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Abstract
Aim: Asthma is a chronic inflammatory syndrome that is characterized by heterogeneous disease pathogeneses that 

produce distinct subtypes. There is a great need to develop biomarkers to distinguish these subtypes and help guide 

specific therapy and better predict outcomes, particularly in severe asthma where a number of targeted therapeutics are 

now available. We sought to determine whether expression of asthma-specific microRNAs (miRNAs) could distinguish 

phenotypic differences in a diverse cohort of asthmatic subjects that spanned a range of disease severity.

Methods: RNA was isolated from peripheral blood from human subjects. Expression of 39 miRNAs was then screened. 

Sample cycle threshold values were normalized. Normally distributed data were analyzed and hierarchical cluster was 

performed.

Results: Peripheral blood was obtained from 62 adults. We identified four clusters of asthmatics defined by 5 distinct 

miRNA expression patterns. Cluster 1 was associated with mild asthma, low inhaled corticosteroid use, and low eosinophil 

levels. Cluster 3 and 4 consisted primarily of severe asthmatics with poor asthma control, and Cluster 3 was specifically 

associated with high IgE, high blood eosinophil levels, and racial disparity (higher proportion of Black subjects). Cluster 2 

was comprised predominantly of mild-moderate asthmatics that had higher blood eosinophils than Cluster 1.

Conclusion: These results indicate the miRNA expression profiling can be useful to identify distinct asthma phenotypes, 

and have potential to better understand disease pathogenesis and help guide therapy.
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INTRODUCTION
Asthma affects approximately 300 million people worldwide and is associated with significant morbidity[1]. It is 
characterized by high burden of healthcare utilizations due to the cost of medications and hospitalizations/clinic 
visits, and poor quality of life that includes chronic symptoms and frequent days of missed school/work[2,3].

Our understanding of asthma pathogenesis is still incomplete. However, there has been a recent paradigm 
shift from thinking of asthma as a single disease, to now considering it a syndrome comprised of distinct 
phenotypes. Several asthma phenotypes have been identified (based on clinical characteristics, biomarkers, 
and response to treatment), including early onset allergic, late onset eosinophilic, exercise induced, obesity 
related, and neutrophilic[4]. However, assigning patients to these phenotypes is not always straightforward, 
and these phenotypes may have overlapping clinical features and disease pathogeneses. As asthma arising 
from different disease pathogeneses may produce different clinical courses with variable response to specific 
asthma medications, it is important to develop biomarkers that have the ability to identify these subtypes at 
the time of asthma diagnosis.

A number of recent studies have identified unique subtypes of asthmatics that were defined based on a 
cluster analysis of clinical variables[5]. These groups exhibited differences in eosinophil levels, severity, and 
need for medications to control asthma[5]. In particular, distinguishing between eosinophilic and non-
eosinophilic subtypes may be crucial for treatment, as it has been shown that non-eosinophilic asthmatics 
respond poorly to corticosteroids[6]. However, there may also be sub-phenotypes within a particular group 
(i.e., subgroups of eosinophilic asthmatics) that are difficult to distinguish with current tools such as blood 
eosinophil levels, allergen testing, and fractional exhaled nitrous oxide (FeNO). Blood eosinophil levels do 
not always correlate with tissue eosinophil levels. Similarly, FeNO levels are not an accurate tool to measure 
airway eosinophilia. Levels can be altered by medications and the presence of allergic rhinitis, and there 
is an intermediate range of values that is difficult to interpret. Better tools are needed to more accurately 
identify subgroups of asthmatics and provide more precise information. Ideal biomarkers would better 
classify subtypes, help guide therapy, predict outcomes, and provide information about what immunological 
pathways are de-regulated in the specific subtypes.

MicroRNAs (miRNAs) may be an important biomarker to address many of these issues. MiRNAs are short, 
single stranded, non-coding RNAs that can regulate gene expression by interacting with mRNAs post 
transcription. MiRNAs are involved in numerous disease processes across many cells and systems. MiRNAs 
are readily detectable in blood, and expression profiles may be useful noninvasive biomarkers in various 
diseases, including asthma[7-9]. Our previous work has demonstrated that miRNAs can distinguish asthmatic 
from non-asthmatics subjects, that specific miRNAs may de-regulated in eosinophilic asthmatics, and that 
these molecules regulate inflammatory pathways in airway epithelial cells and T-cells[7]. Thus, miRNAs may 
represent an important bridge between molecular pathways and clinical entities.

Previous research showed that miR-125b, miR-16, miR-299-5p, miR-126, miR-206, and miR-133b levels 
were predictive of allergic and asthmatic status[7]. These, along with a host of other miRNAs, were found to 
be differentially expressed amongst healthy, allergic, and asthmatic patients. In this study, we determined 
whether these previously identified miRNAs could identify subgroups with differing response to treatments 
and asthma control.

METHODS
Study population (sample size, characteristics of population)
This study was approved by Penn State College of Medicine Institutional Review Board. Participants signed 
informed consent forms. Patients were classified as asthmatics based on history, and forced expiratory 
volume in 1 s (FEV1) reversible by more than 12% and more than 200 mL after bronchodilator or airway 
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hyper-responsiveness from methacholine challenge producing more than 20% decrease in FEV1 of less than 
8 mg/mL. Asthma control was assessed using the asthma control test (ACT)[10]. There are some asthmatics 
who do not respond to albuterol. We also included patients who had a history and physical exam consistent 
with asthma (wheezing, shortness of breath with absence of history of chronic obstructive pulmonary 
disease or other lung disease) in conjunction with reduced FEV1/forced vital capacity (FVC) ratio < 0.7, 
or demonstrated evidence of airway hyper-reactivity as follows: greater than a 10% increase in FEV1 after 
maximal anti-inflammatory treatment with 40 mg of prednisone for ≥ 1 week, or more than a 12% variability 
in FEV1 on serial spirometry obtained at clinic visits over the span of 12 months.

RNA isolation
Venous blood was collected peripherally, then centrifuged at 300 rpm in a clinical centrifuge to isolate 
plasma. 2 µL of 50 nmol/L synthetic cel-miR-39 was added as a “spike in” normalization to 500 µL of plasma 
for RNA isolation. Then, 1.5 mL of TRIzol reagent was added and total RNA was extracted according to 
the manufacturer’s protocol. Finally, RNA concentration was measured based on A260/280 with NanoDrop 
Lite Spectrophotometer.

cDNA preparation
Expression of 39 miRNAs in plasma was screened with using our previously published protocols[7]. Briefly, 
up to 500 ng of total RNA was reverse transcribed to cDNA with the qScript miRNA cDNA synthesis kit.

MiRNA expression by qPCR
MiRNA quantification with qPCR was performed on the CFX384 real-time system. cDNA was diluted 
1:10. Primers to each miRNA were obtained from integrated DNA technologies. Each sample was run in 
quadruplet. A 2-step program was used as follows: 40 cycles of 95 ºC for 10 s and 60 ºC for 30 s. Sample cycle 
threshold (Ct) values were normalized to cel-miR-39 to control for variability.

Statistics
Normally distributed data were analyzed by one-way analysis of variance with Tukey post-test for multiple 
comparisons or Student’s t-test where appropriate. Fisher’s exact tests were used for categorical binary 
variables, and Chi-squared test for categorical variables across more than two groups. Hierarchical cluster 
analysis was performed in Cluster 3.0 using the average-linkage method[11].

RESULTS
Our previous work indicated that plasma miRNAs have the potential to identify asthma phenotypes, and 
we identified a panel of 39 miRNAs that had potential to serve as non-invasive biomarkers in the blood[7]. In 
this study, we built on these findings and used qPCR to analyze their expression in n = 62 asthmatics that 
spanned the range of severity, including difficult to control asthmatic subjects (demographics in Table 1).

We first asked whether miRNA expression profiles were associated with different clinical features of asthma. 
A cluster analysis of the miRNA expression data identified four main clusters of subjects, which we labeled 
Cluster 1-4 [Figure 1, X-axis]. The patterns of miRNA expression that led to definition of these clusters could 
be generally separated into different 5 groups [Figure 1, Y-axis]. We then analyzed the miRNA patterns in 
each of the clusters and determined whether they were associated with differences in demographics and 
clinical features of asthma.

The miRNAs assigned to group 1 (Let7 family and miR-98) showed higher expression in Cluster 3 and 4 
relative to Clusters 1 and 2 [Figure 2, Table 2]. However, we also observed differences in miRNA expression 
between Cluster 1 and 2 as well, with expression generally being lower in the latter [Figure 2A, miR-98 as a 
representative example].
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Figure 1. Heat map of miRNA expression profiles. Four clusters of subjects were identified and miRNA expression patterns fit into five 
main groups

1W: White; B: Black; A: Asian; H: Hispanic; 2fluticasone equivalent; 3values were missing in 9 subjects; 4values were missing in 27 subjects. 
BMI: body mass index; ICS: inhaled corticosteroid; FVC: forced vital capacity; FEV1: forced expiratory volume in 1 s

Table 1. Study demographics

For the miRNAs categorized in group 2, expression was lower in Cluster 1 relative to other clusters [Figure 2B] 
while expression of group 3 miRNAs was higher in Cluster 1 than the other groups [Figure 2C]. Closer 
inspection of miRNAs in group 2 and group 3 revealed an interesting trend, where expression appeared to 
track the eosinophilia. In group 2, expression tended to be the highest in Cluster 3, followed by Cluster 2, 
and then Cluster 1 and 4 [Figure 2B]. Blood eosinophil levels showed a similar trend, with the highest levels in 
Cluster 3, followed by Cluster 2, then Cluster 1, and Cluster 4 showing a distribution from low to high values 
[Figure 2C]. For miRNAs in group 3, an opposite pattern was seen - with the lowest expression in Cluster 3, 
next lowest in Cluster 2, and expression in Cluster 1 and 4 being the highest [Figure 2D].

Expression of miRNAs in group 4 was the lowest in Cluster 4 relative to the other clusters. Group 5 miRNA 
expression was high in Cluster 1 and 2 and low in Cluster 3 and 4. For some of these miRNAs, expression 
was lower in Cluster 1 vs. Cluster 2.

Asthmatic subjects (n  = 62)
Age (mean ± SD) 43.5 ± 14.6

Gender (number) Female (n  = 40), Male (n  = 22)

Race (W/B/A); Ethnicity (H)1 n  = 47 W, n  = 13 B, n  = 2 A; n  = 3 H

BMI (mean ± SD) 31.5 ± 9.1

Asthma duration (mean ± SD) 22.3 ± 14.7

Daily ICS dose2 (mean ± SD) 570.5 ± 466.2

FVC (%, mean ± SD) 84.4 ± 17.7

FEV1 (%, mean ± SD) 69.5 ± 21.5

FEV1/FVC ratio (mean ± SD) 0.66 ± 0.13

FEV1% (mean ± SD) 69.5 ± 21.5

Blood eosinophil (cells/µL, mean ± SD)3 343.5 ± 316.4

Total IgE (kIU/mL, mean ± SD)4 522.2 ± 480.3

Number with aeroallergen sensitivity ( ≥ 1 positive test) 54 (87%)



Demographics of different clusters
The mean age of the subjects was 43.5, and this was not different among the clusters [Table 3]. There was 
an overall female predominance in our population (65% female), which is consistent with the makeup of 
our asthma clinic from which patients were recruited. The distribution of genders did not statistically differ 
across the four clusters. However, Cluster 3 had a high percentage of females (75%), while Cluster 4 had a low 
percentage (54%). Clusters 1 and 2 were comprised predominantly of white subjects, while there was more 
racial diversity in Clusters 3 and 4. In Cluster 3, 45% of the subjects were black. There were only two Asian 
subjects in our cohort (both in Cluster 4), and three Hispanic subjects (two in Cluster 3 and one in Cluster 4).

Obesity across clusters
Our cohort of asthmatics had a high rate of obesity, consisting of 44% with body mass index (BMI) > 30, 
35% with BMI 25-30, and 21% with BMI < 25. Mean BMI in Cluster 3 was the highest at 35.1 (12), 31.8 (8.4) in 
Cluster 4, 31.7 (7.6) in Cluster 1, and the lowest in Cluster 2 at 27.7 (5.4).

Zhang et al . J Transl Genet Genom 2018;2:18. I  https://doi.org/10.20517/jtgg.2018.22                                                 Page 5 of 11

Table 2. Grouping of miRNAs from cluster analysis

Name Group P -value Significant comparisons from Tukey post-hoc  tests
Let-7d 1 8.02E-13 1 - 2; 4 - 1; 3 - 2; 4 - 2; 4 - 3

Let-7e 1 4.78E-12 1 - 2; 4 - 1; 3 - 2; 4 - 2; 4 - 3

miR-98 1 1.39E-10 1 - 2; 3 - 1; 4 - 1; 3 - 2; 4 - 2

let-7c 1 5.84E-08 4 - 1; 3 - 2; 4 - 2; 4 - 3

Let-7b 1 5.7E-06 4 - 1; 4 - 2; 4 - 3

Let-7a 1 0.002215 4 - 1; 4 - 2; 4 - 3

Let-7g 1 0.02949

miR-146a 2 8.09E-06 2 - 1; 3 - 1; 4 - 1; 3 - 2

miR-26a 2 2.1E-05 3 - 1; 1 - 4; 3 - 2; 2 - 4; 3 - 4

miR-126 2 9.80E-05 3 - 1; 2 - 4; 3 - 4

miR-21 2 5.82E-04 2 - 1; 3 - 1; 4 - 1; 3 - 4

miR-338-3p 2 0.003743 4 - 1; 2 - 3; 4 - 3

miR-29 2 0.010592 1 - 3; 2 - 3; 2 - 4

miR-1 3 8.15E-12 1 - 2; 1 - 3; 1 - 4

miR-570 3 7.84E-11 1 - 2; 1 - 3; 2 - 3; 4 - 2; 4 - 3

miR-144 3 2.44E-10 1 - 2; 1 - 3; 2 - 3; 4 - 2; 4 - 3

miR-1291 3 1.78E-08 1 - 2; 1 - 3; 1 - 4; 2 - 3; 4 - 2; 4 - 3

miR-330-5p 3 3.23E-08 1 - 2; 1 - 3; 4 - 2; 4 - 3

Let-7f 3 1.05E-06 1 - 2; 1 - 3; 3 - 2; 4 - 2; 4 - 3

miR-374a 3 3.58E-06 1 - 2; 1 - 3; 4 - 2; 4 - 3

miR-299-5p 3 4.69E-05 1 - 2; 1 - 3; 1 - 4; 4 - 3

miR-1248 3 5.61E-05 1 - 2; 1 - 3; 4 - 2; 4 - 3

miR-223 4 4.2E-16 1 - 4; 2 - 4; 3 - 4

miR-133b 4 9.32E-06 1 - 2; 1 - 3; 1 - 4; 2 - 4; 3 - 4

miR-148a 4 1E-05 1 - 4; 2 - 4; 3 - 4

miR-16 4 7.24E-04 1 - 3; 1 - 4; 2 - 3; 2 - 4

miR-106a 4 0.002195 1 - 3; 1 - 4; 2 - 3; 2 - 4

miR-26b 4 0.005422 1 - 2; 1 - 3; 1 - 4

miR-150 4 0.008776 1 - 4; 2 - 3; 2 - 4

miR-133a 4 0.025097 2 - 1; 2 - 3; 2 - 4

miR-937 5 2.82E-18 1 - 2; 1 - 3; 1 - 4; 2 - 3; 4 - 3

miR-206 5 2.47E-15 1 - 2; 1 - 3; 2 - 3; 4 - 3

miR-365 5 6.49E-14 1 - 2; 1 - 3; 1 - 4; 2 - 3; 2 - 4; 3 - 4

miR-346 5 4.9E-11 1 - 2; 1 - 3; 1 - 4; 2 - 3; 2 - 4; 4 - 3

miR-422 5 7.04E-08 1 - 3; 1 - 4; 2 - 3; 2 - 4

mir-125b 5 1.62E-07 1 - 3; 2 - 3; 4 - 3

miR-145 5 1.24E-05 1 - 3; 1 - 4; 2 - 3; 2 - 4; 3 - 4

miR-328 5 0.002629 1 - 2; 1 - 3; 1 - 4
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Asthma severity and asthma control
Cluster 1 was comprised of mostly mild asthmatics (9/10 mild), while Cluster 3 and 4 were mostly severe 
asthma (18/20 and 9/13, respectively). Asthma severity in Cluster 2 was variable, and included 5 mild, 8 
moderate, and 7 severe persistent asthmatics. Asthma control differed across the clusters. Cluster 1 had the 
best control (mean ACT of 21.2) followed by Cluster 2 (mean ACT of 17.7), Cluster 3 (mean ACT of 13.7), and 

Figure 2. Representative miRNA expression patterns in each group. Box and whisker plots of representative miRNAs in each of the five 
groups identified (panels A, B, D-F), and blood eosinophil levels (panel C). CL: cluster
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Cluster 4 (mean ACT of 12.5). Asthma controller medication use, as a measure of difficult to treat asthma, 
also varied by cluster. Cluster 1 had the lowest daily inhaled corticosteroid (ICS) use, and Cluster 3 and 4 
had the highest. In addition, Cluster 1 required the lowest number of controller medications, while Clusters 
3 and 4 had the highest.

Lung function
Consistent with our observations on the relationship between clusters and asthma severity, differences in 
lung function were observed in different clusters. Subjects in Cluster 4 had the highest degree of obstruction 
(FEV1/FVC ratio of 0.59 ± 0.11), compared to 0.74 ± 0.13 in Cluster 1, 0.67 ± 0.14) in Cluster 2, and 0.67 ± 0.12 
in Cluster 3. In addition, subjects in Cluster 3 had the lowest FEV1% at 60.7 ± 19.3, compared to 63.5 ± 20.2 in 
Cluster 4, 74.5 ± 21.4 in Cluster 2, and Cluster 1 had the highest at 84.4 ± 18.9.

Markers of type 2 inflammation
All subjects in our study had allergy testing to environmental allergies. There were similar rates of 
proportions of subjects with aeroallergen sensitivity (based on at least one positive test to a panel of 15 
aeroallergens): Clusters 1, 2, 3, and 4 were respectively 90%, 85%, 89%, and 85%. Subjects in Cluster 1 had 
the lowest number of positive aeroallergen tests (mean 3.8 positive tests per person), while Cluster 4 had the 
highest (mean 6.8 positive tests per person), but these values did not meet statistical significance. Cluster 1 
was also associated with a low rate of mold sensitivity (10% of subjects had 1 or more positive tests to mold).

The absolute number of eosinophils in blood was the highest in Cluster 3 at 477. Mean absolute eosinophils 
in Cluster 1 was 139, 317 in Cluster 2, and 284 in Cluster 4. The mean total IgE was the highest in Cluster 2 
at 881, 588 in Cluster 2, 231 in Cluster 4, and 97 in Cluster 1. However, not all subjects had a total IgE level 
drawn, as this measure was only done in subjects with moderate to severe asthma, per our typical clinical 
workup in this patient asthma group.
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Table 3. Differences in clinical features between clusters

Clinical feature Cluster 1 (n  = 10) Cluster 2 (n  = 20) Cluster 3 (n  = 19) Cluster 4 (n  = 13) P -value1

Age (year), mean (SD) 45.6 (17.9) 40.3 (13.5) 42.5 (14.9) 48.5 (13.2) 0.440

Male/female, (%female) 4/6 (60) 8/12 (60) 4/15 (79) 6/7 (54) 0.451

Race and ethnicity % (W, B, H, A) 100, 0, 0, 0 95, 5, 0, 0 52.6, 36.8, 10.5, 0 61.5, 15.4, 7.7, 15.4 0.003

BMI, mean (SD) 31.7 (7.6) 27.7 (5.4) 35.1 (12.0) 31.8 (8.4) 0.080

FVC%, mean (SD) 92.6 (13.0) 88.8 (14.5) 74.3 (18.9) 86.2 (18.3) 0.017

FEV1%, mean (SD) 84.4 (18.9) 74.5 (21.4) 60.7 (19.3) 63.5 (20.2) 0.014

FEV1/FVC, mean (SD) 0.74 (0.13) 0.67 (0.14) 0.67 (0.12) 0.59 (0.11) 0.048

ICS dose/day, mean (SD) 250 (425) 431 (416) 752 (494) 766 (344) 0.006

Total # medications, mean (SD) 0.9 (1.3) 2.2 (1.4) 3.2 (1.5) 3.5 (1.6) < 0.001

# needing > 1 controller/total (%) 3/10 (30%) 11/20 (55%) 9/19 (47%) 11/13 (85%)

Asthma control score 21.2 (5.1) 17.7 (5.3) 13.7 (6.2) 12.5 (5.4) < 0.001

  Eosinophils, mean (SD) 139 (99) 317 (293) 477 (401) 284 (181) 0.072

  Severe asthma, % (n ) 20 (2) 35 (7) 89 (17) 77 (10) < 0.001

  Aeroallergen sensitivity, % (n ) 90 (9) 85 (17) 89 (17) 85 (11)

For allergic subjects

  Total # allergens tested positive, mean (SD) 3.8 (3.5) 5.5 (4.9) 4.8 (4.5) 6.5 (5.2) 0.546

  Pollen sensitivity (%) 50 45 58 54 0.941

  Cockroach sensitivity (%) 10 25 21 31 0.693

  Dust mite sensitivity (%) 60 50 47 54 0.782

  Animal sensitivity (%) 30 45 68 46 0.143

  Mold sensitivity (%) 10 45 32 38 0.291

1P  < 0.05 significant, determined by ANOVA for continuous variables, Chi-square for categorical variables; BMI: body mass index; ICS: 
inhaled corticosteroid; FVC: forced vital capacity; FEV1: forced expiratory volume in 1s; W: White; B: Black; A: Asian; H: Hispanic



DISCUSSION
Asthma is a heterogeneous disease that exemplifies the need for personalized approaches to medicine. 
Because different asthma phenotypes may be driven by different mechanisms and thus respond differently to 
specific therapies, it is crucial to develop diagnostic approaches to identify and classify these subgroups.

In a previous study, we identified a panel of ~40 miRNAs that were differentially expressed in asthmatics vs. 
non-asthmatics[7]. Our previous work also demonstrated that miRNAs may provide information about the 
presence or absence of eosinophilic asthma, and that miRNAs upregulated in eosinophilic asthma may play 
roles in disease pathogenesis. In this study, we sought to further characterize these relationships to determine 
whether miRNA expression patterns define subgroups of asthmatics that differ by atopy, eosinophilia, 
severity, and clinical characteristics. Our findings demonstrate that blood miRNA expression profiles define 
distinct asthma phenotypes, and that expression patterns differ based on severity, BMI, and eosinophila. The 
importance of these findings is discussed herein.

Association of miRNA expression patterns with mild, non-eosinophilic asthma
Cluster 1 was associated with mild asthma, low ICS use, and low atopy (as assessed by number of allergens 
that tested positive and blood eosinophilia). In terms of miRNA expression, it correlated with low levels of 
the Let7 family, which also includes miR-98 (we classified these miRNAs as “group 1” based on expression 
pattern), as well as low levels of group 2 miRNAs, which included miR-21 and miR-155 [Figure 3]. All 
of these miRNAs have been shown to play roles in asthmatic inf lammation. It was demonstrated that 
increased miR-98 in peripheral blood may contribute to pathogenesis of asthma by lowering the frequency 
of immune regulatory B cells[12]. There is some evidence to suggest that Let-7 has a pro-inflammatory role 
in asthma, primarily by promoting type 2 inflammation[13,14]. MiR-155 and miR-21 are both known to be 
involved in asthma pathogenesis, particularly in asthma that is associated with eosinophilia[15-18]. Inhibition 
of the miRNA and/or ablation of genes coding for the miRNA in mice attenuated airway inflammation and 
reduced tissue eosinophilia. Furthermore, miR-21 has been shown to convey steroid resistant asthma in a 
mouse model, by amplifying the effects of phosphoinositide 3-kinase[19]. As such, low expression of these 
miRNAs is congruent with the clinical observations that these subjects in this cluster have mild asthma, low 
eosinophil levels, and little need for corticosteroids.

Identification of miRNAs associated with increased asthma severity and eosinophilia
Based on differences in asthma severity and eosinophilia between asthma clusters, our results identified 
miRNA signatures associated with clinical features of disease. Expression of Let7 family and miR-98 (i.e., 
group 1 miRNAs) appeared to be most representative of severity; expression was the lowest in Cluster 1 (mild 
asthma), higher in Cluster 2 (mild-moderate asthma) and the highest in severe asthma (Cluster 3 and 4). 
Regarding an eosinophilic specific miRNA signature, expression of group 2 miRNAs (including miR-155 
and miR-21) appeared to be the most useful to define eosinophilia, independent of severity. Expression of 
these miRNAs were the highest in the eosinophilic Clusters (2 and 3), and the lowest in the non-eosinophilic 
cluster (Cluster 1). The patterns of miRNA expression and clinical correlations are consistent with the 
findings in mouse studies discussed above, suggesting conserved pathways between mouse and humans. A 
major implication of these findings is that measurement of blood expression levels of these miRNAs at the 
time of asthma diagnosis could be useful in predicting outcomes and selection of treatment. For instance, 
patients with high levels of group 1 and group 2 miRNAs may require more aggressive treatment targeted to 
eosinophils, whereas those with low levels of these miRNAs may have better outcomes with need for lower 
doses of ICS. Prospective studies will be essential to validate these hypotheses and determine whether these 
miRNA signatures have predictive properties.

MiRNA expression patterns distinguish subsets of severe asthmatics
Severe asthma continues to be challenging to treat, in part because it is not clear whether there are distinct 
sub-phenotypes of severe asthma that require different treatment approaches. Our miRNA expression 
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profiles identified two distinct severe asthma subpopulations, Cluster 3 and Cluster 4. While these subjects 
had similar levels of asthma severity, asthma control, allergic sensitization, and ICS use, Cluster 3 was 
associated with features that typically predict worse asthma outcomes, including higher blood eosinophil 
levels, higher BMI, female gender, and racial/ethnic disparity (higher rate of Black and Hispanic subjects). 
Thus, miRNA expression profiles may be able to detect phenotypic differences in severe asthmatics, even 
when these are not easily apparent based on clinical features alone. For the most part, group 2 miRNAs 
(including miR-21 and miR-155) were higher in Cluster 3 vs. Cluster 4 (and higher vs. Cluster 1 and Cluster 2 
as well), in line with the discussion above these miRNAs are associated with severe, eosinophilic asthma in 
mouse models and humans.

Potential function of candidate miRNAs
Expression patterns of miRNAs in eosinophilic clusters may provide clues about the potential functions of 
these miRNAs in asthma. As discussed above, pro-eosinophil miRNAs (group 2 miRNAs such as miR-21 
and miR-155) were elevated in clusters with highest blood eosinophil levels (Clusters 2 and 3). The finding that 
these clusters of asthmatics were also associated with low expression of miRNAs in group 3 (i.e., miR-1, miR-
330-5p, miR-570-3p, miR-1248), raises a question about whether these miRNAs could have anti-eosinophil 
function. These miRNAs in fact showed an inverse relationship with blood eosinophil levels in our asthma 
cohort. It is possible that an imbalance between anti-eosinophilic miRNAs and pro-eosinophilic miRNAs 
exists in these subgroups of asthmatics. While there is ample evidence for the pro-inflammatory roles of miR-21 
and miR-155, the miRNAs categorized in group 3 are poorly studied in asthma. However, there is emerging 
data that a number of them negatively modulate inflammation. MiR-1 has been shown to have anti-Th2 
inflammatory properties in a mouse asthma model, and reduced levels in Cluster 2 and 3 of our human 
asthmatics could be a factor in pathogenesis of a pro-type 2 inflammatory phenotype[20]. Along similar 
lines, miR-330-3p has been shown to promote M1 macrophage differentiation, while its inhibition drives 
M2 macrophage differentiation[21]. We previously identified miR-570-3p as a candidate asthma miRNA. 
We found that it regulated a number of inflammatory mediators in airway epithelial cells, such that its de-
regulation could also have implications in asthmatic inflammation[22]. In addition, we previously found that 
miR-1248 was capable of regulating IL-5, a crucial pro-eosinophilic cytokine[7]. However, the function of this 
miRNA has not been established in in vivo systems. Taken together, these findings suggest that expression 
profiles of miRNAs in asthmatics may reflect an interplay of numerous miRNAs that act in concert to skew 
inflammatory responses towards specific asthma phenotypes. Certainly, future work will be needed to 
further dissect the roles of the miRNAs in asthma and eosinophilic inflammation.

CONCLUSION
This work is the first to demonstrate that miRNA expression profiles are capable of identification of asthma 
subtypes that are clinically distinct. We propose that miRNA profiling may be a useful adjunct to the current 
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Low Let-7, miR-98
Low miR-21,-155
High miR-1, -330-5p, 570-3p

Mild asthma
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Mod-High Eosinophils

Severe Asthma
High Eosinophils
High rate of females 
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Obesity

Severe Asthma
Mod Eosinophils

Low Let-7, miR-98
High miR-21, -155
Low miR-1, -330-5p, 570-3p

High Let-7, miR-98
High miR-21, -155
Low miR-1, -330-5p, 570-3p

High Let-7, miR-98
Intermediate miR-21, -155
High miR-1, -330-5p, 570-3p

Cluster 2 Cluster 3 Cluster 4

Figure 3. Clinical characteristics and miRNA expression patterns of asthma clusters. ICS: inhaled corticosteroid



workup of asthma. However, there are a number of limitations in our study. First, we did not have access to 
lower lung samples, such as sputum or bronchoalveolar lavage fluid. Ideally these sources of sample would 
be most accurate for determining the presence of eosinophilic airway inflammation. Second, this is a cross-
sectional study. Future work will be needed to determine whether these phenotypes change over time. In 
addition, prospective studies will need to be done to determine whether categorizing asthmatics into these 
clusters has predictive value, specifically to determine whether these specific groups have different clinical 
outcomes and different response to asthma medications. As a number of specific medications targeting 
eosinophils, IgE, and specific cytokines are now available (and many more in development), miRNA expression 
profiles may have a useful role in helping to select the specific therapy for the specific subtype of asthma.
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