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Abstract
Carbon-based materials have attracted significant interest due to their porous structure and high specific surface 
area. The stability of carbon provides an optimal environment for microbial growth and activity. This paper 
presents a comprehensive review of microorganisms immobilized on carbon-based materials. Techniques used to 
immobilize microorganisms on various carbon-based materials are discussed initially. Subsequently, the review 
introduces the application of these immobilized microorganisms in the restoration of soil and water environments, 
including the treatment of organic pollutants, heavy metals, and ammonia nitrogen. Overall, this work enhances our 
understanding of the microbial pathways facilitated by carbon-based materials.

Keywords: Carbon-based materials, microorganism immobilization, pollutants, remediation

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/wecn
https://dx.doi.org/10.20517/wecn.2024.14
https://dx.doi.org/10.20517/wecn.2024.14
http://crossmark.crossref.org/dialog/?doi=10.20517/wecn.2024.14&domain=pdf


Page 2 of Wang et al. Water Emerg Contam Nanoplastics 2024;3:19 https://dx.doi.org/10.20517/wecn.2024.1416

INTRODUCTION
Amid the rapid progression of urbanization and industrialization, toxic pollutants are continuously 
discharged into the environment, accumulating in the air, water, and soil, and ultimately infiltrating the 
human body, causing harm to human health. According to the World Health Organization (WHO), nearly 
a quarter of all human diseases today can be traced back to prolonged exposure to environmental pollution. 
This indicates the pressing need for effective strategies to mitigate environmental pollution and its impacts 
on human health[1]. Indeed, environmental pollution remains a major global challenge, and the 
implementation of appropriate environmental remediation technologies is crucial for preserving human 
health and safety. Currently, remediation strategies for environmental pollution are primarily classified into 
physical, chemical, and biological remediation technologies[2]. Among these, biological remediation 
methods have garnered increasing attention due to their cost-effectiveness and wide applicability. This 
underscores the potential of microbial remediation as a sustainable and efficient solution for environmental 
pollution. Nonetheless, although the microbial method for environmental remediation has its advantages, it 
also has certain limitations. These include the reduction or loss of microbial activity, challenges in 
separation and recovery post-adsorption, poor genetic stability of microbes leading to easy alterations, and 
limited adsorption capacity for heavy metals[3]. Consequently, current research is focused on effectively 
enhancing the treatment efficacy of the microbial method and improving microbial activity. This 
underscores the necessity for innovative solutions to overcome these limitations and unlock the full 
potential of microbial remediation for environmental pollution.

Microbial immobilization technology is indeed widely regarded as a potentially effective approach. The 
process of immobilizing microorganisms offers numerous advantages including high biomass, stability, 
resistance to loss, rapid reaction speed, strong anti-toxicity, and ease of separation[4]. However, the carrier 
material employed in this process can exhibit weak mechanical stability and may release toxic elements, 
leading to a loss of microbial activity. Therefore, the selection of the carrier material is a pivotal aspect of 
microbial immobilization technology. Despite the challenges that require further investigation, particularly 
in the selection of carrier materials, the ideal immobilized carrier material should possess attributes such as 
high biocompatibility, accessibility, stability, a large specific surface area, and low cost. This underscores the 
necessity for ongoing research in this area to optimize the effectiveness of microbial immobilization 
technology.

Currently, the primary materials used as carriers include polymers, metal nanoparticles, organometallic 
frameworks, and carbon materials[5]. Among these, carbon materials have emerged as an ideal platform for 
microbial carrier materials in recent years. This is attributed to their stable structure, abundant pore 
structure, and large specific surface area. Additionally, they exhibit excellent biocompatibility, low cost, and 
are rich in functional groups such as hydroxyl and carboxyl groups. These characteristics render carbon 
materials particularly suitable for microbial immobilization, enhancing the efficacy of this approach for 
environmental remediation[6]. However, further research is required to fully exploit the potential of these 
materials and address any associated challenges. As the use of carbon-based materials for microbial 
immobilization continues to rise, these materials are assuming an increasingly important role in the 
treatment of environmental pollutants [Figure 1].

In recent years, some researchers have scrutinized the potential of microbial immobilization techniques in 
various environmental remediation contexts, introducing a diversity of carrier materials and fixation 
methods, and deliberating on the factors influencing the microbial immobilization process[7,8]. However, 
despite the escalating utilization of carbon-based materials in microbial immobilization, a comprehensive 
review of the application of carbon-based immobilized microorganisms in the treatment of environmental 
pollutants remains absent.
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Figure 1. The number of immobilized microorganisms in different materials published per year (Search keywords: immobilized 
microorganism, biochar, metal oxide, polymer, carbon-based materials. Source: Web of Science, search date: 06-30-2024).

To address this lacuna, we embarked on a meticulous examination of the literature spanning the past two 
decades, culminating in this exhaustive review. Consequently, we present an overview of the methodologies 
for immobilizing microorganisms using carbon-based materials such as biochar, activated carbon, carbon 
nanotubes, and graphene. We further explore their application in the removal of pollutants from aquatic 
and soil environments. This review aims to serve as a valuable reference for future research on the use of 
carbon-based materials for microbial immobilization in the remediation of water and soil pollution.

CARBON-BASED MATERIALS
The selection of the carrier material is a crucial factor influencing the immobilization of microorganisms. 
Different raw materials, along with varying preparation methods and processes, yield different material 
properties. Key characteristics to consider when selecting a carrier material include its specific surface area, 
pore size, structure, and mechanical strength, as these significantly impact the microbial load[9].

Recently, carbon-based materials have emerged as some of the most promising nanostructured materials. 
These materials have garnered significant attention due to their distinctive characteristics, which include 
high porosity, extensive surface area, functional groups, modifiable surfaces, and a predominantly aromatic 
structure. Therefore, they are frequently employed as versatile carriers for microbial immobilization. In 
addition, a thorough understanding of the different characteristics of these carbon-based materials is 
essential for the effective application of microbial immobilization technology in environmental 
remediation[10,11]. This highlights the need for continued research and development in this area to identify 
and optimize the use of suitable carrier materials.
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Biochar
Biochar has gained significant attention in recent years as an effective immobilization matrix. Its high 
carbon content, cation exchange capacity, porosity, stability, and abundance of surface functional groups 
make it an ideal choice for microbial immobilization[12]. These properties allow biochar to support high 
enrichment of microorganisms, thereby enhancing the effectiveness of the microbial method for 
environmental remediation.

This underscores the potential of biochar as a sustainable and efficient solution for environmental pollution. 
However, further research is needed to fully exploit the potential of biochar and address associated 
challenges, such as low microbial activity and microbial enrichment and other problems. To address these 
issues, Han et al. investigated the loading of Bacillus subtilis 168 onto biochar modified with acid and 
quaternary ammonium salts to enhance the removal of zearalenone[13]. The study’s findings indicated that 
the modified biochar exhibited an improved pore structure (27.26 nm) compared to pristine biochar 
(20.41 nm), which contributed to its enhanced bacterial carrying capacity. Moreover, Zhang et al. 
investigated the loading efficiency of biochar derived from various raw materials [honeysuckle residue 
biochar (HBC), corn stover biochar (CSB)] on Bacillus subtilis[14]. The results indicated that the average pore 
size of HBC and CSB was less than 2 nm, suggesting a predominance of microporous structures on the 
surface of biochar. Furthermore, the pore volume of HBC exceeded that of CSB, although the average pore 
size of the two biochars was similar. This suggests that the micropore formation via pyrolysis in HBC 
surpasses that in CSB, leading to a more developed pore structure in HBC. This enhanced pore structure 
facilitates microbial growth and reproduction, thereby promoting higher cell density. Zhang et al. further 
emphasize the importance of the physical and chemical properties of biochar in microbial 
immobilization[15]. The biochar produced from Erding medicine residue (EBC-500) at 500 °C pyrolysis 
exhibited a more developed pore structure and suitable nutrients, which facilitated the immobilization and 
proliferation of the degrading strain LZ01. In addition, EBC-500, with a certain degree of alkalinity, can 
neutralize the acidic intermediates produced during the microbial degradation of chlortetracycline (CTC). 
This provides a more suitable pH for the growth of LZ01 and enhances the removal efficiency of CTC. 
Consequently, the removal rate of CTC by EBCM-500 after 2 days reached 82.34%.

To date, the challenge of recovering powdered biochar from aqueous solutions remains a significant 
limitation to its application. To address this, Zheng et al. developed an innovative embedding method by 
preparing biochar fungal pellets (BFP) that immobilized denitrifying bacteria (Cupriavidus sp. H29) for use 
in bioreactors[16]. The results revealed that the BFP, with its loose and abundant filamentous void structures 
and a particle size of 5 mm, not only provided ample space and favorable conditions for bacterial adhesion 
and reproduction but also exhibited excellent solid-liquid separation and reuse performance. Xiang et al. 
present an innovative approach to Chryseobacterium spH5 strains immobilization using a bead composed of 
polyvinyl alcohol (PVA), sodium alginate (SA), and biochar for thiamethoxam degradation[17]. The results 
revealed that the PVA/SA/biochar (0.7%) immobilized microorganisms demonstrated a superior removal 
effect on thiamethoxam, achieving a removal rate of 90.47%. This was significantly higher compared to the 
removal rates achieved by PVA/SA immobilized microorganisms (75.06%) and free microorganisms 
(61.72%). Furthermore, the PVA/SA/biochar (0.7%) immobilized microorganisms exhibited excellent 
tolerance under extreme environmental conditions. Zeng et al. provide valuable insights into the use of 
ferric tetroxide-modified biochar nanomaterials for the immobilization of Alcaligenes faecalis strains[18]. The 
results demonstrated that the bacteria could sustain growth and maintain robust activity within 48 h under 
the conditions of 25-40 °C, pH 5-9, initial phenol concentration of 300-500 mg/L, and salinity of 3%.
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This demonstrated the potential of modified biochar as an efficacious carrier material for microbial 
immobilization in environmental remediation. However, further research is required to optimize these 
modifications and fully harness the potential of biochar.

Activated carbon
Activated carbon, with its large specific surface area and rich pore structure, is highly conducive to cell 
attachment, making it a popular choice as a solid carrier for the removal of environmental pollutants[19]. As 
early as 1991, Lin et al. explored the co-immobilization system of activated carbon and Phanerochaete 
chrysosporium for the degradation of pentachlorophenol (PCP)[20]. The findings revealed that the 
normalized PCP mineralization by the co-immobilization system reached 68%. In contrast, only about 17% 
of the normalized PCP mineralization was observed for the non-immobilized system at 120 h. This is 
attributed to the solid substrate-activated carbon present in the co-immobilization system, which enhances 
biodegradation and stability. Furthermore, Annadurai et al. demonstrated that the immobilization of 
microorganisms on activated carbon can notably enhance the degradation efficiency of pollutants, while 
simultaneously shielding the microorganisms from the impact load of organic pollutants[21]. Hence, the 
structural characteristics of activated carbon are crucial in microbial loading. Maharaja et al. developed a 
nanoporous activated carbon (NPAC) for the immobilization of microorganisms in bioreactors[22]. The 
findings indicate that the BET surface area of NPAC is 291 m2/g and the average pore diameter is 28 Å. The 
overall removal efficiency of chemical oxygen demand (COD) and biological oxygen demand (BOD) in the 
reactor are 82% and 85%, respectively, demonstrating the effective carrier properties of NPAC.

To further enhance the efficiency of pollutant removal, Yang et al. employed three different methods to 
modify coconut shell activated carbon: acid, water, and alkali[23]. This modified activated carbon was used to 
immobilize two microbial communities (ERY-6A and ERY-6B) aimed at degrading erythromycin. The 
results indicated that both alkali-modified and water-modified activated carbon, in conjunction with the 
two-bacteria system, exhibited effective erythromycin removal capabilities. The removal efficiency of 
erythromycin by immobilized cells reached 94.36% within 24 h, which is significantly higher than the 
31.90% removal rate by free bacteria. Erythromycin was eliminated by the immobilized cells through 
mechanisms such as pore adsorption, surface complexation, hydrogen bonding, and biodegradation. Thus, 
activated carbon also shows potential as a material for microbial immobilization.

Carbon nanotubes
Given that immobilization can augment the activity and stability of microorganisms, carbon nanotubes 
(CNTs), serving as a carrier for microbial immobilization, have garnered increasing interest in the realm of 
environmental pollutant removal[24]. CNTs are nanoscale carbon-based materials with a unique surface 
structure. They offer distinctive properties for the immobilization of microorganisms, owing to their high 
surface area, superior thermodynamic properties, and low electroosmotic threshold. There exist several 
types of nanotubes, such as single-walled carbon nanotubes (SCNTs) and multi-walled carbon nanotubes 
(MCNTs)[25]. While SCNTs consist of only one central carbon tubule, MCNTs are composed of multiple 
layers of graphite encircling a central carbon tubule. In comparison to SCNTs, MCNTs possess a higher 
surface area, better dispersibility, and enhanced physicochemical stability, while being more cost-effective 
and exhibiting lower cytotoxicity[26].

Akyilmaz et al. immobilized Candida tropicalis onto carbon paste electrodes that contained SCNTs for the 
detection of dopamine and adrenaline[27]. In a separate study, Boshagh et al. examined the hydrogen 
production process of Enterobacter aerogenes PTCC 1221 immobilized by MWCNTs-COOH[28]. The results 
revealed that MWCNTs-COOH had a higher hydrogen production rate (2.72 L/L·h) than Enterobacter 
aerogenes PTCC 1221. Fourier transform infrared (FTIR) spectroscopy confirmed the successful covalent 
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attachment of the aerogenes to MWCNT-COOH, primarily attributed to the formation of amide bonds 
between the carboxylic acid groups of the functionalized molecules and the amide groups of the aerogenes.

Therefore, Perchikov et al. immobilized cells in a redox-active polymer based on ferrocenecarboxaldehyde-
modified bovine serum albumin and CNTs composite for the rapid detection of the phenol index[29]. The 
findings showed that the detection rate of the redox-active polymer containing CNTs was 502.8 dm3/(g·s), 
compared to 193.8 dm3/(g·s) for the redox-active polymer without carbon nanotubes. Therefore, CNTs-
based composites show promise as a potential new material for microbial immobilization.

Graphene
Graphite, graphene and graphene derivative, graphene oxide (GO), is a representative carbon nanomaterial, 
notable for its large specific surface area and excellent thermal and chemical stability[30]. Despite its inherent 
antibacterial properties, GO can also foster the growth of microorganisms by adsorbing proteins and 
supplying ample nutrients, thereby neutralizing its antibacterial capabilities. Consequently, GO can serve as 
a carrier material for microbial immobilization. Zhao et al. constructed microbe- GO composites to adsorb 
uranium (VI) from aqueous solutions, achieved by immobilizing Lysinibacillus sp[31]. The results 
demonstrated that the maximum adsorption capacity of Lysinibacillus-GO for U (VI) was 149.3 mg/g. The 
primary mechanism of adsorption is attributed to the inner-sphere complexation between U (VI) and 
oxygen-containing groups.

Liu et al. demonstrate the potential of GO/SA aerogel as an adsorption material[32]. By immobilizing 
heterotrophic nitrifying bacteria FG-06 onto this aerogel, they were able to enhance both the growth of the 
bacteria and the removal of pollutants. This suggests that GO/SA/FG-06 could be more effective than 
traditional suspension agents in certain applications. It is another promising step toward more efficient and 
effective environmental cleanup strategies.

To further enhance environmental applicability, Yong et al. developed a method for the immobilization of 
electroactive microorganisms (Shewanella oneidensis MR-1) in microbial fuel cells (MFCs) using graphite/
alginate particles[33]. The results indicated that the MFC output of the immobilized cell particles was more 
stable than that of the suspended cells, and the Coulombic efficiency improved by 0.8-1.7 times compared to 
the suspended mode. Additionally, MFCs with immobilized cells demonstrated greater resistance to shock 
from high salt concentrations than MFCs with suspended cells. In another study, Li et al. first co-deposited 
carboxyl graphene (GN-COOH) and gold nanoparticles (AuNPs) onto an electrode, and then immobilized 
the microbe (Bacillus subtilis) onto the modified electrode via covalent bonds[34]. The results showed that 
this approach shortened the distance between the microbe and the electrode, which is beneficial for electron 
and mass transfer. Therefore, nanocomposites based on graphene also present a promising new option for 
microbial immobilization. These studies highlight the potential of carbon-based materials in enhancing the 
efficiency and stability of microbial processes in environmental applications.

In conclusion, based on current research and technological advancements, biochar offers notable 
advantages in terms of cost and environmental benefits; however, its performance still requires further 
enhancement. Activated carbon excels in microbial immobilization due to its high specific surface area and 
effective adsorption capabilities, but issues related to cost and regeneration need to be addressed. Carbon 
nanotubes and graphene show significant promise for providing exceptional support and performance, yet 
challenges related to high costs and environmental impact persist. Future research should concentrate on 
reducing production costs, enhancing functionalization methods, and evaluating long-term environmental 
effects to fully harness the potential of these materials in microbial immobilization technologies.
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THE FACTORS AFFECTING THE MICROBIAL IMMOBILIZATION
The immobilization of microorganisms on carbon-based materials is influenced by both the intrinsic 
properties of the carbon-based substrates and a spectrum of environmental factors, such as the initial 
pollutant concentration, ambient temperature, pH levels, and contact duration. These variables collectively 
influence the degradation efficiency of pollutants. Consequently, it is imperative to investigate the optimal 
immobilization conditions to enhance the application of microbial immobilization technology in pollutant 
removal.

The effect of initial pollutant concentration
Pollutant concentration is a critical parameter in the degradation pathway. Generally, increasing the initial 
concentration of contaminants enhances their adsorption onto the material until saturation is reached. 
However, elevated concentrations of pollutants can exert toxic effects on microorganisms, thereby 
inhibiting their activity. Thus, selecting appropriate carbon-based materials for immobilizing microbial 
carriers can shield microorganisms from pollutant-induced toxicity, thereby maximizing their pollutant 
degradation potential.

For instance, Xiang et al. observed that increasing the concentration of thiamethoxam from 7 to 42 mg/L 
resulted in a decrease in the degradation efficiency of free microorganisms from 77.30% to 45.70%[17]. 
Similarly, the removal efficiency of PVA/SA/biochar-immobilized microorganisms for thiamethoxam 
decreased from 94.94% to 80.13%. This demonstrates the efficacy of PVA/SA/biochar in protecting 
microorganisms under high concentrations of contaminants.

pH
pH is another critical parameter; variations in pH not only significantly impact the growth of 
microorganisms but also alter the surface characteristics of materials and the behavior of pollutants in 
solution, thereby playing a pivotal role in pollutant removal. Zhang et al. observed that biochar-
immobilized LZ01 exhibited a higher removal rate of chlortetracycline in neutral and slightly alkaline 
environments, reaching up to 82.39%[35]. In contrast, the removal rate of chlortetracycline by free LZ01 was 
10.31%. Consequently, the influence of pH on the removal rate of immobilized LZ01 is less pronounced 
compared to free LZ01, primarily because biochar protects microorganisms from adverse pH conditions, 
thereby enhancing their chlortetracycline removal efficiency. Yu et al. proposed considering both the 
optimal pH for microbial growth and the ideal pH for carrier-microbial binding[36]. This approach can 
maximize the synergistic benefits of the carrier-microorganism combination in contaminant removal.

Temperature
Temperature is a crucial factor influencing both substance reactions and microbial activity. Generally, the 
optimal temperature for bioremediation is 25-35 °C, which limits its application under extreme conditions. 
Consequently, microbial immobilization technology holds promise for enhancing bioremediation in harsh 
conditions. Manikandan et al. observed that the removal rate of Ni2+ by wood biochar-immobilized 
Pseudomonas stutzeri increased with rising temperatures[37]. This increase may be attributed to the 
expansion of pore structures at higher temperatures, creating more surface-active sites for metal ion 
adsorption. Additionally, temperature influences the solubility of metals and the membrane binding affinity 
of metal ions to the bacterial cell wall.

The effect of contact time
Contact time is a critical factor influencing the microbial growth curve and cellular activity levels. Zhang 
et al. initially investigated the microbial adsorption capacity of various biochar-based materials, 
demonstrating that the number of microorganisms on biochar increased with prolonged adsorption 
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time[15]. Although the removal efficiency of pollutants gradually increased with reaction time, it stabilized 
after approximately two days. This stabilization may be attributed to nutrient depletion and subsequent 
microbial die-off as the population rapidly grows. Therefore, carbon-based materials offer ample space for 
microbial growth, effectively shielding strains from toxic substances, increasing bacterial density, and 
enhancing pollutant degradation by bacteria.

ENVIRONMENTAL APPLICATIONS
The rapid growth of population, industry, urbanization, and intensive agriculture has led to the pollution of 
soil and water by various pollutants. Microbial immobilization technology has become one of the most 
successful emerging technologies for soil and water pollution remediation. Among them, Carbon-based 
materials that immobilize microorganisms have shown great promise in environmental remediation[38]. It 
has been successfully used to remove a variety of organic and inorganic pollutants from different mediums 
such as water, soil, and air. These pollutants primarily include toxic metals and organic contaminants[39]. 
The removal process typically involves biosorption and/or biodegradation mechanisms. This innovative 
approach leverages the natural abilities of microorganisms and the unique properties of carbon-based 
materials, offering a potentially effective and sustainable solution for pollution control.

Water pollution remediation
To date, the excessive presence of pollutants in water has detrimental effects on water quality, posing 
significant health risks[40]. Therefore, it is crucial to explore economical, scalable, efficient, and rapid 
methods for water treatment. Microbial immobilization methods are emerging as promising technologies 
for managing water quality. These methods leverage the natural abilities of microorganisms to detect, 
monitor, and remove target water contaminants. The use of carbon-based materials for microbial 
immobilization, as discussed earlier, can enhance the efficiency and stability of these processes[41]. These 
methods are not only cost-effective but also environmentally friendly, making them an attractive option for 
water treatment. They represent a significant advancement in the field of environmental science and hold 
great potential for addressing the pressing issue of water pollution. It is an exciting area of research with the 
potential to make a substantial impact on our environment and health. An et al. demonstrated the 
effectiveness of using Pseudomonas hibiscicola L1 strain (Strain L1) immobilized in peanut shell biochar 
(PBC) for the removal of various pollutants from mixed electroplating wastewater[42]. The pollutants 
included nickel (II), zinc (II), copper (II), chromium (VI), and ammonia nitrogen. The results showed that 
PBC not only enhanced the biological activity of Strain L1, but also increased the removal rate of pollutants 
compared to using PBC alone or free Strain L1. Specifically, the removal rates of the biocarbon-immobilized 
Strain L1 in mixed electroplating wastewater were as follows: copper (II) (94.92%) > zinc (II) (91.46%) > 
ammonia nitrogen (79.90%) > nickel (II) (77.02%) > chromium (VI) (34.40%). The removal mechanism 
proposed by the authors is illustrated in Figure 2A. The removal process primarily involves four 
mechanisms: (1) nitrate in the solution is utilized by Strain L1 as a nitrogen source for denitrification, 
forming intermediate nitrite; (2) Cr (VI) is reduced to Cr (III) through electron acceptance by PBC; (3) 
certain heavy metal ions are removed from the solution via ion exchange; and (4) other heavy metal ions are 
removed through adsorption processes, which include interactions with functional groups (-OH, -COOH, 
-CHO), adsorption and accumulation by Strain L1, and electrostatic adsorption by PBC. Huang et al. 
immobilized Bacillus cereus RC-1 onto biochar derived from rice straw (SBB-beads), chicken manure 
(CMB-beads), and sewage sludge (SSB-beads) to facilitate the removal of Cd2+ from water[43]. The results 
demonstrated that SBB-beads achieved the highest Cd2+ adsorption capacity at 158.77 mg/g, and the bio-
adsorption efficacy of immobilized cells surpassed that of suspended cells. Moreover, the mechanisms 
underlying Cd2+ removal encompass physical adsorption, chemisorption (ion exchange, complexation, 
precipitation), and intracellular accumulation, which intriguingly may occur independently or 
synergistically. Additionally, the authors proposed a model delineating the action of different mechanisms 



Page 9 of Wang et al. Water Emerg Contam Nanoplastics 2024;3:19 https://dx.doi.org/10.20517/wecn.2024.14 16

Figure 2. (A) Removal mechanism of co-system; (B) Schematic diagram of the role of immobilized growth cells in the mechanism of 
Cd2+ biosorption; (C) The removal of erythromycin by immobilized cells in mineral salt medium and the potential mechanisms.

[Figure 2B]: initially, metal ions are entrapped and adsorbed onto the material surface by weak physical 
forces. Subsequently, most metal ions adhere closely to the bio-adsorbents via enhanced chemical 
adsorption, primarily due to ion exchange and complexation, with a lesser extent due to precipitation. 
During chemisorption, while some cells perish, others survive, and a fraction of metal ions are transported 
and sequestered into the cytoplasm.

Nowadays, the rapid industrial and agricultural development in recent years has led to the discharge of large 
amounts of difficult-to-treat wastewater. Generally, the wastewater contains high concentrations of 
biodegradable organic pollutants, and even after treatment, it usually fails to meet discharge standards, 
leading to serious water pollution issues.

In response to this issue, Ouyang et al. successfully prepared SA and biochar immobilized GYB1 beads (SC-
GYB1) for the biodegradation of 2,3’,4,4’,5-pentachlorobenzene (PCB 118)[44]. Their results showed that with 
2.0% SA, 2.0% wet weight, and 1.5% biochar content, they could degrade 50.50% of PCB 118 within 5 days. 
Impressively, SC-GYB1 maintained considerable PCB degradation capacity even under 200 mg/L Cd2+ 
stress. In another study, Lu et al. prepared Triton X-100 by an adsorption method, adding the non-ionic 
surfactant Triton X-100 and using biochar as an immobilized carrier to promote biochar immobilized 
Pseudomonas aeruginosa material[45]. This was used for the removal of naphthalene, a refractory organic 
matter in water. The results showed that low concentrations of Triton X-100 significantly increased the 
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removal rate of naphthalene by 20%-50%, compared with no addition of Triton X-100. This approach not 
only improved the adsorption capacity of biochar but also promoted the degradation activity of 
Pseudomonas aeruginosa. The authors hypothesize that the two primary removal mechanisms are the 
adsorption of naphthalene by the biochar itself and the degradation of naphthalene by bacteria immobilized 
on the biochar.

To enhance pollutant removal efficiency, Yang et al. prepared coconut shell activated carbon (NMC) loaded 
with dual microbial flora (ERY-6A and auriferous bacterium ERY-6B) for erythromycin degradation[23]. The 
results demonstrated that the immobilized bacteria could remove 95% of 100 mg/L erythromycin within 
24 h. As illustrated in Figure 2C, the abundant pore structure on the surface of NMC is a primary factor 
promoting the removal by dual microbial flora. Additionally, NMC is rich in functional groups (-C=O, 
-OH, and -COOH), which can easily complex with erythromycin, indicating that surface complexation is 
another significant factor in its removal. Finally, the surface of NMC contains hydroxyl groups that may 
form hydrogen bonds with the surface molecules of ERY-6A and ERY-6B. Once the dual bacterial system is 
immobilized on NMC, a number of degrading enzymes are secreted to degrade erythromycin. Therefore, 
the main mechanisms of erythromycin removal by immobilized cells include pore adsorption, surface 
complexation, hydrogen bonding, and enzymatic degradation.

These studies underscore the potential of using carbon-based materials and microbial immobilization for 
effective wastewater treatment. It is a promising approach toward more sustainable and efficient 
environmental remediation strategies.

Soil remediation
To date, soil pollution is a significant global issue. Specifically, the leakage and discharge of fossil fuels 
during extraction, storage, transportation, processing, and use can lead to the accumulation of toxic and 
harmful substances in the environment[46]. This not only poses a serious threat to human health but also 
endangers the safety of entire ecosystems. Therefore, soil remediation is an urgent necessity.

Yin et al. demonstrate the effectiveness of using rice husk biochar (RHB) and SA as immobilized substrates 
for complex fungi to create an adsorption system (CFIRHB) and an encapsulation system (CFI-
RHB/SA)[47]. The results indicated that CFI-RHB/SA had the highest diesel removal efficiency (64.10%) in 
highly polluted soil compared to free complex fungi (42.70%). Furthermore, CFI-RHB/SA maintained a 
stable removal efficiency (> 60%) in soils with higher concentrations of diesel pollution. This is attributed to 
the key role of fusarium and penicillium in the removal of diesel pollutants. Moreover, the integration of 
biochar amplifies microbial metabolic capacity, consequently bolstering dehydrogenase (DHA) activity 
within the soil matrix. Considering that DHA reflects the metabolic reaction of soil microorganisms to 
diesel oil, increased DHA activity indicates improved efficiency in the oxidative degradation of diesel oil, 
expediting the transfer of hydrogen atoms from organic substances to specific binding sites.

Li et al. investigated a biological carrier constructed from 10%-PVA, 0.5%-SA, and 5%-powdered activated 
carbon (PAC) for purifying soil contaminated by polycyclic aromatic hydrocarbons (PAHs)[48]. The results 
indicated that the carrier exhibited no significant cytotoxicity to the immobilized cells, and the live cell 
population of the immobilized bacteria was 1.86 × 1010 g-1. Furthermore, the biodegradation rates of 
phenanthrene and pyrene reached 87.0% and 75.4%, respectively, which is twice as high as the rates 
observed without the use of biological carriers.
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Figure 3. Remediation mechanism of biochar-based Cr-reducing bacteria on Cr-contaminated soil plants.

Chen et al. utilized Enteromorpha prolifera biochar to immobilize a Bacillus cereus WHX-1 reducing strain 
(WBC), enhancing its Cr (VI) reduction activity, which was subsequently applied to the remediation of Cr-
contaminated soil[49]. Experimental results indicated that incorporating WBC elevated the organic carbon 
content and cation exchange capacity of the soil, decreased the redox potential and bulk density, and 
markedly enhanced the physicochemical properties of Cr-contaminated soil. Remarkably, 94.22% of Cr (VI) 
was reduced to Cr (III), representing a 63.38% increase compared to the control group. To elucidate the 
removal mechanism, scanning electron microscope (SEM) and FTIR analyses revealed that the biochar 
surface was rough and porous, containing numerous functional groups, such as carboxyl, O-P-O, and 
amide I, which facilitate the adhesion of biochar to microorganisms. Furthermore, oxygen-containing 
functional groups act as electron donors, partially reducing Cr (VI). Additionally, biochar supplies nutrients 
to microorganisms, promoting their growth. Consequently, as depicted in Figure 3, the removal mechanism 
primarily involves biochar-enriched microbial colonies, thereby forming a stable microbial system in Cr-
contaminated soil. This stable microbial aggregation system enhances the reduction of Cr (VI) and 
decreases the bioavailability of Cr, thereby achieving effective soil remediation.

The remediation of soil co-contaminated by organic pollutants and heavy metals is a significant challenge. 
Li et al. demonstrate the potential of using corncob biochar to immobilize Citrobacter strains (IM) for the 
remediation of soil co-contaminated by petroleum hydrocarbon and heavy metal nickel (Ni)[50]. The results 
indicated that the degradation rate of petroleum hydrocarbons by solid IM was 45.52%, which was 
significantly higher than that of free bacteria (30.15%) and biochar alone (25.92%). Importantly, no 
carcinogenic nickel sulfide was detected after the remediation process in IM. Additionally, the level of soil 
dehydrogenase activity of IM (0.3956 μg·mL-1·h - 1 ·g -1) was higher than that of free bacteria 
(0.2878 μg·mL-1·h-1·g-1). It is suggested that immobilized microorganism technology is a promising method 
for the remediation of co-contaminated soil. Table 1 summarizes the application of microbial-carbonaceous 
immobilized materials for pollutant removal in soil and water environments by detailing the types of 
pollutants addressed, microbial strains used, carbonaceous materials employed, the effectiveness of 
pollutant removal, the scale of implementation, and key findings from various studies.
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Table 1. Application of microbial-carbon-based materials for removal of pollutant

Carrier material Microbes Contaminants Initial 
concentrate

Reaction 
conditions

Removal
capacity Medium Scale Ref.

Rice hull Bacillus H27 Chlorpyrifos 25 mg/L Time =7 days 
T = 25 °C 
Dose = 0.1 g

97.40% Water Lab [51]

30 mg/L Time = 24 h 
T = 30 °C 
Dose = 1.375 g/L

96.25% Water LabRice husk Aeromonas veronii Chlorpyrifos

10 mg/kg Time = 42 days 
T = 30 °C 
Dose = 2 g/kg

92.4% Soil Lab

[52]

Wheat straw Serratia, Ralstonia, and 
Enterobacter

Phenol 1,300 mg/L Time = 72 h 
T = 30 °C 
Dose = 0.6% 
(w/v)

82.4% Water Lab [53]

80 mg/L Time = 12 h 
T = 30 °C 
pH = 7

50% Water LabPFBCM Pseudomonas 
aeruginosa

Phenanthrene

41 mg/kg Time = 6 days 
T = 30 °C 
Dose = 2 g

30% Soil Lab

[54]

Enteromorpha 
prolifera

Bacillus cereus Cr (VI) 50 mg/kg pH = 7.1 94.22% Soil Lab [49]

Rice straw 93.02 mg/g Lab

Sewage sludge 68.02 mg/g

Chicken manure

Bacillus cereus RC�1 Cd2+ 120 mg/L pH = 6.0 
Time = 20 h

63.95 mg/g

Water [55]

Maize straw Sphingomonas sp. DZ3 4-bromodiphengl 
ether

800 mg/L pH = 7.0 
Time = 24 h 
Dose = 0.1 g 
T = 40 °C

50.23 mg/g Water Lab [56]

PVA/SA/biochar Serratia marcescens P-cresol 500 mg/L pH = 7.0 
Time = 3 h 
T = 30 °C

86.1% Water Lab [57]

Chitosan-biochar Compound bacteria Oil 7,881 mg/kg pH = 7.0 
Time = 60 days 
T = 35 °C 
Dose = 2.0 g 
Salinity 1 MS

45.82% Soil Lab [58]

Bamboo charcoal Degrading bacteria Nonylphenol 50 mg/L Time = 24 days 93.95% Water Lab [59]

Total nitrogen 249.7 mg/L Time = 6 days 97.4% Water Lab

Total phosphorus 19.7 mg/L Time = 6 days 96.1% Water Lab 

COD 258 mg/L Time = 6 days 98.0% Water Lab

Activated carbon Olivibacter jilunii

Ammonia 221 mg/L 100%

[60]

TMAH 1.998 mg/L 100% Water LabGranular activated 
carbon

Mycobacterium sp.

DOC 4.392 mg/L 78.8% Water Lab

[61]

SA/GO Bacillus C5 Crude oil 8,000 mg/kg Time = 30 days 
pH = 6.7 
Dose = 1.0 kg

64.92% Soil Lab [62]

GO Paracoccus aminovorans PAHs Time = 35 days 
Dose = 0.9 g 
T = 30 °C

62.86% Soil Lab [63]

PFBCM: Pyrolyzed iron-modified biochar microorganism; PVA: polyvinyl alcohol; SA: sodium alginate; COD: chemical oxygen demand; TMAH: 
tetra-methyl ammonium hydroxide; DOC: dissolved organic carbon; GO: graphene oxide; PAHs: polycyclic aromatic hydrocarbons.

In summary, these studies underscore the significant potential of immobilized microorganisms supported 
by carbon-based materials in the removal of various pollutants from soil and wastewater. It is a promising 
approach toward more sustainable and efficient environmental remediation strategies.
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CONCLUSION AND FUTURE PERSPECTIVES
The application of immobilized microorganisms on carbon-based substrates has demonstrated considerable 
efficacy in the remediation of contaminated soil and water. This strategy harnesses the innate pollutant-
degrading capabilities of microorganisms and the adsorption properties of carbon-based materials, yielding 
a more effective and potentially sustainable solution for environmental remediation. Immobilization 
techniques can augment the growth stability of microbial cells and extend their tolerance to endure harsh 
environments. Nevertheless, immobilization techniques encounter several challenges, such as operational 
complexity, biochar stability, environmental heterogeneity, limitations in mass transfer from the material 
surface to the immobilized microorganism, and the risk of thick biofilm formation that may hinder efficacy. 
Additionally, many microorganisms exhibit low tolerance to high concentrations of pollutants, which can 
result in suboptimal remediation outcomes and prolonged remediation cycles. Furthermore, environmental 
factors can also influence the effectiveness of immobilized microorganisms. Hence, the selection of novel, 
effective, and low-cost carbon carriers remains a significant challenge. Biochar and activated carbon are 
extensively utilized for cell immobilization due to their low toxicity and abundant availability. However, the 
underlying mechanisms of biochar and activated carbon immobilized bacteria composites in wastewater 
treatment and soil remediation require further exploration.

Furthermore, microbial immobilization utilizing carbon-based materials represents an advanced 
technological approach with distinct phases of implementation, each characterized by specific objectives 
and methodologies. At the laboratory scale, research focuses on the development and optimization of the 
immobilization technique. This involves conducting experiments with small quantities of carbon-based 
materials and microorganisms to evaluate key parameters such as microbial activity, substrate interaction, 
and process efficiency. The outcomes of these studies provide essential data for refining the technology and 
formulating hypotheses for subsequent stages. Field tests then transition the technology from controlled 
environments to practical settings, where pilot-scale systems or small-scale trials are employed to simulate 
environmental conditions. These tests are critical for assessing the stability and performance of the 
immobilized microorganisms under varied environmental factors, as well as addressing practical challenges 
related to material durability and microbial viability. The final stage of implementation involves the actual 
use of the technology in commercial or large-scale applications. This phase requires scaling up the 
technology, integrating it into existing industrial or environmental systems, and implementing continuous 
monitoring to ensure operational effectiveness and economic feasibility. The successful transition from 
laboratory research to field testing and commercial deployment is contingent upon overcoming challenges 
such as material costs, and integration with existing infrastructure.
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