
Xue et al. Ageing Neur Dis 2022;2:15
DOI: 10.20517/and.2022.17

Ageing and 
Neurodegenerative 

Diseases

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.ageneudisjournal.com

Open AccessPerspective

Ferroptotic cells augment T-cell activation and 
neuroinflammation
Ying Xue1, Fujia Lu1, Weimin Wang1,2,3

1Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 
Wuhan 430000, Hubei, China.
2Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory 
of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430000, Hubei, China.
3Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China.

Correspondence to: Dr. Fujia Lu, Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong 
University of Science and Technology, 1021 Basic Medicine Research Building, 13 Hangkong Road, Wuhan 430000, Hubei, 
China. E-mail: fujialu@hust.edu.cn; Dr. Weimin Wang, Cell Architecture Research Institute, Huazhong University of Science and 
Technology, 1022 Basic Medicine Research Building, 13 Hangkong Road, Wuhan 430000, Hubei, China. E-mail: 
weiminw@hust.edu.cn

How to cite this article: Xue Y, Lu F, Wang W. Ferroptotic cells augment T-cell activation and neuroinflammation. Ageing Neur 
Dis 2022;2:15. https://dx.doi.org/10.20517/and.2022.17

Received: 22 Jun 2022  First Decision: 29 Aug 2022  Revised: 5 Sep 2022  Accepted: 14 Sep 2022  Published: 21 Sep 2022

Academic Editors: Weidong Le, Peng Lei  Copy Editor: Peng-Juan Wen  Production Editor: Peng-Juan Wen

Abstract
Since ferroptosis, a form of cell death characterized by aberrant lipid peroxidation, was proposed 10 years ago, its 
interaction with the immune system has been revealed gradually. On the one hand, immune cell-secreted cytokines 
are able to increase or suppress ferroptosis sensitivities of other cell types, such as tumor cells and fibroblasts. On 
the other hand, ferroptotic cell-released factors have the capacity to modulate the functions of neighboring 
immune cells, including dendritic cells, macrophages, and T cells. Identifying these immunomodulatory molecules 
generated during ferroptosis paves the way for developing novel immunotherapy strategies for treating cancer and 
autoimmune diseases.
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Ferroptosis is a form of regulated cell death triggered by unrestricted accumulation of lethal lipid peroxides 
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on cell membranes[1]. Since it was identified 10 years ago, ferroptosis has been shown to be involved in the 
occurrence or progression of various pathological diseases, including cancer, neurodegeneration, 
cardiovascular diseases, and acute kidney injury[2,3]. The majority of previous studies have focused on 
illustrating the cellular intrinsic signaling and metabolic pathways that initiate or prevent the execution of 
ferroptosis, as well as attempted to clarify the associations between these pathways and cell death-related 
pathological phenotypes. However, it remains unclear how ferroptotic cells interplay with surrounding cells 
including immune cells in the pathological tissue microenvironment and whether their interactions 
contribute to the pathological progression.

Experimental autoimmune encephalitis (EAE) is the most commonly used animal model for multiple 
sclerosis (MS), which is an autoimmune disease characterized by inflammatory demyelination, 
oligodendrocyte death, and neuronal degeneration in the central nervous system[4]. MS lesions are mediated 
by the invasion of immune cells, including CD4+ T cells and monocytes[5]. Although certain features of 
ferroptosis have been observed in the MS and EAE, including iron overload, reduced expression of 
glutathione peroxidase-4, and oxidative damage[6], whether ferroptotic cells are really present and involved 
in the demyelination and MS pathogenesis is still inconclusive. Recently, Luoqian et al. observed the 
accumulations of iron and lipid peroxidation in the cortical tissue of EAE mice and found ferroptosis 
inhibitor liproxstatin-1 could relieve demyelination and neurodegeneration in animals[7]. As an essential 
gene for ferroptosis execution, acyl-CoA synthetase long-chain family member 4 (ACSL4) was also found to 
be increased in NeuN+ neuron cells along the progression of EAE. Knockdown of ACSL4 in the spinal cord 
reduced lipid peroxidation and ameliorated EAE severity. These results demonstrate that ferroptosis is 
induced in spinal cords and involved in EAE development.

Myelin autoantigen-specific T cells are major initiators and mediators of MS and EAE, including CD4+ Th1 
and Th17 cells[8]. Luoqian et al. found that ferroptotic lipid peroxidation was elevated before T-cell 
activation at the early stage of EAE[7]. Liproxstatin-1 or ACSL4 knockdown could reduce T-cell infiltration 
and prevent the onset of EAE. To test whether ferroptosis in neuronal cells can directly regulate T-cell 
function, the supernatant of ferroptotic neurons treated with classical ferroptosis inducer RSL3 or erastin 
was collected. When naïve CD4+ T cells were activated by anti-CD3 and anti-CD28 antibodies, these 
ferroptotic supernatants could enhance the secretions of IL-2 and IFNγ from T cells, suggesting that T-cell 
activation was augmented by certain factors from ferroptotic neurons. Furthermore, the adoptive transfer of 
T cells that were pretreated by ferroptotic supernatant exacerbated EAE pathogenesis.

Finally, the authors used ceruloplasmin (Cp), a cuproenzyme that can oxidize ferrous iron into ferric iron, 
to prevent ferroptosis in EAE mice. Cp administration reduced the contents of iron and lipid peroxidases in 
the spinal cord and decreased the infiltration of CD4+ T cells, resulting in relieved demyelination, neuronal 
death, and attenuated EAE clinical scores.

Overall, the study by Luoqian et al. demonstrated that ACSL4-mediated ferroptosis is induced in neuronal 
cells during the early stage of EAE progression, and then ferroptotic neurons release certain factors to 
augment T-cell activation and its effector function, which can accelerate the progression of EAE[7] 
[Figure 1]. This study is the first to provide evidence that ferroptotic cells play an immunostimulatory role 
by directly working on T cells, as well as enriching our understanding of how ferroptosis interplays with 
immune response.

Recently, the interactions between ferroptotic cells and immune cells have been revealed gradually and 
drawn more and more attention. On the one hand, immune cells are able to modulate ferroptosis sensitivity 
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Figure 1. Overview of the mechanism by which ACSL4-mediated neuronal cell ferroptosis augments CD4+ T-cell activation and EAE 
progression. HMGB1: High-mobility group box 1 protein; CRT: calreticulin; 8-OHG: 8-hydroxy-2’-deoxyguanosine; SAPE-OOH: 1-
steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine; TCR: T-cell receptor; CD4: cluster of differentiation 4; p-Akt: 
phosphorylated protein kinase B; p-Erk: phosphorylated extracellular signal-regulated kinase; EAE: experimental autoimmune 
encephalitis.

of other cells, such as tumor cells. The earliest study revealed that CD8+ T cells activated by cancer 
immunotherapy could sensitize melanoma cells to ferroptosis through secretion of IFNγ, which suppresses 
the expression of solute carrier family 7 member 11 (SLC7A11), resulting in limited uptake of cystine by 
tumor cells[9]. Furthermore, CD8+ T cell-secreted IFNγ was shown to coordinate with arachidonic acid to 
directly induce tumoral ferroptosis in the absence of synthetic molecules[10]. Combinations of checkpoint 
blockade and ferroptosis activators, such as an enzyme degrading cystine and cysteine or arachidonic acid 
supplementation, have synergistic antitumor activities across multiple murine tumor models[9,10]. In contrast 
to the ferroptosis sensitization effect of IFNγ, some inflammatory cytokines can prevent ferroptosis. 
Interleukin-6 was shown to inhibit ferroptosis of head and neck squamous cell carcinoma cells by 
JAK2/STAT3-mediated upregulation of SLC7A11[11]. Tumor necrosis factor (TNF), another T cell-secreted 
cytokine, was able to protect synovial fibroblasts from ferroptosis by increasing system xc- expression and 
cystine uptake. In the collagen-induced arthritis mouse model, a TNF blockade combined with a ferroptosis 
inducer synergistically initiated ferroptosis in synovial fibroblasts and attenuated arthritis progression[12]. 
Therefore, in different inflammatory scenarios, cytokines secreted by immune cells regulate the ferroptosis 
of their neighboring cells distinctly by reprogramming the metabolisms of fatty acids or amino acids.

On the other hand, ferroptotic cells can be sensed and processed by immune cells, including macrophages 
or dendritic cells, to modulate innate and adaptive immune responses. Ferroptosis was initially considered 
an immunogenic cell death (ICD), a type of cell demise that can elicit uptake of cellular components by 
dendritic cells (DCs) and enhance antigen presentation to T cells, resulting in the activation of antigen-
specific cytotoxic T-cell response. The earliest evidence shows that ferroptotic cells could release damage-
associated molecular patterns (DAMPs) such as high-mobility group box 1 protein (HMGB1) and 
calreticulin (CRT) exposure[13-15], which could all function as immune adjuvants to promote the activation 
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and maturation of DCs[16]. Later, Efimova et al. reported that the early ferroptotic MCA205 cells induced by 
short-term treatment of RSL3 stimulated maturation of bone marrow-derived DCs and induced a 
vaccination-like effect in vivo in contrast to late ferroptotic cells[17]. Another recent study also used the same 
MCA205 cells whose ferroptosis was induced by ML162 or GPX4 knockdown; however, it drew the 
opposite conclusion that ferroptotic cells were not immunogenic regardless of the stage of cell death, even 
though they could release ATP, HMGB1, and cytokines including CXCL1 and IFNβ. Mechanistically, 
engulfed ferroptotic cells suppressed the expressions of pro-inflammatory genes and impaired antigen 
cross-presentation in DCs[18]. The above results suggest that ferroptotic tumor cells caused by different 
inducers may have different immunomodulatory effects due to certain unique molecules released by these 
cells. One of the crucial features of ferroptosis is the accumulation of lipid peroxides such as oxidized 
phospholipids of plasma membranes. Although an oxidized phospholipid [1-palmitoyl-2-arachidonoyl-sn-
glycero-3-phosphorylcholine (PAPC)] was shown to impair the differentiation and immune-stimulatory 
function of in vitro cultured DCs[19,20], it is unknown whether this oxidized PAPC is enriched in ferropototic 
cells. A recent study identified another oxidized phospholipid, 1-steaoryl-2-15-HpETE-sn-glycero-3-
phosphatidylethanolamine (SAPE-OOH), which is generated during ferroptosis of leukemic cells and 
functions as an eat-me signal to promote phagocytosis of ferroptotic cells by macrophage[21]. In addition to 
oxidized lipids, oxidized nucleobases, such as 8-hydroxy-2’-deoxyguanosine (8-OHG), were also found to 
be released by GPX4 deficient pancreatic cancer cells. 8-OHG induced macrophage infiltration and 
activation via TMEM173, resulting in immunosuppression and tumor progression[22]. Therefore, although it 
is still controversial whether ferroptosis is immunogenic or not, specific molecules generated and released 
from ferroptotic cells would modulate the functions of DCs or macrophages and the subsequent 
engagement of T-cell response.

Furthermore, it would be worth knowing whether ferroptotic cells have direct impacts on other immune 
cells, especially T cells. Luoqian and colleagues provided the first evidence that some factors released from 
ferroptotic cells work on T cells directly to enhance their activation and effector function. These mysterious 
factors are present in the conditioned medium from ferroptotic primary neurons treated with RSL3 or 
erastin. Although the identities of these factors are not revealed yet, they have the ability to amplify the 
signaling transduction of T-cell receptors, including activations of Akt and Erk. These data inspire our 
interest in further investigating the characteristics and identities of these T cell-promoting factors, although 
it will be more rigorous to test the effects of trace residuals of RSL3 or erastin in the supernatant from 
ferroptotic cells on T cells.

Altogether, ferroptotic cells could be immunosuppressive or immunostimulatory due to their broader 
impacts on various types of immune cells, including DCs, macrophages, and T cells. Identifying these 
immunomodulatory molecules generated from ferroptotic cells will be the top priority of future research in 
this field. It is also worth knowing whether these ferroptosis-related immunomodulatory molecules are cell 
type-specific. In other words, can the same factor act on multiple types of immune cells? A further question 
is: Do different ferroptotic cells release different sets of immunomodulatory molecules? For example, other 
than neurons, can other types of ferroptotic cells release the same T cell-promoting factors? The answers to 
these questions hold promise for developing novel therapeutic approaches to treat cancer or autoimmune 
diseases.
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