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Abstract
This paper investigates the problem of adaptive event-triggered fuzzy control for nonlinear high-order fully actuated
systems. In this paper, a completely unknown nonlinear function is considered, and its prior knowledge is unknown.
To solve this problem, the fuzzy logic system technology is applied to approximate the unknown nonlinear function. In
order to save communication resources, a novel high-order event-triggered controller is proposed under backstepping
control. With the help of Lyapunov stability theory, it is proved that all signals of the closed-loop system are bounded.
Finally, the theoretical results are applied to the robot system to verify their validity.
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1. INTRODUCTION
With the development of modern society and modern industry, linear system theory has become relatively
well-established and sophisticated [1–3]. Many scholars have proposed various powerful analysis tools for lin-
ear systems. However, with the progress of science and technology and the improvement of the accuracy of
measuring tools, the understanding of the actual system is gradually deepened, and the requirements for its
control performance are also increasingly high. Ignoring some objective factors, some practical systems are
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modeled as linear systems and controller designs are carried out, but the designed controllers have not met
the requirements for the control performance of practical systems. In such cases, it is particularly necessary
to model some practical systems into nonlinear systems. This includes systems such as unmanned vehicle
systems [4], unmanned aerial vehicle systems [5], robot systems, and manipulator systems [6]. Therefore, non-
linear systems have received extensive attention from scholars at home and abroad and have proposed various
tools to handle the control problem of nonlinear systems, such as adaptive backstepping control [7,8], sliding
mode control [9], etc. Among them, the combination of backstepping recursive design and adaptive control
has produced a large number of excellent results [10–14].

The high-order fully actuated system possesses unparalleled control characteristics compared to other sys-
tems. Its fully actuated characteristics enable the elimination of all dynamic characteristics of the open-loop
system while establishing new and desired closed-loop dynamic characteristics. About high-order fully actu-
ated systems, there have been some excellent results [15–23]. Among them, The work [19] proposed the direct
parametric approach of fully-actuated high-order systems. A constrained cooperative control is proposed [22]

for high-order fully actuated multiagent systems with prescribed performance.

Since the beginning of this century, networked control systems [24–29] have been widely used in remote oper-
ation, industrial automation, building energy conservation, and other fields. This is due to their low mainte-
nance cost and high flexibility. In the networked control system, the actuator, controller, sensor, and other
components transmit information through the shared network channel. Therefore, it is necessary to reduce
the occupation of shared communication by single subsystem control to achieve the purpose of saving cost
and energy. The traditional sampling control [30–33]is based on the system signal sampling value instead of
continuous value and takes different constant values periodically, which has relatively high communication
efficiency compared with continuous time control. Sampling control requires information transmission and
control update at a conservative fixed frequency regardless of obvious changes in system performance, so it
is not suitable for networked control systems with high integration, which leads to the emergence of more
efficient control of resource utilization, namely event-triggered control. The key point of the event-triggered
control design is to build an event-triggered mechanism. The most basic types are absolute threshold type, rel-
ative threshold type, and mixed threshold type. The construction of an event-triggered mechanism depends
not only on the system structure but also on the expected control objectives. Even with the increase in sys-
tem complexity and performance requirements, additional dynamic and online adjustment parameters need
to be introduced. Over the past decade, significant progress has been made in the research of event-triggered
control for nonlinear systems [34–43].

Inspired by the above excellent results and combined with the reality of the lack of event-triggered control
results of the high-order fully activated system, this paper studies the adaptive fuzzy event-triggered control
for the high-order fully activated system. The contribution of this paper is reflected in two aspects:

1) For the uncertain high-order fully actuated nonlinear system, the unknownnonlinear function is considered,
and the fuzzy logic system (FLS) is used to approximate the nonlinear function without a priori condition of
the nonlinear function.

2) The proposed event-triggered scheme for the uncertain high-order fully nonlinear system can effectively
eliminate the continuous update of the designed controller, thus saving communication resources.

The organization of this article is arranged as follows. The second section includes problem formulas and
preliminary knowledge. The third section introduces an event-triggered controller design scheme. The fourth
section shows the simulation. The fifth section is the summary.
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Notation

𝐼𝑛 represents the identity matrix and

𝑥 (0∼𝑛) =


𝑥

¤𝑥
...

𝑥 (𝑛)


,

𝐴0∼𝑛−1 =
[
𝐴0 𝐴1 . . . 𝐴𝑛−1

]
,

𝐼◦𝑛 =


0 0 1

0
. . . 0

1 0 0

 ,

𝑥 (0∼𝑛)𝑖∼ 𝑗 =


𝑥 (0∼𝑛)𝑖

𝑥 (0∼𝑛)𝑖+1
...

𝑥 (0∼𝑛)𝑗


, 𝑗 ≥ 𝑖

Φ(𝐴0∼𝑛−1) =


0 𝐼

. . .

𝐼

−𝐴0 −𝐴1 . . . 𝐴𝑛−1


.

2. PROBLEM FORMULAS AND PRELIMINARY KNOWLEDGE
2.1. Problem statement
Consider the following uncertain high-order fully nonlinear system:

𝑥
(𝑝1)
1 =𝑔1(𝑥 (0∼𝑝1−1)

1 )𝑥2 + 𝑓1(𝑥 (0∼𝑝1−1)
1 ),

𝑥
(𝑝 𝑗 )
𝑗 =𝑔 𝑗 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼ 𝑗 )𝑥 𝑗+1 + 𝑓 𝑗 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼ 𝑗 ),

𝑥
(𝑝𝑛)
𝑛 =𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)𝑢 + 𝑓𝑛 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑛),

(1)

where 𝑝𝑖 ∈ N+, and 𝑢 denotes the system input. 𝑓𝑖 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼ 𝑗 ) are sufficiently smooth unknown nonlinear

functions, 𝑔𝑖 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼ 𝑗 ) are control gain functions, and satisfy full-actuation conditions.

Remark 1 The above-mentioned high-order fully nonlinear system is the general form of a second-order fully
nonlinear system. For practical examples, such as robotic systems, it is no longer necessary to transform a high-
order system into a first-order system. Instead, we can deal with it directly.

2.2. Preliminaries knowledge

Assumption 1 [37] There are two constants that the control gain functions 0 < 𝑔
𝑗
≤ |𝑔 𝑗 (𝑥 (0∼𝑝𝑖−1)𝑖 |𝑖=1∼ 𝑗 ) | ≤

𝑔̄ 𝑗 , 𝑗 = 1, · · · , 𝑛.

Remark 2 The above assumption is a common standard condition that ensures the controllability of the uncertain
high-order fully nonlinear system. This is derived from modeling real systems, and it makes perfect sense.

Lemma 1 [38] The unknown nonlinear continuous function 𝜁 (𝜉) is defined on a compact set. And there is an FLS
satisfying the following inequality

𝜁 (𝜉) = 𝑊∗𝑇𝑆(𝜉) + 𝛿(𝜉), (2)
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where 𝛿(𝜉) indicates the any estimation error which satisfies |𝛿(𝑥) | ≤ 𝛿.

Lemma 2 [38] For ∀𝜖 > 0 and 𝜎 ∈ 𝑅, it can be concluded that

0 ≤ |𝜎 | − 𝜎 tanh(𝜎
𝜖
) ≤ 0.2785𝜖 . (3)

Lemma 3 [18] Design the matrix 𝐴0∼𝑝𝑖−1
𝑖 ∈ R1×𝑝𝑖 so that the matrix Φ(𝐴0∼𝑝𝑖−1

𝑖 ) ∈ R𝑝𝑖×𝑝𝑖 is stable. Moreover,
according to Lyapunov Theorem, there is a matrix 𝑃𝑖 (𝐴0∼𝑝𝑖−1

𝑖 ) ∈ R𝑝𝑖×𝑝𝑖 , which is positive definite, satisfying

Φ(𝐴0∼𝑝𝑖−1
𝑖 )𝑇𝑃𝑖 (𝐴0∼𝑝𝑖−1

𝑖 )+𝑃𝑖 (𝐴0∼𝑝𝑖−1
𝑖 )Φ(𝐴0∼𝑝𝑖−1

𝑖 ) = −𝜌𝑖 𝐼𝑖 , (4)

where 𝜌𝑖 > 0 (𝑖 = 1, · · · , 𝑛) are design parameters.

3. CONTROLLER DESIGN AND STABILITY ANALYSIS
3.1. Adaptive event-triggered controller design
To facilitate the calculation, we first give some necessary coordinate transformations:

𝑃̃𝑖 (𝐴0∼𝑝𝑖−1
𝑖 ) = 𝐼◦2𝑃𝑇𝑖 (𝐴

0∼𝑝𝑖−1
𝑖 ),

𝑃𝑖 (𝐴0∼𝑝𝑖−1
𝑖 ) =

[
𝑃𝑖𝐹 (𝐴0∼𝑝𝑖−1

𝑖 ) · · · 𝑃𝑖𝐿 (𝐴0∼𝑝𝑖−1
𝑖 )

]
,

𝑃̃−1
𝑖 (𝐴0∼𝑝𝑖−1

𝑖 ) =
[
𝑄𝑖11(𝐴0∼𝑝𝑖−1

𝑖 ) 𝑄𝑖12(𝐴0∼𝑝𝑖−1
𝑖 ) 𝑄𝑖13(𝐴0∼𝑝𝑖−1

𝑖 )
𝑄𝑖𝐹 (𝐴0∼𝑝𝑖−1

𝑖 ) 𝑄𝑖𝑀 (𝐴0∼𝑝𝑖−1
𝑖 ) 𝑄𝑖𝐿 (𝐴0∼𝑝𝑖−1

𝑖 )

]
,

where 𝑄𝑖𝐿 (𝐴0∼𝑝𝑖−1
𝑖 ) ≠ 0 (𝑖 = 1, · · · , 𝑛).

Step 1: Let

𝑠
(0∼𝑝1−1)
1 = 𝑥 (0∼𝑝1−1)

1 , (5)

and

𝑃̃2(𝐴0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 = 𝑥 (0∼𝑝2−1)
2 −

[
𝛼1
0

]
.

With the help of the notations, one has

𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 = 𝑥2 − 𝛼1.

Choose virtual controller 𝛼1 as

𝛼1 = − 1
𝑔1(𝑥 (0∼𝑝1−1)

1 )
(𝐴(0∼𝑝1−1)

1 𝑠
(0∼𝑝1−1)
1 + 1

2𝑎2
1
𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝜃1𝑆
𝑇
1 𝑆1 +

1
2
𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 ). (6)

The Lyapunov candidate function 𝑉1 is designed as

𝑉1 = (𝑠(0∼𝑝1−1)
1 )𝑇𝑃1(𝐴0∼𝑝1−1

1 )𝑠(0∼𝑝1−1)
1 + 1

2
𝜃2

1, (7)

where 𝜃1 = max{‖𝑊1‖2}, 𝜃1 = 𝜃1 − 𝜃1, and 𝜃1 is the estimation of 𝜃1.
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With the help of FLS and Young’s inequality, one gets

𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝐹1(𝑋1) = 𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 (𝑊𝑇
1 𝑆1(𝑋1) + 𝛿1)

≤
(𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 )2𝜃1𝑆
𝑇
1 (𝑋1)𝑆1(𝑋1)

2𝑎2
1

+ 1
2
𝑎2

1 +
1
2
𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 + 1
2
𝛿2

1,

(8)

where 𝐹1(𝑋1) = 𝑓1(𝑥 (0∼𝑝1−1)
1 ), 𝑋1 = [𝑥 (0∼𝑝1−1)

1 ] and 𝑎1 is a constant.

The adaptive law 𝜃1 is chosen as

¤̂𝜃1 =
1
𝑎2

1
𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝑆𝑇1 𝑆1 − 𝑙1𝜃1. (9)

Based on (8) and (9), one gets

¤𝑉1 ≤ − 𝜌1(𝑠(0∼𝑝1−1)
1 )𝑇 𝑠(0∼𝑝1−1)

1 − 1
2
𝑙1𝜃

2
1 + 𝑎2

1 + 𝛿2
1 +

1
2
𝑙1𝜃

2
1

+ 2𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝑔1(𝑥 (0∼𝑝1−1)
1 )𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 . (10)

Step 2: Based on the notations, one has

𝑃𝑇3𝐿 (𝐴
0∼𝑝3−1
3 )𝑠(0∼𝑝3−1)

3 = 𝑥3 − 𝛼2, (11)

From (1) and (11), the time derivative of 𝑠2 is

𝑠
(𝑝2)
2 =𝑄2𝐹 (𝐴0∼𝑝2−1

2 )( ¤𝑥2 − ¤𝛼1) +𝑄2𝑀 (𝐴0∼𝑝2−1
2 ) ¤𝑥 (1∼𝑝2−2)

2 +𝑄2𝐿 (𝐴0∼𝑝2−1
2 ) 𝑓2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)

+𝑄2𝐿 (𝐴0∼𝑝2−1
2 )𝑔2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)𝑃3𝐿 (𝐴(0∼𝑝3−1)
3 )𝑠(0∼𝑝3−1)

3 +𝑄2𝐿 (𝐴0∼𝑝2−1
2 )𝑔2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)𝛼2. (12)

Choose virtual controller 𝛼2 as

𝛼2 = − 1
𝑄2𝐿 (𝐴0∼𝑝2−1

2 )𝑔2(𝑥 (0∼𝑝𝑖−1)𝑖 |𝑖=1∼2)
(𝐴(0∼𝑝2−1)

2 𝑠
(0∼𝑝2−1)
2

+ 1
2𝑎2

2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝜃2𝑆
𝑇
2 𝑆2 +

1
2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 ), (13)

and (12) can be rewritten as state-space form

¤𝑠(0∼𝑝2−1)
2 = Φ(𝐴0∼𝑝2−1

2 )𝑠(0∼𝑝2−1)
2 +

[
0
𝐻2

]
where 𝐻2 = 𝑄2𝐹 (𝐴0∼𝑝2−1

2 ) ( ¤𝑥2−¤𝛼1)− 1
2𝑎2

2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝜃2𝑆
𝑇
2 𝑆2 +𝑄2𝑀 (𝐴0∼𝑝2−1

2 ) ¤𝑥 (1∼𝑝2−2)
2 +𝑄2𝐿 (𝐴0∼𝑝2−1

2 )

× 𝑓2(𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼2) − 1

2𝑃
𝑇
2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 ) +𝑄2𝐿 (𝐴0∼𝑝2−1
2 )𝑔2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)𝑃3𝐿 (𝐴(0∼𝑝3−1)
3 )𝑠(0∼𝑝3−1)

3 .

The Lyapunov function candidate 𝑉2 is presented as

𝑉2 = 𝑉1 + (𝑠(0∼𝑝2−1)
2 )𝑇𝑃2(𝐴0∼𝑝2−1

2 )𝑠(0∼𝑝2−1)
2 + 1

2
𝜃2

2 . (14)
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And similar to the (8), one gets

𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝐹2(𝑋2) = 𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 (𝑊𝑇
2 𝑆2(𝑋2) + 𝛿2)

≤
(𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 )2𝜃2𝑆
𝑇
2 (𝑋2)𝑆2(𝑋2)

2𝑎2
2

+ 1
2
𝑎2

2 +
1
2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 + 1
2
𝛿2

2

(15)

where 𝐹2(𝑋2) = 𝑄2𝐹 (𝐴0∼𝑝2−1
2 )( ¤𝑥2 − ¤𝛼1) +𝑄2𝑀 (𝐴0∼𝑝2−1

2 ) ¤𝑥 (1∼𝑝2−2)
2 +𝑄2𝐿 (𝐴0∼𝑝2−1

2 ) 𝑓2(𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼2)

+ 𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 , 𝑋2 = [𝑥 (0∼𝑝1−1)
1 , 𝑥

(0∼𝑝2−1)
2 , 𝜃1].

The adaptive update law 𝜃2 is designed as

¤̂𝜃2 =
1
𝑎2

2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝑆𝑇2 𝑆2 − 𝑙2𝜃2. (16)

Replacing (15) and (16) into (14), one gives

¤𝑉2 ≤ −
2∑
𝑗=1
𝜏𝑗 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼2)𝑇 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼2) +

2∑
𝑗=1

(𝑎2
𝑗 + 𝛿2

𝑗 +
1
2
𝑙 𝑗𝜃

2
𝑗 ) −

2∑
𝑗=1

𝑙 𝑗

2
𝜃2
𝑗

+ 2𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝑄2𝐿 (𝐴0∼𝑝2−1
2 )𝑔2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)𝑃3𝐿 (𝐴(0∼𝑝3−1)
3 )𝑠(0∼𝑝3−1)

3 (17)

Step k:(3 ≤ 𝑘 ≤ 𝑛 − 1) Based on the notations, one has

𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 = 𝑥𝑘 − 𝛼𝑘−1, (18)

Choose virtual controller 𝛼𝑘 as

𝛼𝑘 = − 1
𝑄𝑘𝐿 (𝐴0∼𝑝𝑘−1

𝑘 )𝑔𝑘 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑘 )

(𝐴(0∼𝑝𝑘−1)
𝑘 𝑠

(0∼𝑝𝑘−1)
𝑘

+ 1
2𝑎2

𝑘

𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝜃𝑘𝑆
𝑇
𝑘 𝑆𝑘 +

1
2
𝑃𝑇𝑘𝐿 (𝐴

0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 ). (19)

The Lyapunov function candidate 𝑉𝑘 is presented as

𝑉𝑘 = 𝑉𝑘−1 + (𝑠(0∼𝑝𝑘−1)
𝑘 )𝑇𝑃𝑘 (𝐴0∼𝑝𝑘−1

𝑘 )𝑠(0∼𝑝𝑘−1)
𝑘 + 1

2
𝜃2
𝑘 . (20)

And similar to the (8), one gets

𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝐹𝑘 (𝑋𝑘 ) = 𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 (𝑊𝑇
𝑘 𝑆𝑘 (𝑋𝑘 ) + 𝛿𝑘 )

≤
(𝑃𝑇𝑘𝐿 (𝐴

0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 )2𝜃𝑘𝑆
𝑇
𝑘 (𝑋𝑘 )𝑆𝑘 (𝑋𝑘 )

2𝑎2
𝑘

+ 1
2
𝑎2
𝑘 +

1
2
𝑃𝑇𝑘𝐿 (𝐴

0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 + 1
2
𝛿2
𝑘

(21)

where 𝐹𝑘 (𝑋𝑘 ) = 𝑄𝑘𝐹 (𝐴0∼𝑝𝑘−1
𝑘 )( ¤𝑥𝑘− ¤𝛼𝑘−1) +𝑄𝑘𝑀 (𝐴0∼𝑝𝑘−1

𝑘 ) ¤𝑥 (1∼𝑝𝑘−2)
𝑘 +𝑄𝑘𝐿 (𝐴0∼𝑝𝑘−1

𝑘 ) 𝑓𝑘 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑘 )

+ 𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑄𝑘𝐿 (𝐴0∼𝑝𝑘−1
𝑘 )𝑔𝑘 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑘 ), 𝑋𝑘 = [𝑥 (0∼𝑝1−1)
1 , · · · , 𝑥 (0∼𝑝𝑘−1)

𝑘 , 𝜃1, · · · , 𝜃𝑘 ] and 𝑎𝑘
is a constant.
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The adaptive law 𝜃𝑘 is designed as

¤̂𝜃𝑘 =
1
𝑎2
𝑘

𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑆𝑇𝑘 𝑆𝑘 − 𝑙𝑘𝜃𝑘 . (22)

Based on (21) and (22), one gives

¤𝑉𝑘 ≤ −
𝑘∑
𝑗=1
𝜏𝑗 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑘 )𝑇 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑘 ) +

𝑘∑
𝑗=1

(𝑎2
𝑗 + 𝛿2

𝑗 +
1
2
𝑙 𝑗𝜃

2
𝑗 ) −

𝑘∑
𝑗=1

𝑙 𝑗

2
𝜃2
𝑗

+ 2𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑔𝑘 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑘 )𝑄𝑘𝐿 (𝐴0∼𝑝𝑘−1

𝑘 )𝑃(𝑘+1)𝐿 (𝐴
(0∼𝑝 (𝑘+1)−1)
𝑘+1 )𝑠(0∼𝑝𝑘+1−1)

𝑘+1 (23)

Step n: In this part, the adaptive HOFA event-triggered controller of the system is constant as

𝑣(𝑡) = −(1 + 𝛾)(𝛼𝑛 tanh( 𝑠
(0∼𝑝𝑛−1)
𝑛 𝑃𝑛𝐿𝑔𝑛𝛼𝑛𝑄𝑛𝐿

𝜌
) + 𝑏̄ tanh( 𝑠

(0∼𝑝𝑛−1)
𝑛 𝑃𝑛𝐿𝑔𝑛 𝑏̄𝑄𝑛𝐿

𝜌
), (24)

𝑢(𝑡) = 𝑣(𝑡𝑘 ), 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, (25)
𝑡𝑘+1 = inf{𝑡 ≥ 0| |𝜓(𝑡) | ≥ 𝛾 |𝑢(𝑡) | + 𝑜}, (26)

where 𝜓(𝑡) = 𝑢(𝑡) − 𝑣(𝑡), 𝑜 > 0, 𝜌 > 0, 0 < 𝛾 < 1 and 𝑏̄ > 𝑑
1−𝛾 are design parameters.

From (1), the time derivative of 𝑠𝑛 is

𝑠
(𝑝𝑛)
𝑛 =𝑄𝑛𝐹 (𝐴0∼𝑝𝑛−1

𝑛 )( ¤𝑥𝑛 − ¤𝛼𝑛−1) +𝑄𝑛𝑀 (𝐴0∼𝑝𝑛−1
𝑛 ) ¤𝑥 (1∼𝑝𝑛−1)

𝑛 +𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 ) 𝑓𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)

+𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)𝑢 +𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)𝛼𝑛
−𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1

𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑛)𝛼𝑛 (27)

Choose virtual controller 𝛼𝑛 as

𝛼𝑛 = − 1
𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1

𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑛)

(𝐴(0∼𝑝𝑛−1)
𝑛 𝑠(0∼𝑚𝑛−1)

𝑛

+ 1
2𝑎2

𝑛

𝑃𝑇𝑛𝐿 (𝐴
0∼𝑝𝑛−1
𝑛 )𝑠(0∼𝑚𝑛−1)

𝑛 𝜃𝑛𝑆
𝑇
𝑛 𝑆𝑛 +

1
2
𝑃𝑇𝑛𝐿 (𝐴

0∼𝑝𝑛−1
𝑛 )𝑠(0∼𝑝𝑛−1)

𝑛 ), (28)

and (27) can be rewritten as state-space form

¤𝑠(0∼𝑝𝑛−1)
𝑛 = Φ(𝐴0∼𝑝𝑛−1

𝑛 )𝑠(0∼𝑝𝑛−1)
𝑛 +

[
0
𝐻𝑛

]
where 𝐻𝑛 = 𝑄𝑛𝐹 (𝐴0∼𝑝𝑛−1

𝑛 )( ¤𝑥𝑛 − ¤𝛼𝑛−1) +𝑄𝑛𝑀 (𝐴0∼𝑝𝑛−1
𝑛 ) ¤𝑥 (1∼𝑝𝑛−2)

𝑛 +𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 ) 𝑓𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)
− 1

2𝑎2
𝑛
𝑃𝑇𝑛𝐿 (𝐴

0∼𝑝𝑛−1
𝑛 )𝑠(0∼𝑝𝑛−1)

𝑛 𝜃𝑛𝑆
𝑇
𝑛 𝑆𝑛 − 1

2𝑃
𝑇
𝑛𝐿 (𝐴

0∼𝑝𝑛−1
𝑛 )𝑠(0∼𝑝𝑛−1)

𝑛 −𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)𝛼𝑛.

The Lyapunov function candidate 𝑉𝑛 is presented as

𝑉𝑛 = 𝑉𝑛−1 + (𝑠(0∼𝑝𝑛−1)
𝑛 )𝑇𝑃𝑛 (𝐴0∼𝑝𝑛−1

𝑛 )𝑠(0∼𝑝𝑛−1)
𝑛 + 1

2
𝜃2
𝑛. (29)

The FLS is used to approximate nonlinear dynamics and adaptive law are same as (21, 22). And from (24, 25,
26), we have 𝑣(𝑡) = 𝜆2(𝑡)𝑜 + (1 + 𝛾𝜆1(𝑡))𝑢(𝑡), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), where 𝜆1(𝑡) ∈ [−1, 1], 𝜆2(𝑡) ∈ [−1, 1]. Then, we
can get

𝑢(𝑡) = 𝑣(𝑡)
1 + 𝛾𝜆1(𝑡)

− 𝜆2(𝑡)𝑜
1 + 𝛾𝜆1(𝑡)

. (30)
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According to 𝑃𝑇𝑛𝐿 𝑠
(0∼𝑝𝑛−1)
𝑛 𝑄𝑛𝐿𝑔𝑛
1+𝛾𝜆1 (𝑡) ≤ 𝑃𝑇𝑛𝐿 𝑠

(0∼𝑝𝑛−1)
𝑛 𝑄𝑛𝐿𝑔𝑛

1+𝛾 , 𝑃𝑇𝑛𝐿𝑠
(0∼𝑝𝑛−1)
𝑛 𝑄𝑛𝐿𝑔𝑛 | 𝜆2𝑜

1+𝛾𝜆1 (𝑡) | ≤ 𝑃𝑇𝑛𝐿𝑠
(0∼𝑝𝑛−1)
𝑛 𝑄𝑛𝐿𝑔𝑛

𝑜
1−𝜆1

, 𝑏̄ >
𝑜

1−𝛾 , it yields

¤𝑉𝑛 ≤ −
𝑛∑
𝑗=1

𝜌 𝑗 (𝑠
(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑛)𝑇 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑛) +

𝑛∑
𝑗=1

(𝑎2
𝑗 + 𝛿2

𝑗 +
1
2
𝑙 𝑗𝜃

2
𝑗 ) −

𝑛∑
𝑗=1

𝑙 𝑗

2
𝜃2
𝑗 + 0.2785𝜌 (31)

3.2. Stability analysis
Theorem 1: For the high-order fully actuated nonlinear system (1) under the Assumption 1, the virtual con-
troller (6), (13), (19), (28), the actual controller (24), the adaptive law (9), (16), (22), and the event-triggered
mechanism (24,25,26) are designed. Then, the following statements hold:

1) All signals in the closed-loop system are bounded.

2) There is a positive constant 𝜛 which satisfies 𝑡𝑘+1 − 𝑡𝑘 ≥ 𝜛. In other words, the event-triggered condition
is Zeno-free.

Proof : 1) Let 𝑉 = 𝑉𝑛. Then we can get

¤𝑉𝑛 ≤ −
𝑛∑
𝑗=1

𝜌 𝑗 (𝑠
(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑛)𝑇 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑛) +

𝑛∑
𝑗=1

(𝑎2
𝑗 + 𝛿2

𝑗 +
1
2
𝑙 𝑗𝜃

2
𝑗 ) −

𝑛∑
𝑗=1

𝑙 𝑗

2
𝜃2
𝑗 + 0.2785𝜖

≤ − 𝜚1𝑉𝑛 (𝑡) + 𝜚2, (32)

where 𝜚1 = min{ 𝜌𝑖
𝜆min (𝑃𝑖) , 𝑙𝑖 , 𝑖 = 1, · · · , 𝑛}, 𝜚2 =

∑𝑛
𝑗=1(𝑎2

𝑗 + 𝛿2
𝑗 + 1

2 𝑙 𝑗𝜃
2
𝑗 ). According to (40), one has

0 ≤ 𝑉 (𝑡) ≤ 𝜚2

𝜚1
+ (𝑉 (0) − 𝜚2

𝜚1
)𝑒−𝜚1𝑡 , (33)

which means that all signals are bounded.

2) From 𝜓(𝑡) = 𝑢(𝑡) − 𝑣(𝑡), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), we have
𝑑
𝑑𝑡 |𝜓 | =

𝑑
𝑑𝑡 (𝜓 × 𝜓) 1

2 = 𝑠𝑖𝑔𝑛(𝜓) ¤𝜓 ≤ 𝜓̄.

where 𝜓̄ is a constant. Since 𝜓(𝑡𝑘 ) = 0 and lim
𝑡→𝑡𝑘+1

𝜓(𝑡) = (𝛾 |𝑢(𝑡) | + 𝑜) thus 𝑡𝑘+1 − 𝑡𝑘 ≥ (𝛾 |𝑢(𝑡) | + 𝑜)/𝜓̄ > 0.

4. SIMULATION
In this section, to demonstrate the effectiveness of the designed HOFA event-triggered mechanism, a single-
link robot arm simulation is carried out.

Example 1: Consider a single-link robot system whose manipulators with an elastic revolute joint are actuated
by a brushed direct current motor that can be given by

𝑀 ¥𝑎1 + 𝑚𝑔𝑙 sin(𝑎1) − 𝐾 (𝑎2 − 𝑎1) = 0,
𝐽 ¥𝑎2 + 𝐵 ¤𝑎2 − 𝐾 (𝑎1 − 𝑎2) − 𝐾𝑇 𝐼 = 0,
𝐿 ¤𝐼 + 𝑅𝐼 + 𝐾𝐵 ¤𝑎2 − 𝑢 = 0,

where 𝑎1 and 𝑎2 are the angular positions on the link and motor sides, respectively. 𝑀 and 𝑚 represent the
load and link masses, respectively. 𝐵 is the coefficient of viscous friction, 𝑔 is the gravitational acceleration, 𝐾
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Figure 1. Trajectories of 𝑥1 in Example 1.

is stiffness coefficient of the torsional spring, 𝐽 is the rotor inertia, 𝑙 is the link length. 𝐾𝑇 and 𝐾𝐵 are torque
constants of the direct current motor and back-emf coefficient, respectively. 𝐿, 𝐼 , and 𝑅 are the armature
inductance, current, and resistance, respectively. 𝑢 is the torque input.

Obviously, the above system is a second-order system, and the proposed high-order ETC backstepping can be
handled directly without transforming it into a first-order state space form. Let 𝑥1 = 𝑎1, 𝑥2 = 𝑎2, 𝑥3 = 𝐼 .

In simulations, the robot system factors are designed as follows: 𝑅 = 25𝜔, 𝑀 = 1𝑘𝑔, 𝐾𝑇 = 1𝑁𝑚/𝐴, 𝑚𝑔𝑙 =
1𝑁𝑚, 𝐾0 = 2𝑁𝑚/𝑟𝑎𝑑, 𝐽 = 1𝑘𝑔𝑚2, 𝐵 = 0.9𝑁𝑚𝑠/𝑟𝑎𝑑, 𝐿 = 0.125𝐻, and 𝐾𝐵 = 1𝑁𝑚/𝐴.

The design parameters are chosen as 𝑎1 = 15, 𝜌1 = 0.16, 𝑙1 = 100, 𝑎2 = 16, 𝜌2 = 0.16, 𝑙2 = 80, 𝑎3 = 15,
𝜌3 = 112, 𝑙3 = 60, 𝑚̄ = 1.1, 𝑑 = 0.5, 𝛾 = 0.5, and 𝜖 = 6. The robot system of initial conditions are chosen
as 𝑥1(0) = 0.41, ¤𝑥1(0) = 0.02, 𝑥2(0) = 0.02, ¤𝑥2(0) = 0.22, 𝑥3(0) = 0.65, 𝜃1(0) = 0.24, 𝜃2(0) = 0.35, and
𝜃3(0) = 0.41. In order to satisfy Lyapunov Theorem, some matrices are designed as follows.

𝑃1(𝐴(0∼1)
1 ) =

[
341/5 2/5
2/5 84/25

]
; 𝐴1 =

[
20 0.4

]
;

𝑃2(𝐴(0∼1)
2 ) =

[
1630/7733 2/101

2/101 121/3031

]
; 𝐴2 =

[
4.04 0.4

]
;

𝑃3(𝐴3) =
[
7
]

; 𝐴3 =
[
8
]
.

The simulation results are given as follows. Figure 1 represents the response of the state 𝑥1. The response of
the state 𝑥2 is shown by Figure 2. Figure 3 shows the trajectories of the state 𝑥3. The trajectory of the state ¤𝑥1
is plotted in Figure 4. Figure 5 portrays the response of the state ¤𝑥2. Figure 6 shows the trajectory of the input
𝑢. The trigger time intervals are illustrated in Figure 7. The trajectories of adaptive laws are given in Figure 8,
Figure 9, and Figure 10 .

5. CONCLUSIONS
In this article, a novel adaptive high-order event-triggered control scheme is proposed for uncertain HOFA
nonlinear systems. This scheme not only does not require prior knowledge of the nonlinear function of the
system but also saves communication resources by designing the event-triggered scheme. Moreover, the prac-
ticality of the control scheme is verified. The future of work will be concerned with the prescribed performance
control problem and network attack problem of high-order fully activated nonlinear systems.
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Figure 2. Trajectories of 𝑥2 in Example 1.
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Figure 3. Trajectories of 𝑥3 in Example 1.
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Figure 4. Trajectories of ¤𝑥1 in Example 1.
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