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Abstract
Artificial intelligence (AI) is a powerful computational tool that is being utilized more frequently in healthcare. AI 
holds promise within surgical practice, including application in the care of challenging patient populations. Complex 
spine reconstruction requires thorough multi-variable preoperative analysis and then the precise enactment of a 
surgical plan. Spino-plastics employs vascularized bone grafts (VBGs) to augment spinal fusion in these high-risk 
patients. In this article, we discuss the great breadth of AI and the tremendous potential for advancing the field of 
spino-plastics: surgical candidacy and patient selection, imaging and virtual surgical planning (VSP), intraoperative 
utilization, and future implementation.

Keywords: Artificial intelligence, spino-plastics, complex spinal reconstruction, machine learning, virtual surgical 
planning

INTRODUCTION
Artificial intelligence (AI) refers to computer systems that employ algorithms to analyze data, generate 
predictions, solve problems, and make decisions in a human-like fashion[1-3]. A range of technologies fall 
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under the definition of AI, including machine learning (ML), deep learning (DL), natural language 
processing, and computer vision[2]. Given the immeasurable quantity of patient health data and increasingly 
advanced technologies capable of processing it, there are ample applications for AI in the spino-plastics 
domain[1].

Spino-plastic surgery is one surgical subspecialty that combines the talents of interdisciplinary surgical 
subspecialists within plastics, orthopedics, and neurosurgery to meet the needs of patients requiring 
complex spinal reconstruction. In brief, spino-plastics utilizes vascularized bone grafts (VBGs) from the iliac 
crest, spinous process, rib, scapula, clavicle, and occiput to augment the strength of spinal fusions 
necessitated by pathologies such as trauma, degeneration, or tumor[4-9]. VBGs are pedicled on muscle and 
supplied by Sharpey’s fibers, which physically connect the muscle to bone and allow small unnamed 
periosteal feeding vessels to vascularize Haversian canals[10]. VBGs are increasingly indicated for the 
treatment of pseudoarthrosis, as they increase osteogenesis, osteoconductivity, and osteoinductivity 
compared to non-vascularized bone grafts (N-VBGs)[10]. Rates of pseudoarthrosis following arthrodesis can 
reach 60% or higher, leading to reoperations and significant morbidity that negatively impact quality of 
life[11,12]. VBGs have been incorporated into the existing reconstructive algorithm that is divided into six 
levels: allograft, bony substitution, autograft, N-VBG, VBG, pedicled vascularized bone flap, and free bone 
flap[10]. As VBGs have been found to enhance the strength of spinal fusion[13] and decrease rates of 
pseudoarthrosis, there is a need for an AI algorithm to identify those at risk for pseudoarthrosis who may 
benefit from VBG. Key areas of research interest within spino-plastics include the identification of optimal 
surgical candidates given the expanding indications for VBGs, as well as improving surgical techniques to 
enhance patient outcomes.

In the literature, there is already evidence of AI algorithms developed to screen for vulnerable patient 
populations and identify surgical candidates[1,3,14]. Furthermore, there are many existing AI algorithms with 
similar functions of patient risk stratification. Within spine surgery, AI has already been applied to identify 
surgical candidates and treatment options for anterior decompression and fusion for cervical spondylotic 
myelopathy[15,16], as well as to predict quality of life outcomes in adult spinal deformities[17]. The future of 
spine surgery may be guided by bioinformaticians, data engineers, and computer scientists who process big 
data in a way that informs patient care and scientific discovery[18]. In this article, we conducted a non-
systematic narrative review of the literature to better understand AI’s capability to transform the field of 
spino-plastics through assessment of surgical candidacy and patient selection, imaging and virtual surgical 
planning (VSP), and intraoperative instrument manipulation.

SURGICAL CANDIDACY AND PATIENT SELECTION
Disease classification systems are invaluable tools when applied appropriately within medical practice. 
While a classification score does not solely drive available treatment options, it is a standardized entry point 
and a piece to the overall puzzle in the care of patients with complex pathology. Unsupervised AI data 
analysis can create new hierarchical clustering that accounts for patient frailty scores, functional status, 
radiographic characteristics, and many demographic factors[19]. Sophisticated pattern analysis incorporates 
more data than could have been previously imagined, making surgeon education easier with elaborate risk-
benefit grids for various treatment pathways[19].

Predictive algorithms are an excellent way to identify high-risk patients more effectively, such as those who 
are at a greater than average risk of pseudarthrosis, wound breakdown, or morbidity/mortality associated 
with spinal fusion. In general, earlier identification of high-risk patients allows for earlier intervention with 
proactive employment of strategies to mitigate the risks inherent to the patient or pathology itself. In spino-
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plastics specifically, this concept may be harnessed to identify patients who might benefit from a risk-
reducing VBG and mitigate the consequences of debilitating pseudoarthrosis and failed spinal fusion. Given 
the current novelty of spino-plastic surgery, this information is currently unvalidated. AI and ML move 
beyond the traditional linear or logistic regression, incorporating greater dimensions of analysis to more 
accurately identify those who may benefit from VBGs and, therefore, bring novel prognostic indicators to 
light[20-22]. In spinal tumor surgery, which is a common indication for VBG, AI already has a role in patient 
risk stratification[23]. A Naïve Bayes ML algorithm developed by DiSilvestro et al. was better at predicting 30-
day mortality following spinal tumor resection than the National Surgical Quality Initiative mortality 
probability calculator[24]. This algorithm is based on Bayes’ theorem and predicts mortality based on 
independent patient risk factors. For example, this study found smoking, cancer, and chronic obstructive 
pulmonary disease to all be independent risk factors for 30-day mortality in intraspinal neoplasm excision. 
AI’s role in predicting outcomes is a powerful tool that could similarly be harnessed in spino-plastics 
decision making.

Informed, shared decision making between the patient and provider fosters an atmosphere conducive to the 
best outcomes for everyone. ML eliminates barriers to the availability of high-powered data by generating 
accurate model populations that are based on groups of detailed, real patient data[25]. ML enhances 
understanding of the preoperative conditions and how this is likely to interact with desired surgical 
outcomes, effectively matching patients with the best available treatment options[26]. Combining physical 
exam findings or patient presentation with patient-specific anatomy in advanced imaging studies has the 
possibility to address healthcare disparities, improving access to care and creating a higher standard in fine-
tuning preoperative patient selection[26]. In the context of spine surgery, one example of this concept in 
action is Wilson et al.’s AI model designed to predict when the degree of spinal stenosis by magnetic 
resonance imaging (MRI) requires specialist evaluation, streamlining subspecialty referrals for the benefit of 
earlier access to appropriate care and timely intervention[27].

Taking this one step further, ML can intelligently engineer algorithms that can achieve a high negative 
predictive value in determining the need for surgical intervention, possibly, and alternatively, higher risk 
situations, thereby amplifying vigilance toward those patients and redirecting the limited resources of office 
visits[28]. The quadruple aim of healthcare involves increasing patient and provider experience and 
improving population health while reducing overall healthcare costs[29]. AI utilization aligns well with the 
quadruple aim of healthcare by making the surgical triage experience more beneficial to all parties involved, 
increasing the ratio of surgical bookings to total patients seen in the clinic and improving the quality of 
care[28]. Overall, AI holds the potential to shift the paradigm of decision making in spine surgery.

IMAGING AND VSP
In addition to AI’s contributions to surgical candidacy and patient risk stratification, its involvement in 
radiologic studies plays an integral role in several aspects of spine surgery. AI algorithms have already been 
developed to assist in the classification and localization of spinal tumors[30,31]. Zhuo et al. developed a DL 
model to classify spinal tumors using T2-weighted MRIs[30]. In a similar capacity, Liu et al. proposed a 
model utilizing a weighted fusion framework on MRI data to locate tumors and synthesize patient clinical 
information for more accurate tumor classification than doctors[31].

The automation of qualitative and quantitative radiologic interpretation promises advancement in 
volumetric assessments of tumors, determination of tumor genotype from phenotypic characteristics, 
disease or treatment burden on tumor-adjacent tissues, and much more[32]. As time progresses and 
technology improves, an increasing number of studies might attain results that reach clinical significance, 
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with hopes of significant alterations to radiologic evaluation. For example, the important work of Wang et 
al. proved the clinical utility of applying deep neural networks for the detection of spinal metastasis, 
reaching an accuracy of 90%[33].

Specifically, within spino-plastics, there are many applications for AI in diagnostics and imaging. Spino-
plastic reconstruction is concerned with (1) increased bony fusion, especially in the setting of previous 
failures; (2) decreased time to bony fusion; (3) optimizing the interface between soft tissues, hardware, and 
osseous structures in both form and skeletal function; (4) stable and long-term closure of wounds: these are 
data points that are amenable to AI application. As mentioned, there is a wide range of pathology 
warranting VBGs to augment spinal fusion, including prior failed fusion and extensive reconstruction after 
tumor extirpation. A closer and more comprehensive evaluation of radiologic studies might provide insight 
into patients that necessitate further intervention to offer a better chance at successful fusion. In addition, 
computer modeling based on multidimensional analysis of various imaging modalities might also propose 
the vertebral level incurring the greatest mechanical stress status post instrumentation and fusion[34], further 
aiding the surgical team in deciding the final target for VBG fixation.

This brings us to the discussion of VSP. This technique employs patient imaging to construct a 3D surgical 
model that allows for surgical simulation, visualization of complex anatomy, and virtual mapping to assist 
with procedural planning[35]. Over the past several decades, VSP has been widely adopted within 
orthognathic surgery, providing an alternative to traditional surgical planning techniques[36]. VSP improves 
surgical accuracy, creating more symmetry than would have otherwise been possible without this 
technology[36]. Therefore, VSP is trusted by orthognathic surgeons who operate in a field where aesthetic 
results are of paramount importance[36]. While there is still much room for growth in this surgical tool, it has 
been suggested that AI will only increase the scope of VSP[37]. In a recent 2023 study, Browd et al. describe 
how patient-specific quantitative metrics, such as bone density, sagittal balance, and Cobb angles, derived 
from imaging modalities can potentially be applied to AI and ML algorithms for better surgical planning[26].

INTRAOPERATIVE UTILIZATION
Intraoperatively, AI can be very helpful in tumor resection and reconstruction of the spine. For instance, AI 
can assist surgeons in differentiating between normal tissue and glioblastoma multiforme[38]. Alternatively, 
AI might be harnessed to improve existing technology and intraoperative decision making. Many devices 
and techniques have been described for improved intraoperative performance in spine surgery. Computer-
assisted navigation systems such as stealth guidance assist in surgical planning and operational precision[23]. 
Stealth guidance is a robotic technology that enhances intraoperative localization and accuracy through 
three-dimensional modeling[39]. Stealth guidance systems such as Medtronic’s StealthStation employ 
imaging data in the form of MRI and CT scans to create multidimensional anatomic models and real-time 
navigation that allows surgeons to know precisely where they are in space[40,41]. The precision enhancement 
of robotic-assisted stealth guidance has been demonstrated to reduce operative times and decrease intra- 
and postoperative complications in neurosurgical and spinal procedures requiring a higher level of dexterity 
and accuracy[42-44].

Another distinct piece of computer-assisted navigation systems that improve operative efficacy is 
augmented reality (AR). This technology assists with intraoperative navigation by overlaying graphics in the 
real world, enhancing the perception of surgical instruments in space[45,46]. By incorporating an overlay of 
surgical plans or highlighting relevant anatomy, surgeons are provided with real-time information that 
enhances their visualization and proprioception without the need to divert their attention away from the 
patient toward a screen[47]. AR has been integrated into fields like orthopedic surgery, trauma surgery, and 
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spinal surgery to help with preoperative planning and surgical training[45,48]. The approach and positioning 
of pedicle screws, foraminotomies, percutaneous interventions, and biopsies can all be achieved more safely, 
with less margin of error, under the guidance of AR[49]. AR also permits spine surgeons to view dissection 
planes and tumor volumes with microscopic virtual mapping for performing osteotomies[50]. Ma et al. 
describe an ultrasound methodology to superimpose surgical planning in situ by incorporating CT images 
with 3D anatomic landmarks[51].

Spine surgery can be challenging at baseline, as it is not uncommon to lack direct exposure or visualization 
of the intricate, densely organized vessels and nerves along the axial skeleton. By the very nature of the field, 
spino-plastics aims to treat an even more challenging subsect of patients. The distortion of native anatomy 
in complex cases, whether caused by revision surgery or the mass effect of tumor bulk, presents additional 
obstacles to intraoperative identification of neurovasculature. AR can aid surgeons in this difficult task, 
employing visual information from MRI and CT scans to build surgical maps and chart paths around key 
anatomic structures[45,46]. In spino-plastics cases, once the spinal instrumentation and fusion are complete, 
the surgeon may harvest the VBG utilizing the standard arthrodesis instruments that are already on the 
sterile field. If stealth guidance or AR is already being utilized for arthrodesis, it would be wise to consider 
keeping the system available to assist the surgeon in harvesting and ensuring adequate fixation of the VBG. 
Better spatial conceptualization of the instrumentation might reduce any risk of damaging nearby structures 
in the vertebral column or retroperitoneum.

LOOKING TO THE FUTURE
Notably, the ultimate boundaries of AI have yet to be uncovered. AI has already contributed to our 
understanding of driver mutations behind spinal cord tumors[23]. This incredible technology will continue to 
improve basic science research and treatment modalities to address the needs of spino-plastic patients from 
many different perspectives. Despite the tremendous promise and exponential rise in these technological 
advancements, there is much work to be done before clinicians may be completely comfortable about 
incorporating this new technology into their workflow. Because ML is a powerful tool that is not fully 
understood, caution must be exercised regarding the input of information to avoid the perpetuation of 
misinformation and social biases. Overall, ML and AI currently lack transparency, which creates a “black 
box” that may be difficult for surgeons to trust when comparing results to well-published algorithms that 
have a more easily understood basis. However, there are methods currently being utilized to validate their 
efficacy in clinical practice. This includes the results of case studies and trials - where technologies such as 
imaging guidance can differentiate tumors from healthy tissue[52] - comparative studies, and live integration 
with surgical teams[3] that provide constant feedback to enhance the safety and predictive power of AI 
algorithms. Many metrics were used in these various studies to compare the performance of AI algorithms 
to traditional models, such as the area under the curve, accuracy, and the receiver operating characteristic 
curve. Furthermore, there is an upfront investment of time and resources essential for the development of 
novel algorithms bearing any clinical significance. In other words, there is a significant lag time between 
technological advancements and gaining necessary approvals for clinical application through the proper 
avenues, including national supervisory organizations and individual hospital systems[53]. In this stage of 
conceptualization, there are limited existing data on AI in spino-plastic surgery and further long-term data 
collection is required.

Despite the harvest and fixation of VBGs not requiring any additional tools that are traditionally used in 
spinal fusion, the field of spino-plastics is in its nascent stages. Due to resource limitations or surgeon-
specific comfort levels with working in the spine and retroperitoneum, not all institutions have access to 
plastic surgeons capable of performing this procedure. Developing strategies to implement novel AI 
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technologies beyond academic practice, particularly in rural communities, is essential to ensuring equity in 
an increasingly digital age. Research has already discussed several key strategies, including improving digital 
infrastructure, such as internet access, and networks of local health information that can be employed to 
train AI. Training local community healthcare workers to utilize novel technologies such as mobile health 
applications and engaging with community stakeholders to determine the most impactful implementation 
strategies are also crucial[54].

CONCLUSION
Spino-plastics uses a long-standing well-accepted concept of VBGs and applies it to quite complex 
reconstructive problems. Innovation is at the heart of this field, and spine surgeons are no strangers to 
welcoming new technologies and techniques. AI holds great promise in advancing medicine overall, making 
data collection and processing easier than ever with seemingly unending applications for the delivery of 
patient care. Beyond its potential role in patient selection, the visual enhancement offered by AI 
technologies can assist in diagnostics, surgical planning, and intraoperative precision. Spinal tumor 
resection often results in complex spinal defects that are nonuniform and in close proximity to several 
critical structures. In the planning and intraoperative phases, AI can improve outcomes by enhancing the 
accuracy of instrument movements and assisting with surgical planning and decision making[55,56]. When AI 
is used in conjunction with other advanced technologies such as AR or stealth guidance, three-dimensional 
visualization is further enhanced, reducing risks of intraoperative complications[45]. Thus, AI may one day 
function as a spino-plastic surgeon’s first assistant in future operating rooms. Spinal fusion calls for 
advancements and synergy in AI, robotics, and AR. There is great promise in the collaborative 
opportunities that telemedicine and telesurgery will bring, dismantling the geographic and socioeconomic 
barriers to centers of excellence in multidisciplinary care[25]. In conclusion, the integration of AI into spino-
plastic surgery not only has the power to further individualize and enhance VBG’s precision and 
effectiveness, but also broaden their potential indications, ultimately transforming the landscape of complex 
spinal reconstruction and offering new possibilities for patient care.
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