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Abstract
Microplastics (MPs) have been detected in many parts of the world in snow, hail, sea ice, glaciers, and permafrost. 
The ubiquity of microplastic around the globe means that there is a need to focus on its circulation dynamics in the 
Earth's diverse ecosystems; the prominence of MP fibers, which has been indicated as of human clothing and 
activities, in high altitude frozen water is explained by their enhanced suspension in the air, allowing them to be 
transported over long distances from urban centers. The MP particles can act as nucleation centers for ice crystals 
and, once incorporated, reduce the albedo (reflective capacity) of the frozen mass, causing temperature increases. 
However, cores have indicated that ice in glaciers may remain frozen for thousands of years. This article reviews 
the quantities and types of MPs that have been detected in snow, hail, sea ice, and glaciers. The potential for 
release of these, as well as MPs in the permafrost, following global warming, is discussed. As the global warming 
process evolves, these sites will act as additional sources of MPs accumulated over the course of recent human 
history. It is important to be aware of the future entry of microplastic into the global environment from these 
sources, especially into the already fragile extreme ecosystems of the cryosphere.
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INTRODUCTION
Microplastics (MPs) reach aquatic environments from different terrestrial sources and by different 
pathways[1,2]. Sources include manufacturers of plastic products used in industry or agriculture, as well as 
clothing and utensils used domestically or for fishing or aquaculture[3-8]. Pathways include the physical and 
chemical degradation of plastic materials in the terrestrial environment[9] and the release of MPs from 
sewage treatment plants[10].

After entering the aquatic environment, MPs pass through several further degradation paths [Figure 1], 
including physical, chemical and biological action, which may reduce them to nanoparticles (NPs), 
1-1,000 nm in size, or even further[11]. Physical breakdown includes light, thermal and mechanical 
degradation, while chemical degradation mainly includes hydrolysis and thermal oxidation reactions[12]. 
MPs may be degraded more rapidly since plastic molecules are squeezed in the ice and produce an excited 
state that leads to accelerated oxidation and degradation[13].

In addition to the mechanical and photodegradation of microplastic in the aquatic environment, 
m i c r o o r g a n i s m s ,  f o r  e x a m p l e  B a c i l l u s  s p . ,  Rhodococcus sp.[14], Pseudomonas aeruginosa[15], 
Zalerion maritimum[16], and Aspergillus clavatus[17], may use plastics as an energy source, resulting in their 
degradation and inciting physical and chemical impacts which include alterations in the surface structures 
of the particles. They may produce chemical bonding structures, such as carbonyl groups, ketones, and 
aldehydes[14]. Thus, microorganisms may contribute to polymer breakdown first by producing surface 
changes and then by releasing extracellular enzymes, resulting in chain cleavage to produce monomers that 
can be used by the aquatic microbiota[14,18]. Some microbial species can convert polymers into monomers 
and, in a few cases, break down them into carbon dioxide and water.

In aqueous environments where temperatures fall below freezing, however, any microbial activities will be 
slow, if not absent. These regions, which include various forms of frozen water, are collectively known as the 
cryosphere [Figure 2].

The cryosphere is composed of a series of environments considered of great importance in the global 
biogeochemical balance and radiative forcing (energy balance) of the Earth. Being controlled by the global 
climate, the cryosphere is responsible for maintaining the climate balance of the planet[19,20]. It contains 
“extremophilic” forms of life, that is, those capable of withstanding extreme environmental conditions. In 
ecosystems located at the poles of the planet, where mathematical models of global circulation previously 
projected a more pronounced rise in temperatures[21], the raised subsurface sea temperatures[22,23] have 
already caused increased retraction of the ice shelves[24,25]. Some benthic invertebrate[26] and larger vertebrate 
populations[27,28] have decreased. The original habitats and the primary production process are being 
dramatically altered[29,30], although for other species, the short-term impacts may not yet be significant[31].

Snow layers are the main element of the cryosphere. They reach around 25 million km2, most being present 
in the northern hemisphere. Obviously, their total size varies according to the season[32]. Sea ice, on the other 
hand, is present in most of the polar regions of the seas, covering an average of about 20 million km2[33].

Except for perennially frozen environments, ice on rivers and lakes during the year is due to seasonal 
cooling. Like snow cover, the ground freezes depending on the season. Permafrost, the permanently frozen 
portion of the soil, occupies approximately 24.5% of the Northern Hemisphere. Its maximum thickness 
reaches 600 m in northeastern Siberia and Alaska[34].
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Figure 1. Plastic degradation processes in aquatic environments.

Figure 2. The various environments that make up the cryosphere.

Finally, about 77% of the global cryosphere is concentrated in ice sheets on land. These total about 64 m, sea 
level equivalent (or potential sea level rise), and are located mainly in Antarctica and Greenland. The 
Antarctic and Greenland ice systems have a fundamental impact on atmospheric circulation, the cyclone 
system and the global energy balance. Large portions of the West Antarctic ice sheet are concentrated below 
sea level; the main mass, however, rests on bedrock in Antarctica. In the central part of the mantle, due to 
pressure or geothermal heating, the ice forms subglacial lakes. Ice shelves and outgoing glaciers 
continuously generate icebergs (about 2,072 km3 of ice in Antarctica and 235 km3 in Greenland)[35].

MPs have been found in the many forms of frozen water around the world and might be expected to persist 
unaltered under such conditions. The deterioration rate of MPs may indeed be reduced in continuous 
permafrost zones, where freezing and thawing do not occur and light, temperature and oxygen levels are 
low. However, following global warming, the stable permafrost will undergo an alternation of physical 
states[36], allowing MP release and degradation. The same may occur with the forms of frozen water.
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MPs have been detected in snow and ice samples in many countries using various methods of collection, 
even manual[37]. Examples include Italy[37], Mount Everest[38], Ecuador[39], Iceland[40], Tibet[41,42], Austria[43] and 
Antarctica[44]. In the polar regions where water occurs predominantly in the frozen state, there is little 
human influence. Nevertheless, MPs have been found in such locations. The main types of plastics indicated 
in the literature are polyethylene terephthalate (PET), polyamide (PA), polyethylene (PE), and rubber[45]. For 
a brief review of the methods used in detection and identification, see Zhang et al. (2022)[45].

The potential for microbiological degradation of MPs has often been considered, and even ice-derived 
bacteria have been suggested as candidates[46-48]. The presence of microorganisms in sea ice has been studied 
by several groups[49-51]. It seems clear that these psychrophilic organisms, bacteria, archaea, and algae grow in 
liquid water at the sea-ice interface during warmer weather and become incorporated into the ice in winter. 
Thiele et al. (2022), collecting ice core samples from the Arctic pack ice north of Svalbard, Norway, studied 
the changes between the winter and summer communities in Arctic Sea ice, concluding that the winter 
community used a nitrogen-based metabolism, which switched to microorganisms that used carbon derived 
from algae and cyanobacteria in the spring and summer[52]. Although not studied by these workers, it is 
possible that some of these microorganisms could be plastic-degraders.

The mechanics of freezing represent a survival challenge to living organisms, as ice crystallization can 
damage cell membranes. Life in the cryosphere is thus particularly difficult and hence scarce; most of the 
organisms are bacterial and archaeal groups, such as Pseudomonas, Calothrix[53], and Bacteroidetes[54]. To 
protect themselves, the psychrophilic cells concentrate lipids and antifreeze enzymes to maintain physical 
plasticity below the freezing limit and to allow cellular membrane homeostasis and biochemical reactions. 
They produce ice-binding proteins that act via thermal hysteresis and inhibition of ice recrystallization[55]. 
Overall, little is known about the potential impacts of microplastics on organisms that live in the 
cryosphere, especially the microbiota, although substrates that are more difficult to biodegrade (such as 
plastics) have been suggested to reduce the growth potential of certain psychrophilic organisms[46]. Research 
on psychrophilic and plastic-degrading microorganisms continues, but it seems unlikely that the microbiota 
associated with MPs in the cryosphere will influence plastic degradation either before or after any thawing 
event. Considering the difficult accessibility of these environments and the impact that global warming will 
bring, this article seeks to provide more details about the presence of MPs in the cryosphere and  potential 
effects of global climate change on the balance and circulation of microplastics from these environments. 
The article was written based on the scientific literature available through the platforms ResearchGate, 
Scientific Electronic Library Online (SciELO), ScienceDirect, and Google Scholar, among others. MPs in the 
various forms of frozen water that make up the Earth's cryosphere are discussed in the following sections.

SNOW
Snow is a temporal sink for MPs[45] and a method of aerial transport of these particles, which can act as 
nucleation centers for ice formation in the atmosphere[56]. Various types of plastics are found in snow in 
different places in the world and at different levels of urbanization. In Arongqi city in the inner Mongolian 
plateau, 86-199 MPs L-1 of freshly fallen snow were detected[57]. Most were fibers, but the type of plastic 
varied. In Hokkaido, Japan, MPs found in all deposited snow samples were mainly alkyd, ethylene-vinyl 
acetate, and PE[58]. These were attributed to long-distance transport through the atmosphere, whereas the 
rubber and larger particles found mainly in cities and near highways were considered to be from local 
sources. A similar situation was found in Arctic snow falling on sea ice[59]. It contained large amounts of 
MPs, including road MPs like tyre-wear particles, which would have been transported in snow from North 
America and Europe, later falling on Northern Greenland and other parts of the Arctic.
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Snow samples taken in cities or other conurbations are expected to yield higher MP counts. However, 
Crosta et al. (2022), working in the Italian Alps, hypothesized that the higher levels of MPs on the 
Ebenferner-Vedretta Piana glacier (0.265 ± 0.027 MPs g-1 dry weight) were higher than those on the Forni 
and Cedec glaciers (0.033 ± 0.007 and 0.025 ± 0.009 g-1 dry weight, respectively) because of its greater 
footfall[60]. In this case, the direct influence of humans was suggested, rather than the transfer of MPs from 
more distant urban centers. However, most glaciers are not subject to human footfall and long-range 
transport is the main source of their contamination.

Transport through the air, which can occur over many hundreds of kilometers, can result in MPs being 
degraded to nanoplastics (NPs), with a resulting increase in the total particle counts. Materić et al. (2021) 
detected 46.5 ng·mL-1 NPs of melted surface snow in the high Austrian Alps, mainly composed of 
polypropylene (PP) and PET[61]. It was assumed that these originated as larger particles in European towns 
and cities and were broken down to NPs during aerial transportation. The authors calculated that more 
than 2 × 1011 NP particles were deposited per square meter of surface snow per week.

Polymer types in Arctic snow have been found to vary greatly. Bergmann et al. (2019) found that varnish 
(acrylates), plasticized rubber and polyamides (PA) were most common, while in European snow, MP 
composition was 67% polyamide, varnish, rubber, ethylene vinyl acetate (EVA), and PE[62]. The Antarctic 
had been considered a relatively untouched (unpolluted) area until MPs were detected there in 2020[63]. 
More recently, MPs (mainly PE fibers) have been detected in fresh snow samples collected near and distant 
from research stations in the Ross Island region and considered likely to originate either locally, in clothing 
and equipment around research stations, or, following modeling using the Hybrid Single Particle 
Lagrangian Integrated Trajectory Model (HYSPLIT)[64], to have a possible origin up to 6,000 km away[44].

A rare instance of the almost complete absence of MPs in snow was reported in Dimon Lake, a high-
mountain lake in the Italian Alps[37]. No MPs were detected in the lake water, sediment, or biota. The 
extremely low MP (PET) particle levels in the snow (0.11 ± 0.19 L-1) were suggested to be due to particles 
trapped by massive snow precipitates in the winter. The location obviously influences the types of plastic 
present in snow, but there is no evidence of any relationship between snowflake formation and the type of 
particle entrapped.

Napper et al. (2020) examined the presence of MPs (above 30 μm) in snow samples taken from Mt. Everest 
at 5,300 to 8,400 m above sea level[38]. They found MPs in all snow samples, with the highest level at the Base 
Camp (79 particles L-1). The majority were fibers and plastic types were PE > acrylic > nylon > PP. The 
researchers concluded that the fibers were most likely deposited from the clothes and equipment of 
climbers, who spend more time at the base camp, and that high levels of MPs in such snow-covered areas 
are related to tourism activities. The majority of technical clothing worn by trekkers and climbers on Mt. 
Everest is composed of synthetic fabrics and De Falco et al. (2020) estimated that most MP fibers are 
released into the air as a direct consequence of wearing clothes made of MP[65]. A recently developed online 
tool for calculating the “plastic footprint”[66] determined that, of a distinct group of students living in the 
mountains, mountain activities had the second largest footprint (after food consumption), and that this was 
due mainly to synthetic fleeces, followed by special climbing footwear. Although many other workers have 
detected more MP fibers than fragments in snow[62,67,68], they have not always attributed this to clothing worn 
at the site, more often considering fibers transported through the air or water. Owing to the large surface 
area to volume ratio of MP fibers, the air resistance is increased, and the settling speed is reduced, leading to 
a high proportion of fibers at high altitudes[69,70].
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HAIL
Hail is produced when a water droplet is raised above the freezing level in the atmosphere. The droplet 
attracts supercooled vapor that freezes on contact, causing the hailstone to grow [Figure 3A].

The recent increased incidence of giant hailstones has been linked to the presence of MP fibers, which act as 
nucleation centers[71]. These authors used micro-FTIR and -Raman spectroscopy to identify over 450 MP 
fibers in the interior of 10-12 cm diameter hailstones that fell in Slovenia. Felton et al. (2021) had previously 
reported MPs (mainly fibers) in four large hailstones from thunderstorms in Texas; one hailstone contained 
an MP fragment[72]. There are very few reports on MPs in hailstones, but their plastic-related content may 
well be found to be similar to that of snow. Their formation in the atmosphere is similar, but differences are 
clear. Hail falls in defined paths known as hail swaths. They can range in size from 100,000 - 215,000 ft² to 
an area 10 miles wide and 100 miles long. Hailstorms normally last from a few minutes up to 15 min in 
duration, accumulating to a depth of over 5 cm [Figure 3B], and can occur in areas not normally associated 
with frozen water. The increasing frequency and severity of hailstorms in Europe have been associated with 
climate change[73], but the influence of MPs on the size and duration of hailstones has never been 
considered.

SEA ICE
Sea ice is a highly variable and complex biogeochemical component of the Antarctic marine 
environment[74]. Two major sea ice types can be discerned - landfast ice and pack ice. Whereas pack ice is 
free drifting sea ice, which moves with winds and currents, landfast sea ice is attached to the coast, shallow 
seafloor, or grounded icebergs[75]. Landfast ice usually forms and dissipates seasonally, controlled by 
atmospheric and oceanic conditions.

The first indication that MPs were present in sea ice was in the early 1960s when plastic fragments were 
found in Canadian seabirds[76]. In the 1970s, the quantity of beached plastic increased substantially in the 
Bering Sea[77], suggesting its deposition from ice. Since this time, MPs have been identified in sea ice in many 
areas. As long ago as 2014, Obbard et al. stated that sea ice at the North Pole is a major historic global sink 
for MPs[78]. Von Friesen et al. (2020) found that the average number of anthropogenic MPs (> 50 µm) per 
liter in Arctic sea ice was 158 ± 155 (221-1,054) and that some of these were derived from pigmented ship 
paint[79]. MPs were released during the summer melt and thus became directly available to the marine biota 
of the summer bloom, increasing the immediate risk of plastic-associated damage to sea life.

Peeken et al. (2019) found that most of the MP particles identified in the Central Arctic sea ice cores were 
smaller than 50 µm, with 67% being of the smallest detectable size (11 µm); this suggests that von Friesen’s 
numbers are too low and also indicates the high risk of uptake by and damage to the cells of marine 
organisms if the ice melts[80]. Peeken’s group found over 12,000 MP particles L-1, a much higher number 
than previous workers, and attributed this to their methodology allowing the detection of much smaller 
particles. They deduced that MPs became incorporated into the ice when it was first formed and also as it 
continued to grow while passing through the water masses. The high levels of PE found were attributed to 
the remains of the Great Pacific Garbage Patch, now being driven along the Bering Strait into the Arctic 
Ocean. However, in ice from the shallow seas along the margin of Siberia, paint particles from ships and 
nylon from shipping nets were predominant. These ice floes take a maximum of 11 years to reach the Fram 
Strait. Here, they melt, releasing the MP load, which may then become colonized by microorganisms and 
sink into the sediment[81].
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Figure 3. (A) Image of a 6 cm hailstone [National Severe Storms Laboratory (NSSL) Collection: https://photolib.noaa.gov/Collections/
National-Severe-Storms-Laboratory/Hail/emodule/462/eitem/275]; (B) deposited hail in Colorado, in USA’s “Hail Alley”, August 
2019.

MPs do not affect the growth of sea ice[82], although they may act as nuclei for ice formation[56]. High 
concentrations of microplastics at the ice surface can, however, increase ice salinity and reduce its 
reflectance properties (albedo)[82], which can increase melting. Sea ice is a significant sink for MP pollution. 
MPs will concentrate as the water becomes ice. Drifting ice floes, which can be many square kilometers in 
size, transport MPs potentially over many kilometers. The melting ice can act as a vector of MPs not only 
laterally but also vertically[83].

In the Arctic, the sea ice is dominated by positively buoyant microplastics, transported to the area through 
surface transport, while the Southern Ocean is dominated by neutrally buoyant plastics, transported to the 
area through deep water[84]. These differences in plastic type have not yet been explained; they may have 
something to do not only with the origin of the particles, but also with their interaction with 
microorganisms during passage through the water bodies.

GLACIERS
Glaciers are particularly efficient at concentrating small particles from the air[85]. They provide interesting 
natural freezing and thawing events that involve the uptake and release of MPs. Materić et al. (2020), testing 
a new detection technique based on thermal desorption - proton transfer reaction - mass spectrometry, 
analyzed snow collected on a glacier in the Austrian Alps at 3 km above sea level and far from any 
anthropogenic activity for the presence of MPs and NPs[43]. Samples from within a snowpit, cores from 
nearby ice on the glacier, and snow covering the ice were collected. Surface snow and snowpit samples all 
contained PET, while snowpit samples also contained polypropylene copolymer (PPC) and polyvinyl 
chloride (PVC). After filtration through 0.2 μm pore size filters to extract NPs, however, only PET was 
detected. The PET NPs had the highest concentration of all plastics detected in the snow and snowpit, as 
well as in recently deposited snow. The authors considered that more work would be needed to determine 
whether any PS (polystyrene) MPs present might have undergone chemical changes by weathering. PS was 
not detected in their analyses, although it had been reported in remote parts of the Pyrenees, occurring as 
sheets and fragments[86].

Using data previously obtained from the high Austrian Alps in 2020, Materić et al. (2021) specifically 
examined the content and importance of NPs in the samples[61]. They subjected the data to analysis using the 
HYSPLIT dispersion model[64] to track the transit of the NPs over the previous 96 h. The results suggested 
that NPs had been carried over large distances and principally from highly populated areas in Europe, 

https://photolib.noaa.gov/Collections/National-Severe-Storms-Laboratory/Hail/emodule/462/eitem/275
https://photolib.noaa.gov/Collections/National-Severe-Storms-Laboratory/Hail/emodule/462/eitem/275
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although some deposits could have been carried from beyond Europe. It has been suggested that marine 
sources may contribute to atmospheric MPs[87] and the HYSPLIT model would indicate that this is certainly 
possible in this case.

The importance of MP transport in the atmosphere for the spread of MP pollution was emphasized by 
Stefánsson et al. (2021), who, using optical microscopy and Raman spectroscopy, recorded several types of 
MP particles of a wide range of sizes and materials in the Vatnajökull Ice Cap[40]. This ice cap, located in 
southeast Iceland, is, by size, the largest ice cap in Europe. The types of plastic materials identified included 
polyurethane, polyvinyl chloride, polyamide, and acrylonitrile butadiene styrene.

Despite the scarcity of studies regarding the presence of MPs in glaciers, these ice masses are of significant 
importance for the global circulation of water. Glaciers occupy a significant part of the planet’s surface, 
representing the largest reservoirs of freshwater. The presence of MPs has a direct impact on glacier balance, 
influencing their light absorption as well as their structure and general rheological properties[88,89]. MPs thus 
potentially contribute to the melting of glaciers, contributing to sea level rise[90]. It was recently calculated 
that glaciers worldwide lost 2% of their total volume in the 10 years between 2010 and 2020[91]; the result of 
continued global warming will lead to rising sea levels and the release of any MPs previously locked in the 
ice. The real impact of MPs has not yet been measured, but they will probably act in such a way as to 
unbalance an already established balance fundamental for the existence of these environments.

PERMAFROST
The International Permafrost Association (IPA) defines permafrost as a ground remaining at or below 0 °C 
for at least two consecutive years. It comprises an essential percentage of continental Arctic 
environments[92]. Some mathematical projections suggest that the temperature at this site may double more 
rapidly than the global average during the present century, resulting in a non-ignorable permafrost loss[93]. 
Such significant permafrost damage may result in a substantial impact on global MP flux. During the 
melting of stored ground ice, MP migration in the permafrost region will be significantly affected, the 
permafrost becoming a source of MPs rather than a storage bank.

As stated before, MP degradation may be reduced and their properties may become stable in continuous 
permafrost zones due to the absence of the freeze-thaw process, the light-shielding effect, low temperature, 
and the oxygen-deficient environment. However, global warming can change this, with an annual freeze-
thaw process occurring in the permafrost, allowing the installation of MP processes such as aging or other 
kinds of mechanical weathering, working together with biodegradation[94,95]. Such freezing and thawing 
events also allow the incorporation of MPs transmitted via the atmosphere into the permafrost. MPs may 
become chemically transformed, for example, by polymer-chain fracture and the resulting increase in 
surface functional groups[96], producing more reactive micro- or nano-plastics that are more readily spread. 
After such a thaw, the resulting water starts to work as a microplastic diffusion mechanism, carrying it into 
water bodies around the permafrost, producing a new source of contaminants for the environment.

The impact of MPs on the permafrost soil layer depends on the types of MPs present[97]. 70% of MPs can 
significantly change the physicochemical properties of their surroundings, for instance, decreasing soil 
permeability, resulting in increased water accumulation and future water evaporation[98]. Freeze-thaw cycles 
often result in the aggregation of fine particles with fragmented coarse mineral particles, making soil 
particles more cohesive and homogeneous. Finally, the freeze-thaw events can accentuate particle 
interaction, resulting in the aggregation of soil particles and MPs[99].



Page 9 of Gaylarde et al. Water Emerg Contam Nanoplastics 2023;2:20 https://dx.doi.org/10.20517/wecn.2023.27 13

QUESTIONS FOR THE FUTURE
Many authors have tried to establish correlations between changes in global mean surface temperature and 
mean sea level[100-103]. However, the impact of global warming on MP dispersion and resulting circulation has 
not even been addressed. Difficulties due to the empirical nature of such studies may explain this 
phenomenon. These difficulties lie not only in those associated with collecting suitable samples, but also in 
the lack of appropriate methods for identifying MPs, which applies to MP research in all environments. But 
the truth is that these projections are becoming more and more necessary for the future management of the 
challenges that will be faced. The main question that remains is: How important is frozen water, in its 
various forms, as a storage deposit for MPs? Ice cores from glaciers on the Tibetan plateau have been used 
to determine the changes in the environment over hundreds of years[104], indicating that MPs could be held 
in ice for many years after plastics have ceased to be produced. So, is global warming going to release large 
amounts of MPs? How much and at what speed? Colored MPs, especially, can absorb radiation and increase 
the melting of snow, the so-called “radiative forcing”[105]. Thus, recordings of MP colors in the environment 
(a commonly reported characteristic) can take on a new and important meaning when dealing with icy 
environments. Perhaps this information is even important in the new sustainability policies of the plastics 
industry. MPs could be released sooner than expected from other matrices in response to their absorption 
of energy and consequent increase in temperature due to the color. Other issues related to MPs refer to 
global balances. What is the potential impact of MPs in the cryosphere on the Earth’s biogeochemical 
cycles? There are no published studies on this. What will be the effect of global warming and the release of 
MPs previously trapped in the cryosphere on the world’s ecosystems and on marine organisms in polar 
regions?

CONCLUSIONS AND PERSPECTIVES
MPs have been detected in all the types of frozen water on the planet. The majority are present as fibers; 
this, and the types of polymer mainly identified, have led to the conclusion that MPs in frozen water are the 
result of transport from areas of human activity, even though such activity may be thousands of miles away. 
The degradation rate of MPs in frozen environments is low, resulting in accumulation and potential future 
release to cause pollution of rivers and marine environments. Their increasingly significant presence in the 
cryosphere reduces the reflection of the sun’s rays, increasing the temperature. These small particles thus 
contribute to the melting of polar environments, affecting not only sites considered borderline, which have 
a biosphere extremely sensitive to temperature change, but also the oceanic circulation as a whole, 
increasing the flow of melted ice and potentially unbalancing the global thermohaline fluxes. Even if we 
manage to solve the current MPs problem by eliminating the production of non-degradable plastics, will the 
hidden time bomb of MPs in frozen water around the world explode and destroy our environment?
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