟
0 otherwise.

(12)

The membership functions make some rules fire that yield degrees of membership in the output membership
functions. In order to defuzzify these membership functions and produce a numerical value in the output, we
use the centroid method, selected as it is continuous, monotonic, scale invariant, and well known [39,40]. This
method aggregates the membership functions of the output variables and computes the center of gravity of
them. The equation used is

𝑧 =

∫ 𝑏

𝑎
𝑥𝜇𝐴 (𝑥)𝑑𝑥∫ 𝑏

𝑎
𝜇𝐴 (𝑥)𝑑𝑥

, (13)

where 𝑧 is the numerical output, 𝑎, 𝑏 are the limits of the output range, and 𝜇𝐴 is the aggregated membership
function calculated according to the set of rules.

3. RESULTS
This section compares the battery discharge models obtained with the three algorithms. All of the models
consist of 2 inputs (SOD and discharge cycle) and 1 output (battery voltage). The data utilized comes from
the well-known Li-ion battery dataset provided by the NASA Ames Research Center [41]. The entire process
is depicted in Figure 1. The results were obtained using MATLAB 2016a (lncosh-SVM and RVM) and Python
3.9.7 (fuzzy-GA) programming environments on a Windows 10 PC with an Intel Core i7-6000 processor at 3
GHz.

The parameters for the RVM algorithm were directly obtained from previous work [13]. The radii used for the
radial basis functions (RBF) are 𝜎1 = 60, 𝜎2 = 500, 𝜎3 = 1700, 𝜎4 = 3400, and 𝜎5 = 6800.

http://dx.doi.org/10.20517/ces.2022.03
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Figure 1. Data flowchart of the process. 𝐼 stands for current and 𝑆𝑂𝐷 stands for State of Discharge. The integral symbol represents the
Coulomb counting method, which integrates current to obtain the SOD. 𝑉 is the labeled voltage and �̂� is the estimated voltage.

The user specified parameters in the SVM methodology can have a great impact on the results [42]. The initial
parameters for the lncosh-SVM algorithm were obtained using our prior knowledge about the system from the
RVM algorithm. The values were further optimized using a GA. GAs are a set of population-based stochastic
algorithms that mimic the process of natural evolution to optimize a given function [43]. The parameters ob-
tained after this process were 𝜆 = 1083, 𝜀 = 0.0153 and 𝐶 = 0.00612. The value obtained for 𝜆 suggests that
the lncosh loss function will behave in a similar way to 𝜀-insensitive Huber’s loss. We decided to use 5 RBF as
kernels, in the same way we did with RVM. Their radii were also optimized using the GA, their final values
being 𝜎1 = 92, 𝜎2 = 649, 𝜎3 = 1631, 𝜎4 = 2863, and 𝜎5 = 5619.

The rule base and the initial membership function values of the FIS are manually set based on expert knowl-
edge and previous experience with the topic. The membership functions, as shown in Equation (12), are all
triangular. Further, with the aim of simplifying the learning process, all the triangles are isosceles. These trian-
gles are handcrafted based on prior knowledge as an initial approximation and then further optimized using a
GA [44,45]. We use 3 membership functions for each input variable, and 5 membership functions for the output
value. In the GA learning process, we encode the centers and base widths of all the triangular membership
functions, giving a total of 22 genes per chromosome. The error function compares andminimizes the absolute
value of the difference between the labeled values and the results obtained with the FIS, i.e., 𝑒 = | �̂�𝑠 − 𝑦𝑠 |. The
genetic operators used are roulette-wheel selection, single point crossover, Gaussian mutation and elitism. The
optimization process runs for a fixed number of 350 generations. The parameters for the genetic operators and
the number of generations were chosen based on preliminary runs of the algorithm. This GA utilizes parallel
processing, with 10 workers computing the fitness value of 10 chromosomes simultaneously.

The NASA Ames Research Center dataset provides 3 different battery discharge cycle datasets named: B0005,
B0006 and B0007. We have tested the 3 methodologies with each of these discharge cycle datasets. Figures
2-4 show the regressions obtained with the 3 methodologies being tested. All the figures presented have been
obtained from the dataset B0005. For each of the discharge cycle datasets, a 5-fold cross validation technique is
used. Therefore, the experiments are repeated 15 times per algorithm. The results obtained with each discharge
cycle dataset are then averaged and displayed in Tables 1-3. The metrics used for the comparison are the Root
Mean Squared Error (RMSE) defined as

RMSE =

√√√ 𝑁∑
𝑠=1

( �̂�𝑠 − 𝑦𝑠)2

𝑁
(14)

and Mean Absolute Error (MAE) defined as

MAE =
1
𝑁

𝑁∑
𝑠=1

| �̂�𝑠 − 𝑦𝑠 | . (15)
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Figure 2. Comparison between SVM regression and datapoints. The surface represents the SVM regression. The datapoints used as
Support Vectors are highlighted in green. SVM: support vector machin; SOD: state of discharge. The cycle is the number of times the
battery has been charged and discharged throughout its lifetime.

Figure 3. Comparison between RVM regression and datapoints. The surface represents the RVM regression. RVM: relevance vector
machine; SOD: state of discharge. The cycle is the number of times the battery has been charged and discharged throughout its lifetime.

There is no clear best method in terms of accuracy. The results vary across datasets and they depend on what
error metric we consider. Looking at the results obtained from B0005, lncosh-SVM’s RMSE is 0.4% higher than
RVM’s, but the MAE is 22.7% lower. The lncosh-SVM outperforms the FIS with 25.7% and 1.6% decreases in
RMSE andMAE, respectively. In datasetB0006, the RMSE of lncosh-SVM is 15.1% lower than the one provided
by RVM and the MAE 46.7% lower. However, the FIS is the methodology with the best accuracy in this case.
The results show a 5.9% reduction in RMSE and 30.3% reduction in MAE with respect to lncosh-SVM. In
B0007, the lncosh-SVM methodology shows a 7.4% increase in RMSE with respect to RVM, but lncosh-SVM
provides a 29.8% decrease in MAE compared to RVM.The FIS shows a RMSE 3.3% higher than lncosh-SVM’s.

http://dx.doi.org/10.20517/ces.2022.03
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Figure 4. Comparison between FIS regression and datapoints. The surface represents the FIS regression. FIS: Fuzzy Inference System; SOD:
state of discharge. The cycle is the number of times the battery has been charged and discharged throughout its lifetime.

Table 1. Comparison of results with dataset B0005

Methodology RMSE MAE ∥𝒘 ∥2 a #Relevance/support vectors b Training time c (min)

lncosh-SVM 0.0711 0.0551 0.0466 386.2 141.7
RVM 0.0708 0.0676 10142 50.2 1.2
Fuzzy-GA 0.0894 0.0560 − − 98.3

a∥𝒘∥2 is the norm of the weights of the model in SVM and RVM, and represents a measure of the flatness of the solution.
bNumber of Relevance Vectors in the case of RVM, number of Suppor Vectors in the case of lncosh-SVM.These concepts are equivalent

in these methodologies.
cThe training time is the total time needed to build the regression model with each methodology. In lncosh-SVM this means solving

Equation (6) and then computing the weights with Equation (7). In RVM the weights in Equation (9) are found using the iterative process
described by Fletcher [34]. In Fuzzy-GA it refers to the time needed to run the GA that optimizes the membership functions.

However, its MAE is 11.6% lower.

The values of ∥𝒘∥2 are shown as a measure of flatness and sparsity of the solution. The lncosh-SVM has much
lower values than RVM, which means that the RBF that compose the solution are smoother in the case of
lncosh-SVM. This fact can also be observed in Figures 2 and 3. However, it is worth noting that the very high
values in RVMare heavily influenced by a single very high result in one of the runs of the 5-fold cross validation
process, which skews the average score. This phenomenon happened with all the discharge cycle datasets.

In terms of computation time, RVM is the most efficient method by a big difference. Its training takes about
a minute to complete, while lncosh-SVM and the FIS need between 1 and 3 hours to complete the training
process. This fact is supported by the difference in the number of support or relevance vectors: RVM needs,
on average, 7.7 times less support vectors in B0005, 11.9 in B0006 and 15.3 in B0007. As a consequence, an
RVM model requires less memory capacity, which can be crucial for applications where less capable single-
board computers are used, such as for UAVs [46].

http://dx.doi.org/10.20517/ces.2022.03
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Table 2. Comparison of results with dataset B0006 a

Methodology RMSE MAE ∥𝒘 ∥2 #Relevance/Support vectors Training time (min)

lncosh-SVM 0.1136 0.0898 0.0604 749.4 137.6
RVM 0.1307 0.1317 194961 63.0 1.2
Fuzzy-GA 0.1068 0.0626 − − 100.4

aSee footnotes in Table 1.

Table 3. Comparison of results with dataset B0007 a

Methodology RMSE MAE ∥𝒘 ∥2 #Relevance/Support vectors Training time (min)

lncosh-SVM 0.1195 0.0662 0.0647 1137.6 150.4
RVM 0.1107 0.0859 1051199 74.2 1.1
Fuzzy-GA 0.1234 0.0585 − − 97.7

aSee footnotes in Table 1.

4. DISCUSSION
This study compares the accuracy and computational cost whenmodeling a battery discharge cycle with lncosh-
SVM, RVM and a FIS. A successful prediction of the EOD and EOL of batteries and an assessment of its
uncertainty is essential for the safe operation of UAV.Themethodologies tested provide a framework to model
the SOD – V curve and incorporate a measure of the SOH to account for the natural variability of batteries
along their lifetime. To fully predict the EOD of the battery and the remaining flight time of a UAV, these
regression techniques can be combined with a prediction methodology, such as a Kalman filter or PF, which
should be further explored as an extension to this work.

The results presented show that the 3 methodologies could be used to solve this problem at varying computa-
tional costs. The lncosh-SVM shows the best accuracy in most cases, but at a high computational cost. RVM
is able to yield results within a 15.1% RMSE and 46.7% MAE at a much lower computational cost. The FIS
has, in general, the worst performance in RMSE, but can improve on the lncosh-SVMMAE provided by up to
30.3%. Its computational cost lies in between the other two methods.

We did not anticipate these results, specially those obtained with the FIS. The lncosh-SVM, being maximum
likelihood optimal, was expected to show the best results in terms of accuracy. Since RVM is a probabilistic
approach, but similar in nature, we were expecting to see small increases in its error metrics when compared
to lncosh-SVM. The FIS was expected to have the lowest accuracies of the three options. However, the results
show that it can have accuracies similar to lncosh-SVM’s and RVM’s, and even improve them in some cases. A
significant advantage of the FIS that contributes to making it an attractive method is that it allows the system
to be more explainable and comprehensible, relevant features toward certification of airborne systems.

As previously stated, Matlab 2016a was used to obtain the results from lncosh-SVM and RVM, while Python
3.9.7 was used to obtain the results of the fuzzy-GA methodology. Using different programming languages
could affect the accuracy of the comparison between training times. However, the training times presented in
Tables 1-3 for the threemethodologies are so distinct from each other that we believe this is enough evidence to
classify RVM as the fastest method, with fuzzy-GA being second and lncosh-SVM third. In the future, it could
be interesting to compare these methodologies using exclusively Python. This language is more appropriate in
applications such as UAVs, where single-board computers are often used. The results of such an experiment
could be decisive to favor one methodology over the others in this particular application.

Further, one could also argue that the GA itself could be further optimized for faster performance or to yield
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more optimal results. Figure 4 shows that the FIS divides the discharge into three regions with a distinct
valley in the middle of the discharge and steep decreases in between. It is an interesting result to observe,
specifically when compared to Figures 2 and 3, where the regressions are smoother. This could be interpreted
as a feature that the FIS extracted from the data or as a possibility of further improvement of the GA and FIS
in general. The parameters of the GA were tuned to the best of our knowledge using research and previous
experience. For performance comparisons of our methods and models, we assume that the GA used performs
at its highest level. Futurework could be directed at further analyzing this algorithm to improve its performance
and convergence time for this particular application. However, other studies have shown that when tuning GA
control parameters, good performance can be obtained with a range of GA control parameter settings [47,48].
We can therefore expect only little improvement after many trials with different GA parameter sets.

Another limitation of the results shown comes from the dataset itself. The data was obtained in controlled
experiments in a lab. Therefore, this data does not account for inaccuracies, measurement errors or external
noise, as with with UAVs subject to external factors. Future work will compare these same methodologies
using battery discharge data obtained through hardware analysis using an Orion Jr. 2 Battery Management
System as payload onboard a UAV. This will allow us to evaluate the results with new raw datasets coming
directly from the target of our research.

5. CONCLUSIONS
AAM is one of the future paradigms of civil aviation and the use of AI offers an opportunity to fundamentally
substitute, alter, or augment the traditional pilot functions. Batteries have been identified as critical subsystems
in an electric UAV because their variable nature and dependence on prior usage makes their modeling difficult.
This paper investigates the application of SVM, RVM, and FIS to model a battery’s discharge curve. We show
how to apply the three methodologies while accounting for the SOH of the battery in the moment of the
discharge. The results prove that the three methodologies provide useful frameworks to solve the problem.
SVM shows the best accuracy in most cases, but at a high computational cost. RVM can provide results
similar in accuracy at a much lower computational cost. The FIS is able to improve the MAE of the other
methodologies, with an intermediate computational cost. In future steps of this research we will implement
the outline methodologies on-board an electric UAV and apply them in a real-time manner.
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