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Abstract
Prostate cancer remains the most commonly diagnosed and the second leading cause of cancer-related deaths in 
men in the United States. The neoplastic transformation of prostate epithelia, concomitant with modulations in the 
stromal compartment, known as reactive stromal response, is critical for the growth, development, and progression 
of prostate cancer. Reactive stroma typifies an emergent response to disrupted tissue homeostasis commonly 
observed in wound repair and pathological conditions such as cancer. Despite the significance of reactive stroma in 
prostate cancer pathobiology, our understanding of the ontogeny, phenotypic and functional heterogeneity, and 
reactive stromal regulation of the immune microenvironment in prostate cancer remains limited. Traditionally 
characterized to have an immunologically "cold" tumor microenvironment, prostate cancer presents significant 
challenges for advancing immunotherapy compared to other solid tumors. This review explores the detrimental 
role of reactive stroma in prostate cancer, particularly its immunomodulatory function. Understanding the 
molecular characteristics and dynamic transcriptional program of the reactive stromal populations in tandem with 
tumor progression could offer insights into enhancing immunotherapy efficacy against prostate cancer.
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INTRODUCTION
The prostate, an exocrine gland located beneath the urinary bladder and surrounding the urethra, is 
essential for male reproductive function. During embryonic development, epithelial buds from the 
urogenital sinus interact with mesenchyme, driving prostate differentiation and secretory duct 
formation[1-3]. Cancer of the prostate gland, the most diagnosed cancer in men and the second-leading cause 
of male cancer deaths in the United States, typically progresses slowly[4-6]. Prostate cancer incidence and 
mortality rates are closely linked to aging. Additionally, in the United States, African American men have a 
higher incidence rate of developing aggressive prostate cancer compared to their Caucasian counterparts[4,7]. 
While localized disease responds well to surgery or radiation, 20% to 50% of patients experience biochemical 
recurrence within a decade, leading to advanced or metastatic cancer[7]. The prostate stroma plays a critical 
role in promoting the progression of advanced prostate cancer[8].

In adult differentiated biology, the physical and biochemical interactions between the epithelial cells 
together with cellular and non-cellular components of the stroma regulate normal prostate function and 
homeostasis[9]. The prostate stroma is composed of smooth muscle cells, tissue-resident mesenchymal cells, 
extracellular matrix (ECM) proteins, nerves, blood vessels, and a spectrum of immune cells [Figure 1][9-11]. 
During development, androgen secreted by the testis is the chief regulator of prostate gland growth, and the 
hormonal action is mediated through the androgen receptor (AR)[12]. However, tissue recombination 
experiments have revealed that the androgenic effects on prostate gland growth and development are not 
solely dependent on epithelial AR but require paracrine signaling induced by the AR-positive prostate 
mesenchyme[13,14]. Disruptions in the functional coupling between the stromal and epithelial interactions in 
the adult prostate are associated with glandular dysfunction typified in aging and disease, although specific 
mechanisms remain undefined. Considerable evidence suggests these biological disruptions are associated 
with a transition into a repair-centric, emergency, or emergent tissue systems biology state to affect rapid 
repair until the biological priority resets to functional, differentiated biology[15]. However, an unresolved/
chronic repair state of the stroma, defined as reactive stroma, has been correlated with promoting the 
evolution of pathological processes including benign prostate hyperplasia (BPH) and prostate cancer[15-18] 
[Figure 1].

Currently, there is very limited information available on both tissue-resident immune cells in healthy adult 
prostate and the modulations that occur in the immune landscape in a disease state like cancer. Often co-
evolving with cancer, the reactive stroma is an environment enriched with growth factors and characterized 
by increased angiogenesis, an increased inflammatory response, and an extensively remodeled ECM 
resulting in a desmoplastic reaction[11,19]. The reactive stroma of solid tumors, including prostate cancer, has 
been shown to be immunosuppressive and associated with induced resistance to tumor-targeted 
immunotherapies; however, the mechanisms remain complex[20,21]. Recent studies have shown that either 
reprogramming subsets of stromal cells or immunotherapies targeting stromal antigens can disrupt the pro-
tumorigenic microenvironment niche and enhance endogenous or vaccine-induced antitumor 
immunity[20-24]. In this review, we will discuss the current knowledge about stromal evolution in prostate 
cancer tumorigenesis and its known regulation of the tissue-immune landscape. Understanding this will 
help in developing effective therapeutic strategies that can be leveraged to co-target peri-tumoral reactive 
stroma to reprogram the immune suppressive tumor microenvironment (TME) and render it permissive to 
antitumor immunotherapies.

PROSTATE GLAND AT HOMEOSTASIS
An integrative network involving various cellular and acellular components regulates the structure, 
function, and homeostasis of the prostate gland. The acinar epithelial cells constitute the functional 
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Figure 1. Reactive/emergent stromal response in prostate. (A) The prostate gland at homeostasis maintains a well-organized tissue 
architecture with specific cellular components functioning in a balanced state. (B) Aging and conditions like benign prostatic 
hyperplasia (BPH) and cancer disrupt this homeostasis, triggering an emergency/emergent (repair) processes in the prostate tissue to 
restore homeostasis.

parenchyma of the prostate gland. The stromal cells synthesize ECM components and provide mechanical 
support to the secretory epithelium. In addition to these functions, immune cells actively participate in the 
surveillance of organ integrity, while the vascular system provides oxygen and nutrient support to the organ. 
Moreover, the contractile activity of the smooth muscle of the stroma is pivotal for the proper functioning 
of the prostate gland. This activity is regulated by neuronal inputs, with the sympathetic nervous system 
acting via the hypogastric nerve, and parasympathetic nervous system via the pelvic nerve[1,2,25].

The bulk stroma of the prostate consists of fibroblasts, mesenchymal stem cells, and smooth muscle cells. 
The homeostasis and normal functioning of the prostate gland are dependent on intercellular 
communications between the epithelial and stromal compartment, mediated through the paracrine and 
apocrine secretions from both cell types[25-30]. Various secretory effectors like wingless-related integration 
sites (WNTs), transforming growth factors (TGF) α and β, fibroblast growth factors (FGF), insulin growth 
factors (IGF), epidermal growth factor (EGF), platelet-derived growth factors (PDGF), vascular endothelial 
growth factor (VEGF), prostaglandins, endothelin, sonic hedgehog, and nitrous oxide orchestrate cellular 
proliferation, differentiation, and the regulation of cell death in both epithelial and stromal cells of the 
prostate gland. These processes are mediated via the respective cognate receptors[27,30,31]. Furthermore, a well-
defined laminin-positive basement membrane demarcates the epithelial acini from the fibromuscular 
stroma of the prostate gland[32]. Along with key junctional complexes within the epithelium, the structural 
integrity of this basement membrane is crucial for maintaining the functionality of the acini and preventing 
the dissemination of pathogenic microbes into the stromal tissue. A breach in basement membrane integrity 
also serves as a critical precursor to invasive progression and systemic pathogenesis like prostate cancer 
metastases[33,34].

Steroid regulation of the prostate
Steroids, particularly testosterone, play an important role in maintaining the structural and functional 
integrity of the prostate gland. At the subcellular level, androstenedione is also essential for maintaining the 
function of prostatic epithelium. In addition to androgens, estrogen contributes to the regulation of prostate 
function by primarily affecting stromal cell proliferation and angiogenesis[2,31,35,36]. The impact of estrogen on 
prostatic epithelium is intricate. While it has been associated with inducing hyperplasia, metaplasia, and 
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keratinization of the epithelium, as well as neoplasia in the prostate of adult rodent models[37-39], studies have 
also shown the administration of estrogen-induced BPH in dogs. Moreover, the estrogenic effect has been 
demonstrated to induce aberrations in the prostatic epithelium in both primates and humans[39,40]. 
Therefore, maintaining the estrogen/testosterone (E/T) ratio is integral for maintaining normal function 
and homeostasis of the prostate gland[39]. Besides androgens and estrogens, progesterone, prolactin (a 
hypophyseal hormone), and insulin regulate prostatic function and growth[2].

Steroid action in the prostate gland is mediated through respective intracellular hormone receptors. The 
human prostate expresses AR, estrogen receptors α and β (ERα and ERβ), estrogen-responsive G protein-
coupled receptor 30 (GPR30), progesterone receptor (PR), and glucocorticoid receptor (GR)[2]. Following 
puberty, the steady state phase of the prostate gland is maintained by balancing cell proliferation and cell 
death, a process regulated by AR signaling in both the epithelium and stromal cells of the prostate[41]. During 
the prenatal and postnatal differentiated stage, ERα is primarily expressed in the stroma and smooth muscle 
cells, while ERβ is expressed in the epithelium[42-44]. The compartmentalization of expression and the 
differential affinity of both ERα and β to bind to ligands and cofactors suggests the diverse functional role of 
estrogen within the prostate gland. Experiments in mice show that ERα-regulated transcription of cytokine 
genes in the mesenchyme regulates prostate differentiation and morphology during development. 
Meanwhile, estrogen-mediated signaling in the prostate epithelium, mediated via ERβ, has been shown to be 
important for epithelial function[39].

Isoforms of PR (PRA and PRB) are predominantly expressed in the stromal and smooth muscle cells of the 
prostate. The interaction with the prostate epithelium is crucial for PR expression in the stromal cells. 
Notably, PR activation has been observed to inhibit stromal expansion, which contrasts ERα regulation of 
stromal cells[45]. These observations suggest the coordinated activity of PR and ERα in maintaining 
epithelium-stromal homeostasis in the prostate gland; however, the mechanisms remain unclear. 
Glucocorticoids exert pleiotropic effects systemically through the GR receptors. In the prostate, GR and AR 
share overlapping cistromes and transcriptomic signatures. AR activation has been shown to downregulate 
GR expression in the prostate epithelium, indicating a critical negative feedback regulation between these 
two hormone receptors. Consequently, in castration conditions, GR signaling can bypass AR inhibition, 
promoting therapeutic resistance and prostate cancer cell survival[46].

IMMUNE LANDSCAPE IN PROSTATE GLAND
Tumor-infiltrating immune cells influence the progression of prostate cancer and its response to treatment, 
yet understanding the immune microenvironment crucial for normal prostate function remains limited. 
Recent studies utilizing bulk and single-cell sequencing techniques on normal and non-cancerous prostate 
tissue have identified a diverse array of leukocytes, including mononuclear phagocytes (MNPs), mast cells, 
natural killer (NK) cells, B cells, and tissue-resident T cells. Cross-species analysis in mice has revealed that 
T cells and MNPs, which persist even in prostate cancer, primarily populate the healthy prostate. Cross-
analyses of single-cell RNA sequencing datasets in humans have identified six distinct classes of MNPs in 
the normal prostate, including monocytes, conventional dendritic cells (cDC1 and cDC2 subsets), 
proliferating macrophages, and various macrophage subclasses, including MAC1, MAC2, and 
MAC-MT[47,48].

Tissue-resident macrophages are crucial during embryonic development and in maintaining adult tissue 
homeostasis[49]. The diversity observed among MNPs within the prostate suggests potential tissue-specific 
functions. Transcriptomic analyses reveal that certain macrophage subclasses, such as MAC-MT, are 
exclusive to the prostate gland and exhibit heightened expression of zinc transporter genes, implicating their 
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involvement in zinc homeostasis critical for prostatic fluid synthesis[50,51]. Remarkably, targeted depletion of 
macrophages using antibody targeting colony-stimulating factor 1 receptor  (CSF1R) resulted in decreased 
zinc concentration specifically within the prostate gland, confirming the presumed role of MAC-MT 
macrophages in zinc regulation[47]. Furthermore, the distinct functions of dendritic cell subsets, such as 
cDC1 and cDC2, in antigen presentation and T-cell activation, respectively, underscore the dual importance 
of MNPs in both maintaining prostatic function and regulating immune responses[47,48].

Contrary to conventional theory, there is growing evidence to suggest that tissue-resident macrophages are 
seeded in the embryonic stage and self-maintained throughout adulthood. Transcriptomic analyses revealed 
that MAC-MT, with upregulated levels of zinc transporters genes, SLC39A8 and SLC30A1, might be seeded 
in the prostate from the prenatal stage, as it is transcriptionally similar to the yolk sac-derived 
macrophages[47]. The expression of the zinc transporters and metallothionein genes were also identified to be 
highly expressed in embryonically seeded macrophages in the murine prostate gland, further highlighting 
the developmental origin of these specialized immune cells. Conversely, MAC2 was suggested to be 
monocyte-derived and specific to the prostate gland[47-49,52]. These insights underscore the intricate interplay 
between immune cell populations and tissue-specific functions within the prostate, providing valuable 
insights into potential therapeutic targets for prostate cancer and related disorders.

HORMONAL DYSREGULATION IN AN AGING PROSTATE
Hormonal imbalances, tissue atrophy, and chronic inflammation are characteristic features of an aging 
prostate[53]. Additionally, with aging, there is an increased likelihood of transitioning from adult 
differentiated biology to repair-centric/emergent systems biology in tissues, resulting in the activation of 
reactive stromal response. This reactive stroma plays a crucial role in regulating epithelial proliferation and 
modulating the immune microenvironment. Notably, hormonal dysregulation is one of the primary 
contributors to the transformation of the prostate stroma into a reactive phenotype[53].

Aging men experience an upregulation of estrogen production due to declining testosterone levels, a 
process exacerbated by comorbidities like obesity and type 2 diabetes[53-56]. Testosterone deficiency is 
implicated in inducing chronic inflammation within the prostate tissue, as testosterone plays a crucial role 
in inhibiting the pro-inflammatory response of prostate stromal cells by activating AR and inhibiting the 
secretion of inflammatory cytokines and growth factors[57,58]. Additionally, testosterone protects against 
inflammation caused by uropathogenic bacteria like Escherichia coli by downregulating the Janus Kinases 
(JAK)/signal transducer and activator of transcription 1 (STAT1) signaling pathway in the prostate 
epithelium[59]. Indeed, chronic inflammation of the prostate gland induced by bacteria was observed to 
induce premalignant and malignant lesions in the prostate gland of Mongolian gerbils[60].

Obesity exacerbates hormonal imbalance by increasing aromatase activity, leading to the conversion of 
testosterone to estradiol, the most potent form of estrogen in men[61]. The increase in the 
estrogen/testosterone (E/T) ratio due to aging can lead to estrogen dominance, promoting stromal cell 
proliferation and fibrosis, which can accelerate clinical progression in BPH, and induce premalignant 
lesions in the prostate gland[62,63]. Racial disparities in prostate cancer incidence and mortality rates, 
particularly among African American men, have been linked to dysregulated estrogenic action on the 
prostate gland, with higher serum levels of estradiol observed in Non-Hispanic black men compared to 
Non-Hispanic white men[39,64-68]. Additionally, exposure to elevated estrogen levels during early gestation has 
been suggested to be a contributing factor to racial differences in prostate cancer risk, which needs to be 
substantiated through population-based studies. However, in vivo rodent studies support the induction of 
abnormalities in the prostate gland by early estrogenic exposure[37,69-71].
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Multiplex profiling has revealed a significant enrichment of T and B lymphocytes in the mouse prostate 
gland due to aging. Specifically, a strong correlation was observed between age and enrichment of 
programmed cell death protein 1 positive (PD-1+) CD4+ and CD8+ T cells in the mouse prostate gland. 
PD-1, a cell membrane protein, plays a critical role in inhibiting both T and B-cell immune response, and is 
a marker for T-cell "exhaustion"[47,53,72]. Intriguingly, estrogen modulates immune cells of both myeloid and 
lymphoid lineages in a tissue-context-dependent manner[73]. Given the presence of both myeloid and 
lymphoid cells in prostate gland homeostasis[47,48], understanding the dynamic changes in the immune 
profile within the prostate gland in the context of testosterone deficiency and estrogenic dominance is 
crucial for comprehending disease development in an aging prostate.

TUMOR-STROMA INTERACTIONS
While tissue-emergent/reactive stromal responses in carcinomas are often considered secondary to 
epithelial changes, the limited progression of many epithelial tumors from in situ lesions despite harboring 
genetic abnormalities associated with malignancy raises questions about the driving molecular factors of 
neoplasms[74,75]. Recombinant studies in murine models have provided evidence suggesting that the stromal 
microenvironment is a key determinant in promoting prostate carcinogenesis[76-80]. Moreover, exogenous 
insults directly affecting the stroma have been identified as critical initiators of the carcinogenic process in 
various other solid tumors. For instance, ultraviolet radiation-induced dermal atrophy has been shown to 
precede keratinocyte tumors, while chemicals in cigarette smoke metabolically promote cancer by inducing 
autophagy and premature aging in the host stromal microenvironment in an organ such as the breast[75,81,82]. 
In another example, obesity-induced metabolites derived from gut microbiota induce senescence in hepatic 
stellate cells, which then secrete inflammatory and tumor-promoting factors that facilitate the development 
of hepatocellular carcinoma in mice exposed to chemical carcinogens[83]. Collectively, these instances 
suggest that the tissue stroma may indeed play a primary role in initiating and promoting cancer 
development.

Thus, the experimental evidence cited above suggests that aging or insult-driven changes of the stroma 
create a permissible emergent/reactive tissue or organ environment (soil) that promotes the growth of 
monoclonal or polyclonal tumors (field cancerization). However, based on this view, sustainable treatment 
or cure for cancer will be difficult to attain as long as the reactive soil persists[75]. Therefore, there is a 
pressing need to characterize the stromal compartment of solid tumors. One of the main limitations in 
characterizing reactive stroma in prostate cancer is the heterogeneity of cancer-associated fibroblasts 
(CAFs) that make up the TME. Stromal heterogeneity is partially explained by the fact that CAFs can be 
derived from the activation of tissue-resident fibroblasts, mesenchymal stem cells, vimentin-positive 
periacinar cells, circulating bone marrow-derived precursors, vessel-associated pericytes, and endothelial 
cells[10,11]. Spatial transcriptomic analysis of radical prostatectomy-derived tissue, in addition to stromal cell 
lineages identified from single-cell sequencing analyses of mouse prostate stroma, suggests the presence of 
reactive stromal cells with different transcriptional programs and functions within the prostate cancer 
TME[84,85]. Additionally, the phenotypic plasticity of the activated stromal cells further underscores the 
dynamic nature of the reactive stroma[11]. Hence, characterizing a moving target such as TME to understand 
tumorigenesis, development, and progression becomes a challenging endeavor.

STROMAL RESPONSE IN PROSTATE CANCER
The coordinated host emergent response to tissue injury involves the collective action of cells that make up 
the connective tissue/stroma and the extracellular matrix (ECM) products. The normal reactive stromal 
response to injury is self-limited and regulated spatially and temporally to re-establish tissue integrity and 
reset homeostasis. The mechanisms underlying reactive/emergent stromal response include the release of 
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inflammatory and growth signals, basement membrane dysfunction initiating cell-to-matrix and 
intercellular interactions regulating cell proliferation, migration, and differentiation of both stromal and 
epithelial cells, fibroplasia, angiogenesis, ECM remodeling, and wound contraction [Figure 1]. However, the 
persistence of this repair process resulting in a chronic, non-healing wound and fibrosis, can affect any 
tissue and organ system in the human body[86-88].

In 1863, Rudolf Virchow first recognized the association between wound healing phases in tissue and 
tumorigenesis. Clinical similarities suggested shared common cellular and molecular signatures between the 
two conditions. This insight led Scottish pathologist Dr. Alexander Haddow to deduce cancers as wounds 
that overheal[89,90]. However, clinical evidence indicated that in cancer, reactive stroma is not self-limited and 
is tumor-promoting, which led Dr. Harold Dvorak to postulate that "tumors are wounds that do not 
heal"[86]. Owing to Paget’s "seed and soil hypothesis", reactive stroma has emerged as essential soil regulating 
multiple aspects of tumorigenesis, including initiation, development, progression to metastases, and most 
importantly, development of therapeutic resistance[91].

Reactive stroma is heterogeneous in its makeup, exhibiting both organ- and tumor-specific characteristics. 
The prevalence and abundance of reactive stroma serve as disease-defining factors and are associated with 
poor prognosis in several solid tumors, including colon carcinoma, head and neck cancer, HER2-negative 
early breast cancer, squamous cell carcinoma, and rectal cancer[20,92-96]. In prostate cancer, reactive stroma co-
evolves with tumor development, and its relative abundance is quantified as reactive stromal grade (RSG). 
An RSG of 3 represents when more than 50% of the prostate tumor area is composed of reactive stroma, 
and the latter is associated with earlier biochemical recurrence and worse prognosis[97,98]. Reactive stroma in 
prostate cancer is composed of CAFs that can transdifferentiate into cancer-associated myofibroblasts 
(myCAFs) or inflammatory fibroblasts (iCAFs), with an expanded and modified ECM with collagen 
deposition, dense microvessels, and immune infiltrates [Figure 1][11,17,99]. Tissue recombinant experiments 
demonstrated that prostate cancer-derived CAFs promote tumor growth in vivo while normal fibroblasts 
inhibit the process, thus confirming the critical nature of reactive stroma in prostate tumor growth and 
development[100-102].

MOLECULAR FEATURES OF REACTIVE STROMA
TGF-β signaling
Cytokines, such as TGF-β, play a crucial role in regulating cell fate and reactive stromal response. TGF-β 
induces the differentiation of stromal cells into vimentin and smooth muscle alpha-actin-positive myCAFs, 
thereby initiating a wound repair-like reactive stroma. Concurrently, TGF-β also modulates the 
composition of the ECM by inducing the expression of collagen 1 and tenascin-C in stromal cells[10,17]. 
TGF-β is also critical in modulating the immune reaction. It can suppress interleukin 2 (IL-2) synthesis and 
T-cell proliferation, as well as regulate the differentiation of both CD4+ T cells and regulatory T cells (Tregs). 
Cytokines such as IL-10, IL-4, and TGF-β secreted by reactive stromal cells and immune-suppressive cells 
like Tregs can increase the polarization of M2 macrophages. M2 macrophages have been shown to enhance 
angiogenesis, tissue remodeling, and modulate the immune microenvironment by expressing human 
leukocyte antigen (HLA-DR) and programmed death-ligand 1 (PD-L1), resulting in the suppression of the 
immune system[103-105].

Although the expression of TGF-β increases from prostatic intraepithelial neoplasia (PIN) to the 
development of prostate cancer lesions[10,17], the biological activity of TGF-β within TME is not cancer-
specific. TGF-β is a fundamental regulator of different cellular processes in adult differentiated biology[106]. 
Thus, the biological activity of TGF-β activity is essentially indistinguishable whether in a wound repair, 
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tissue fibrosis, or TME. TGF-β, secreted by both epithelial cells and fibroblasts, is critical for coordinating 
tissue repair and homeostasis through its context-dependent pleiotropic functions. For example, TGF-β 
induces cytostasis in non-transformed epithelial cells, while in endothelial and mesenchymal cells, it 
stimulates proliferation. Additionally, TFG-β can both induce and suppress apoptosis, suggesting that other 
critical signaling inputs mediate TGF-β-induced cellular survival and cell death[107]. Epithelial-to-
mesenchymal transition (EMT) is an important cellular event common in wound repair, fibrosis, and 
cancer. TGF-β-induced signaling, either independently or in coordination with critical mediators of tissue 
homeostasis such as Wnt and NOTCH, induces EMT by repressing inter-epithelial adhesion and junctional 
complexes while upregulating mesenchymal markers including ECM remodeling enzymes like matrix 
metalloproteinases (MMPs), facilitating cell migration[108]. Apart from TGF-β, growth factors such as FGFs 
and PDGF, which are critical for wound healing and tissue remodeling, also regulate reactive stromal 
biology in prostate cancer[109,110].

Remodeled ECM
ECM remodeling serves as another critical regulator of tissue biology, integrity, and, most importantly, 
maintaining homeostasis. Beyond providing physical support, the ECM plays a pivotal role in cell adhesion, 
migration, initiating angiogenesis, tissue development, and repair[111]. The cells of the reactive stroma 
actively overexpress ECM proteins (collagens, elastin, fibronectin, tenascin-C, and hyaluronic acid), MMPs, 
fibroblast activation protein (FAP), and lysyl oxidases[17,111-113]. MMPs, in particular, play a critical role in 
remodeling the ECM and inducing modifications that influence its topographical and mechanical 
properties. In healthy tissue, ECM remodeling is a tightly regulated process that involves the counterbalance 
of ECM synthesis with the activity of MMPs, MMP inhibitors, and lysyl oxidases[114].

Damage to the ECM due to tissue injury initiates an emergent response referred to as a "wound healing 
cascade" to repair damaged tissue and reset tissue homeostasis[111]. In cancer, ECM is damaged and exposure 
to chronic remodel signals generated from both the cancer cells and reactive stromal cells results in a 
chronic wound-healing cascade. Consequently, the dysregulated ECM remodeling and turnover results in 
the development of fibrotic tissue (desmoplasia) with enhanced stiffening around the tumors. This ECM 
alteration affects every aspect of tumor biology, including the regulation of proliferation, differentiation, 
gene expression, cell adhesion, migration, invasion, etc.[111]. Beyond its regulatory control, ECM also 
influences immunogenicity, oxygenation, and the response of cancer to treatments. Thus, a reactive stroma 
composed of extensively remodeled ECM is correlated with poor prognosis in cancer[111,115].

Activated angiogenic niche
Cells within the vasculature network, primarily endothelial cells (EC), pericytes, and vascular smooth 
muscle cells, constitute additional critical components of the tissue stroma and are essential regulators of 
prostate homeostasis[10]. In healthy tissue, the non-angiogenic EC interacts with a complex basement 
membrane composed of collagen IV, laminin, perlecan (heparan sulfate proteoglycan), and entactin/
nidogen via integrin[116]. However, in response to wounding and cancer, the reactive stromal cells 
(myofibroblasts or CAFs) secrete ECM such as collagen I and IV, fibronectin, secreted protein acidic and 
rich in cysteine (SPARC), tenascin, heparan sulfate proteoglycans, connective tissue growth factor, and 
VEGF. On interaction with these reactive stromal products, the quiescent EC transitions into an activated 
status/angiogenic switch, resulting in the formation of phenotypically distinct blood vessels with aberrant 
branching and enhanced leakiness[10,116]. Hypoxia is another critical feature common to both tissue injury 
and TME. Hypoxia-induced activation of hypoxia-inducible factors (HIFs) in both epithelial and stromal 
cells results in the secretion of proangiogenic factors that modulate vessel maturation. Thus, the new growth 
of vascular network in response to reactive stromal response in the TME is critical in regulating the 
proliferation, growth, and progression of solid tumors[117-119].
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In addition to providing nutritional support and oxygen supply, activated EC express chemokines and 
adhesion molecules, facilitating the recruitment of leukocytes, monocytes, and neutrophils[120,121]. Pericytes, a 
class of tissue-resident mesenchymal stem cells, play a critical role in the stabilization of neovessels and 
regulating MMP activity[10,99,116]. In both wound repair and cancer, pericytes deviate from the EC and 
vascular basement membrane, undergoing a phenotypic transformation that regulates angiogenesis, 
inflammation, fibrosis, tissue regeneration, and re-epithelialization[122,123]. All these functional aspects of 
pericytes in an emergent wound repair scenario are critical in establishing a pre-metastatic niche, which is 
critical for tumor growth and progression[124].

STROMAL MEMORY
The concept of cellular "memory" can be defined as when cells maintain an altered phenotypic or functional 
state proceeding with an initial environmental stimuli/insult. Myeloid lineage cells like monocytes, NK cells, 
macrophages, and neutrophils exhibit innate immune memory, a manifestation of cellular memory[125,126]. 
Research over the past two decades has demonstrated that these cells exhibit protective or cross-protective 
mechanisms against recurring infections through heightened activation of the innate immune response. 
This heightened response is driven by pattern recognition receptors (PRRs) on myeloid cells, allowing 
recognition of pathogen-associated molecular patterns (PAMPs). Activation of PRRs by PAMPs triggers the 
expression of genes involved in inflammatory and immune responses[127-129].

Fibroblast memory
Emerging evidence suggests that non-immune cells also possess a memory of past insults such as 
inflammation, enabling them to mount rapid responses to emergent situations like injury or infection. The 
biological mechanisms regulating cellular memory are multifaceted, involving various processes such as 
alterations in chromosomal accessibility due to epigenetic modifications, increase in expression of activation 
receptors, and priming of cellular signaling networks[121,130-133].

Naik et al. were the first to discover that epithelial stem cells exposed to inflammation retain cellular 
memory, leading to enhanced repair responses to future tissue-related injuries[121,134]. This phenomenon 
extends to fibroblasts, which develop an inflammatory memory upon exposure to exogenous challenges 
such as lipopolysaccharide (LPS) or endogenous inflammatory signals like tumor necrosis factor α 
(TNF-α)[121]. For instance, human gingival fibroblasts pretreated with LPS showed no tolerance but 
maintained cytokine and chemokine expression after secondary LPS treatment[135]. Similarly, in conditions 
like rheumatoid arthritis, fibroblasts such as synoviocytes exhibit gene-specific priming by altering 
chromatin following chronic exposure to inflammatory signals like TNF-α, leading to enhanced and 
prolonged chemokines and cytokine production upon subsequent interferon (γ) stimulation[132,136]. 
Klein et al. have also observed that LPS primes synovial fibroblasts to sustain inflammatory responses by 
changing the epigenetic configuration at gene promoters regulating LPS-induced cellular responses[131].

In patients with tendinopathy, stromal fibroblast activation markers such as podoplanin and vascular cell 
adhesion molecule (VCAM-1) are notably elevated compared to healthy tendon tissues. This elevation 
persists even after the gradual decline in inflammatory gene signatures following the removal of stimuli like 
IL-1β, suggesting that activated fibroblast memory maintains a persistent activated state rather than 
sustaining inflammatory responses[130]. Additionally, in rheumatoid arthritis, sustained synovial 
inflammation is also attributed to persistent activation of nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) signaling induced by TNF-α, facilitated by upregulation of TNF receptors and 
proximal signaling components, and downregulation of negative feedback inhibitors involved in the 
homeostatic balance of the NF-κB signaling pathway[136]. Epigenetic modifications are also known to 
regulate epithelial stem cell memory[121,131,132,134].
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Endothelial cell memory
Similar to fibroblasts, EC is also activated in response to inflammation. EC activation can be distinguished 
as a "delayed (type II)" or "immediate (type I)" response. In the delayed response, upon activation, EC 
expresses chemokines, VCAM-1, intercellular adhesion molecule (ICAM-1), and E-selectin several hours 
post-stimulus due to a requirement for de novo transcription and translation[137,138]. In contrast, in the type I 
response, there is no delay following stimulation and response due to the preformation of adhesion 
molecules and chemoattractant resulting from a preceding inflammatory stimulus. This suggests EC 
memory[138-141]. Studies have demonstrated that EC exposed to homocysteine, an independent risk factor for 
developing atherosclerosis, has an augmented response to inflammatory mediators such as LPS and 
thrombin[142]. Additionally, recent studies have also shown that EC stores a metabolic memory of an earlier 
transient hyperglycemia in the vasculature in diabetic patients, resulting in epigenetic changes, 
cardiovascular complications, chronic inflammation, and oxidative stress in later stages[143-145].

As integral components of the tissue structure, the ability of stromal cells to adapt to environmental stimuli 
while retaining memory of past exposures is essential for maintaining tissue homeostasis[125,146,147]. Various 
environmental stimuli, such as injury or infection, can trigger the innate cellular memory in stromal cells, 
leading to an activated phenotypic and functionally emergent state through different molecular 
mechanisms, as described. This emergent microenvironment state of tissues in diseases like cancer can have 
a detrimental impact on disease initiation and development, progression, and response to 
treatments[21,125,148-150]. For instance, chronic inflammation of organs due to injury-causing agents or 
infections is known to induce cancers, such as esophageal, lung, gastric, and colon cancer, which are often 
metastatic, treatment-resistant, and lethal[151-158]. Therefore, targeting specific stromal memories involved in 
maintaining a reactive/emergent stromal response emerges as a promising therapeutic strategy to mitigate 
the detrimental effects of microenvironment priming and enhance treatment efficacy in cancer 
patients[21,125,159].

IMMUNE REGULATION IN CANCER
Traditionally, cancer research has focused on the intrinsic biology of cancer cells to identify potential 
molecular determinants crucial for tumor growth, development, and progression. However, there has been 
a recent shift in attention toward the role of non-cancerous cellular components in the TME, particularly 
immune cells, in controlling tumor growth and development. This shift has been clinically validated and 
garnered attention because of its potential to be curative in subsets of cancer patients[150]. Consequently, 
there has been an increase in research efforts aimed at understanding the mechanisms regulating the 
reactivity of immune cells toward various types of tumors. This shift in focus reflects a growing recognition 
of the intricate interplay between cancer cells and the TME, highlighting the importance of 
comprehensively understanding the latter for the development of effective cancer therapies.

Paul Ehrlich's hypothesis on immune cells suppressing carcinoma development led to the "immune 
surveillance hypothesis" later proposed by Burnet and Thomas[160]. While the tumor-specific immune 
response was validated in inbred mouse strains, discordant results from immune-deficient mouse models 
initially cast doubt on the concept[161]. However, the development of defined immune-deficient models and 
epidemiological data from human studies reaffirmed the relevance of cancer immune surveillance, leading 
to the broader concept of "cancer-immuno-editing". This concept recognizes the dual role of host-
protecting and tumor-sculpting properties of the immune system. Cancer-immuno-editing involves three 
stages: tumor elimination by the immune system (immune surveillance), a phase of equilibrium where 
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tumor variants resistant to surveillance are selected (immune-sculpting), and the emergence of overt tumors 
in an immunocompetent host (immune-escape)[161-167].

Role of stroma in immunomodulation of the TME
The stroma plays a pivotal role in immunomodulation, posing a significant challenge to immunotherapies 
in various solid tumors like pancreatic duct adenocarcinoma (PDAC), non-small cell lung cancer, ovarian 
cancer, hepatocellular carcinoma, and prostate cancer[23,168-172]. However, targeting the stroma to enhance 
immunotherapy efficacy and hinder tumor progression has been largely overlooked. Understanding the 
complex interplay between tumor-stroma-immune components is crucial for developing innovative 
therapies to modulate the TME and improve targeted cancer treatments[21,161].

Stromal cells significantly contribute to cancer-immuno-editing by modulating the immune system through 
the secretion of various chemical messengers, such as chemokines, cytokines, and prostaglandins, as well as 
the ECM. In PDAC, elevated levels of the chemokine-chemokine (C-X-C motif) ligand 10 (CXCL10), 
positively correlated with high stromal content, are associated with decreased median overall survival in 
patients. CXCL10 expression is linked to the presence of Tregs, which exerts immunosuppressive effects, 
compromising immune surveillance against cancer[21,173,174]. Additionally, the immune regulatory chemokine 
CXCL5 secreted by tumor-associated macrophages (TAMs), CAFs, EC, and cancer cells themselves plays a 
crucial role in recruiting neutrophils to the TME. Neutrophils, in turn, modulate the TME, promoting 
tumor growth and progression, and induce anti-inflammatory M2 macrophage polarization, impairing 
immune surveillance. High expression of CXCL5 is associated with poor patient survival in various cancers, 
including renal, pancreatic, liver, and cervical cancer[21,175-177].

In solid tumors, myCAF-expressing FAP exhibits immunosuppressive properties by secreting large 
amounts of stromal cell-derived factor-1 (SDF-1), hindering T-cell-tumor interactions and attracting Tregs. 
Ablation of FAP+ stromal cells leads to hypoxia-induced cancer cell death mediated by interferon-γ and 
TNF-α[178-181]. Additionally, CAF-secreted TGF-β inhibits host immune surveillance by impairing dendritic 
cell, M1 macrophage, NK cells, and CD8+ T-cell function, while promoting Treg and Th17 cell 
differentiation and suppressing B cell proliferation and IgA secretion[182,183]. Moreover, TGF-β restricts T-cell 
infiltration, diminishing tumor response to PD-L1 blockade[184].

TGF-β induces ECM remodeling, while its suppression of ECM-modulating proteins like MMP-1, -8, and 
-13 results in the formation of fibrotic and desmoplastic ECM matrix, which is associated with cancer 
recurrence and chemoresistance[185-187]. Desmoplasia impedes T-cell recruitment into tumor nests, causing 
T-cell accumulation in peri-tumoral regions and promoting immune escape. Additionally, within these 
peri-tumoral regions, T cells are exposed to paracrine signals, resulting in their suppression[23]. The 
matricellular protein periostin (POSTN) is highly expressed by both tumor and stromal cells. Its elevated 
expression is associated with poor prognosis in various cancers, including prostate, lung, pancreatic, 
ovarian, breast, colorectal, hepatocellular, bladder, and osteosarcoma[188]. POSTN promotes PD-1 expression 
in TAMs via integrin-ILK-NF-κB signaling. PD-1-expressing TAMs were observed to induce PD-L1 
expression in colorectal cancer cells, promoting immune escape[189]. Collectively, the reactive stromal 
response plays a critical role in tumor development, progression, and modulation of the immune landscape 
in TME [Figure 2].

THE IMMUNE LANDSCAPE IN PROSTATE CANCER
In the past decade, the understanding of the immune landscape in cancer has evolved significantly. Studies 
have utilized cell surface markers to identify various immune cell populations within the TME, including 
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Figure 2. Emergent stromal response regulate immunosuppressive landscape in solid tumors. (A) The reciprocal interactions between 
tumor cells (T) and expanding CAFs within the reactive TME results in the secretion of TGF-β and various chemokines (CXCL) 
facilitating the recruitment and regulation of Tregs. (B) Treg secreted cytokines (IL-4, IL-10 and TGF-β) trigger polarization of M1 
macrophages to the M2 phenotype. (C) PD-L1-expressing M2 macrophages induce T-cell exhaustion. (D) TGF-β in the TME derived 
from different cellular sources can modulate the extracellular matrix (ECM) composition. Both TGF-β and the modified ECM impedes 
tumor-infiltrating lymphocytes (TIL) both molecularly and mechanically. (E) The reactive stroma induces angiogenesis, further 
supporting tumor growth and survival. (F) Matricellular protein-periostin (POSTN), expressed during reactive stromal response attract 
TAMs. TAMs facilitate immune evasion in tumor cells by inducing the expression of PD-L1. TAMs also recruit neutrophils, which 
induces an immunosuppressive TME by causing M2 polarization. Both TAM and neutrophils also induce therapeutic resistance.

T cells, B cells, NK cells, macrophages, monocytes, and granulocytes. Solid tumors are commonly classified 
as having "hot" or "cold" immune microenvironments based on the presence or absence of these immune 
cell populations within the tumor margins[167,190,191]. Prostate tumors are typically classified as having a "cold" 
TME, characterized by elevated PD-L1 expression and lower levels of tumor-infiltrating immune cells, like 
CD3+ T cells, CD20+ B cells, and CD68+ macrophages compared to BPH[192,193]. In addition to elevated levels 
of Tregs and myeloid-derived suppressor cells (MDSCs), contributing to an immunosuppressive 
microenvironment in prostate cancer[167,194], the disease also exhibits reduced tumor antigens due to its low 
tumor mutational burden[195]. Additionally, AR signaling suppresses major histocompatibility complex 1 
(MHC1) expression and T-cell response, further complicating the development of immunotherapy to target 
prostate cancer[167,196-198].

In primary prostate cancer, both the cancerous epithelium and stromal cells express inflammatory factors 
like TNF-α and IL-6, which induce reactive oxygen species, leading to inflammation, immunosuppression, 
and tissue damage[199]. TNF-α and IL-6 promote treatment-resistant/castration-resistant prostate cancer 
(CRPC) by affecting stromal and prostate cancer cells[199,200]. IL-6 specifically, mediated by bone 
morphogenic protein (BMP) and CD105, induces androgen receptor splice variant 7 (AR-V7) expression in 
prostate cancer cells and fibroblasts, a key mechanism in CRPC progression. IL-6-mediated AR-V7 
expression in fibroblasts induced resistance to anti-AR inhibitors in prostate cancer cells. However, 
neutralizing CD105 downregulated AR-V7 in both prostate cancer cells and fibroblasts, resensitizing the 
cancer cells to these inhibitors[201]. Additionally, paracrine interactions between epithelial and stromal cells 
stimulate prostate stromal cells to secrete chemokines such as CXCL-1, CXCL-2, CXCL-3, and IL-8 
(CXCL-8)[199], which recruit leukocytes like neutrophils, macrophages, monocytes, and MDSCs into the 
microenvironment via C-X-C chemokine receptor type 2 (CXCR2) activation[202-204]. In a murine prostate 
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cancer model, CXCR2 knockout or antagonist administration reduced tumor growth and shifted tumor-
associated macrophages toward a pro-inflammatory M1 phenotype[205]. Elevated neutrophil count correlates 
with worse overall survival in localized prostate cancer[206], while elevated IL-8 levels in prostate cancer 
patients with metastatic disease starting on androgen deprivation therapy (ADT) were associated with 
shorter progression time to castration resistance and overall survival[207]. Therefore, understanding the 
mechanisms governing the inflammatory and immunosuppressive TME from localized disease to metastasis 
is essential for developing effective immunotherapies for advanced prostate cancer.

To characterize the immune microenvironment in solid tumors like prostate cancer, numerous scientific 
groups and biotechnological companies have devoted considerable efforts to developing tools for genetic, 
transcriptomic, metabolic, and proteomic-based profiling of the immune landscape. These approaches 
encompass serum, spatial, and single-cell-based techniques[47,208-212]. Notably, there have been significant 
strides in developing immune-related gene signatures to elucidate key immune cell components within 
prostate cancer, such as macrophage-based gene signatures[210], metabolic syndrome-based index scores[213], 
immune subtyping[214,215], immune-based risk scoring[216], and long non-coding RNA signatures[217]. These 
advancements significantly contribute to the capacity to develop biomarkers for diagnostic and prognostic 
purposes, enhancing the ability to assess the risk, progression, and sensitivity to immunotherapies in 
prostate cancer.

Research efforts aimed at transforming "cold" immune microenvironments into "hot" ones in solid tumors, 
including prostate cancer, are underway to enhance the efficacy of immune checkpoint inhibitors (ICIs) like 
PD-1/programmed death-ligand 1 (PD-L1) or cytotoxic T-lymphocyte–associated antigen 4 (CTLA4) 
inhibitors[197]. However, a significant challenge in this strategy, particularly in prostate cancer, is the reactive 
stromal response, which can molecularly and mechanically shield tumor cells from the antitumor immune 
response. Additionally, the dysregulation of critical enzymes involved in cellular energetics within tumors, 
including prostate cancer, is emerging as a hallmark feature associated with tumor evasion, though the 
mechanisms are complex[218,219]. Therefore, comprehending the dynamic intercellular crosstalk between 
tumor-stroma-immune cells and its subsequent modulation of the TME, which can exclude T-cell 
infiltration or inhibit T-cell function, may be crucial for achieving sustainable efficacy with 
immunotherapies, including ICIs, in prostate cancer[23,220].

CURRENT STATE OF PROSTATE CANCER IMMUNOTHERAPIES
The current landscape of immune-based therapeutics for prostate cancer encompasses several approaches, 
including cancer vaccines, ICIs, adoptive cell therapies, targeted antibodies, and oncolytic viral 
therapy[196,221-225]. Cancer vaccines aim to stimulate the patient’s immune system, eliciting a response against 
tumor-specific or tumor-associated antigens (TAA). One notable example is Sipuleucel-T, an FDA-
approved autologous vaccine that utilizes dendritic cells (DC) stimulated to target prostatic acid 
phosphatase (PAP), a protein highly expressed in prostate cancer. Clinical data show evidence of improved 
median survival and prolonger overall survival among men with metastatic castration-resistant prostate 
cancer (mCRPC) treated with Sipuleucel-T compared to those treated with mainline treatments (anti-
hormone treatment ± chemotherapy). While Sipuleucel-T treatment has demonstrated a broad and durable 
systemic immune response, clinical data suggest that the treatment provides greater benefits to patients with 
a lower disease burden. This observation may be attributed to the existence of a robust immune system at 
the initial stages of cancer development, in contrast to more advanced disease states. In addition, treatment 
with Sipuleucel-T did not significantly affect mCRPC disease progression. This may be due to the delayed 
onset of antitumor response by Sipuleucel-T, and therefore, a timeline of diagnosis of mCRPC may play an 
important role in determining the maximum possible benefit from Sipuleucel-T treatment[226,227]. Additional 
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mechanistic underpinnings that resulted in the limited efficacy of DC vaccine for clinical management of 
prostate cancer are described further in this review. However, several vaccine targets are currently under 
evaluation against prostate cancer, including oncofetal antigen-5T4, carcinoembryonic antigen (CEA), PSA, 
prostate-specific membrane antigen (PSMA), survivin, tumor-associated antigens (TAA), and personalized 
neoantigens. These selected proteins serve as targets due to their high expression levels in cancer cells 
compared to their normal counterparts[228].

Other prominent strategies in prostate cancer immunotherapy involve the use of immune modulators to 
disrupt immune checkpoints, such as PD-1/PD-L1 and CTLA-4, exploited by cancer cells to evade immune 
detection and responses, often leading to T-cell exhaustion[196]. In addition to these well-established targets, 
ongoing clinical investigations in other urological cancer types, such as bladder cancer, explore immune 
modulators targeting the immunosuppressive activity of CD73, indoleamine 2,3-dioxygenase (IDO), and 
lymphocyte activation gene 3 (LAG3)[229-232] (Clinical Trial Registration Numbers NCT03454451, 
NCT05843448, NCT04586244). Immunomodulation treatments also include the activation of co-
stimulatory pathways to promote or enhance T-cell functions by downregulating immunosuppressive 
components like Tregs in the TME. Key targets in this category include inducible co-stimulator (ICOS), 
OX40, Toll-like receptors (TLRs), CD137, and IL-2/IL-2R[233-236].

Adoptive or cell-based immunotherapy represents another autologous approach, where the patient’s 
immune cells, such as T cells, are isolated, expanded in vitro, and modified with chimeric antigen receptors 
(CARs) that can specifically target antigens expressed by tumor cells, thereby eliminating them. Adoptive 
immunotherapy targets currently under evaluation for prostate cancer include prostate stem cell antigen 
(PSCA) and PSMA[237]. Beyond T cells, both NK and tumor-infiltrating lymphocytes (TILs) can also be 
enhanced and reintroduced into patients[238,239]. Monoclonal antibodies constitute another class of treatments 
developed to block specific cell membrane receptors from binding to its target ligand, thereby impeding its 
functional impact on cancer growth and proliferation. Commonly targeted membrane receptors in prostate 
cancer include delta-like proteins (DLL), Notch, human epidermal growth factor receptor 2 (HER2), and 
tumor-associated calcium signal transducer 2 (TROP2)[240-242]. Antibodies can also be modified to carry 
cytotoxic payloads, specifically chemotherapeutics, for their active delivery to tumors[243]. Bi-specific T-cell-
engaging antibodies or BiTEs bind to cancer cells and T cells, activating the latter[244]. Oncolytic viral therapy 
involves the use of different DNA (Adenovirus and Herpes simplex virus) and RNA (Reovirus) viruses, 
often modified to infect tumor cells and induce cell death. This approach can elicit an immune response 
that further aids in the elimination of both localized and metastatic tumors[245].

While appealing, the immunosuppressive and "cold" TME in prostate cancer poses a significant challenge 
for the immunotherapy strategies described. Therefore, emerging therapeutic approaches aim to target both 
cancer cells and the TME. One strategy involves directly targeting stromal markers upregulated in the TME, 
such as FAP, which is associated with poor prognosis in various solid tumors. Targeting FAP-expressing 
CAFs using CAR-T therapy shows promise in improving tumor-targeted cytotoxicity of CAR-T cells 
targeting solid tumors. In summary, therapies targeting both cancer cells and the TME hold the potential 
for effectively treating prostate cancer and improving patient outcomes. Table 1 provides a summary of 
various immunotherapies currently under evaluation in clinical trials, while Table 2 outlines potential 
therapies for targeting tumor stroma[20,245,263].

MACROPHAGE THERAPY FOR METASTATIC CASTRATION RESISTANCE PROSTATE 
CANCER

Immunotherapy exhibits limited efficacy in advanced prostate cancer patients with mCRPC, mainly due to 
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cancer, presents a promising therapeutic avenue for mCRPC treatment[264]. Macrophages, once viewed as 
phagocytic sentinels, now demonstrate diverse roles in maintaining tissue homeostasis. Tissue-resident 
macrophages oversee the microenvironment, ensuring tissue integrity, facilitating cellular communication, 
and regulating immunological balance[265]. Conversely, monocyte-derived macrophages, recruited during 
inflammation, adopt either the pro-inflammatory "M1" or anti-inflammatory/reparative "M2" phenotypes, 
each characterized by distinct gene expression and metabolic pathways. "M1" macrophages rely on 
glycolysis, producing inflammatory cytokines like IL-1β, IL-12, TNF-α, and reactive oxygen species, while 
"M2" macrophages employ oxidative phosphorylation, secreting molecules such as arginase-1 and 
TGF-β[266-268].

Despite the simplicity of the "M1/M2" dichotomy, current single-cell transcriptomic data suggest a more 
complex landscape, acknowledging the high degree of macrophage plasticity and tissue-specificity[269]. This 
complexity has propelled macrophage reprogramming to the forefront as a promising therapeutic. 
Macrophages' dynamic transition between "M1" and "M2" states in response to environmental cues has 
become a focal point in disease treatment strategies, particularly by directing them toward an "M1" 
phenotype to initiate inflammation and restore homeostasis.

In mCRPC, TAMs play dual roles: facilitate tumor progression, and induce immunosuppression within the 
TME[270]. Research also underscores TAMs' significant function in fostering resistance to anti-androgen 
therapies. For instance, macrophages can induce ECM remodeling, reminiscent of wound healing processes. 
Such macrophage-mediated ECM modifications correlate with anti-androgen resistance, particularly 
through the activation of fibronectin-1 (FN1)-integrin alpha 5 (ITGA5)-tyrosine kinase Src signaling 
cascade, induced by the cytokine Activin-A[271]. Reprogramming these TAMs to an M1-like state may 
disrupt these pro-tumorigenic activities. Transitioned M1 macrophages could potentially reverse the 
immunosuppressive TME, attenuate ECM-mediated drug resistance, and amplify the efficacy of current 
therapies[272].

Upregulated Src kinase activity in prostate cancer bone metastases, mediated by the Activin-A Receptor as 
well, is associated with macrophage density and several ECM-receptor pathways[273]. Targeting this activity 
with the specific Src inhibitor eCF506 has shown promise in blocking enzalutamide resistance, emphasizing 
its therapeutic potential in mCRPC management[271]. Furthermore, strategies that modulate TAMs can 
engender a more antitumoral phenotype[274]. ICIs can induce M1 macrophage polarization, and the 
depletion of Treg cells - protectors of the tumor-friendly milieu - by anti-CTLA-4 antibodies is contingent 
upon macrophage-mediated actions[275]. These insights affirm the premise that macrophage reprogramming 
could play a crucial role in enhancing the impact of immunotherapies in mCRPC.

An alternate, emerging approach is through chimeric antigen receptor macrophages (CAR-M), which 
leverages the natural tumor-homing ability of myeloid cells. This therapy has shown potential advantages in 
infiltrating solid tumors and can release pro-inflammatory cytokines to improve the TME[276]. Furthermore, 
the combination of CAR-M with CAR-T cells has demonstrated synergistic action against cancer cells, 
exceeding the effects of either therapy alone. This synergy suggests that CAR-M and CAR-T can 
complement each other, enhancing tumor responses. Despite its promising antitumor activity demonstrated 
in animal experiments, CAR-M therapy faces several challenges that need to be addressed. These include 
optimizing the CAR structure by incorporating tandem activation domains or pro-inflammatory cytokines 
to enhance its effectiveness and safety for clinical application[277].

the immunosuppressive TME. Targeting TAMs, the predominant immunosuppressive cells in prostate 
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Table 1. Selected clinical trials of immunotherapies targeting cancer

Type Treatment Combination Target Tumor type Phase Status Identifier

NY-ESO-1 
Protein

CpG 7909 NY-ESO-1 Adv. PCa I Complete NCT00292045Peptide vaccine

UV1 GM-CSF hTERT CSPC, mPC I/II Unknown 
status

NCT01784913

mAb Denosumab N/A RANKL non-metastatic CRPC III Complete NCT00286091

Bisphosphonate Zoledronic acid N/A Osteogenic 
niche

mCRPC and mBC IV Recruiting NCT04549207

Ibrutinib N/A BTK, MMP-2, 
MMP-9

PCa II Complete NCT02643667Inhibitors

Ibrutinib Trastuzumab BTK, MMP-2, 
MMP-9

HER2+ BC I/II Ongoing NCT03379428

Selected clinical trials of macrophage immunotherapies

LY3022855 N/A M-CSFR mCRPC, mBC I Complete NCT02265536

MCS110 Carboplatin, 
gemcitabine

M-CSF TNBC II Complete NCT02435680

IPI-549 Tecentriq, abraxane, 
bevacizumab

PI3K-γ BC, renal cell carcinoma II Ongoing NCT03961698

852A N/A TLR7 BC, ovarian, endometrial, 
and cervical cancers

II Complete NCT00319748

Imiquimod Abraxane TLR7 Adv. BC II Complete NCT00821964

M2/M1 
reprogramming

CP-870,893 N/A CD40 Adv. solid tumors I Complete NCT02225002

CP-870,893 Paclitxel, carboplatin CD40 Solid tumors I Complete NCT00607048

Hu5F9-G4 Cetuximab CD47/SIRPa Solid tumors, Adv. CC I/II Complete NCT02953782

Antibodies

PLX3397 Eribulin CSF-1R BC I/II Complete NCT01596751

CAR-M CT-0508 N/A HER2 HER2+ solid tumors, 
including PCa

I Recruiting NCT04660929

GM-CSF Carboplatin, 
cabazitaxel

HSCs mNEPC, mPC II Recruiting NCT04709276Cytokines

ProscaVax 
(GM-CSF, PSA, 
IL-2)

N/A PSA PCa II Unknown 
status

NCT03579654

Cabiralizumab Paclitaxel, carboplatin, 
nivolumab

CSF-1R TNBC I/II Ongoing NCT04331067

Daratumumab N/A CSF-1R PCa I Ongoing NCT03177460

Carlumab N/A CCL2 PCa II Complete NCT00992186

Inhibitors

AZD-5069 Enzalutamide CXCR2 mCRPC I/II Terminated NCT03177187

Dendritic cell therapies for PCa

Sipuleucel-T N/A PAP mCRPC III Complete NCT00065442

Stapuldencel-T Docetaxel, prednisone PAP mCRPC III Complete NCT02111577

DC Vaccine

With tumor 
mRNA

N/A hTERT, survivin mCRPC I/II Ongoing NCT01197625

Thus, the intricate relationship between macrophages, ECM components, and other immune cells within 
the TME underscores the potential of therapeutic interventions that manipulate these interactions, 
particularly through M1/M2 reprogramming and CAR-M therapy. Such a strategy could potentially disrupt 
critical resistance mechanisms and forge a more robust immune response against tumors in their advanced 
stages.

THE PITFALLS OF DENDRITIC CELL THERAPY IN PROSTATE CANCER
DC therapy has encountered significant challenges, primarily attributed to the inconsistency in clinical 
responses[278]. This is compounded by the fact that no DC therapies have received FDA approval since 
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Table 2. Potential immunotherapies targeting the TME

TME 
target

Molecular 
target Immunotherapies Potential desired effects References

FAP FAP-CAR-T; FAP BiTEs Destroy CAFs to disrupt tumor-stroma interactions and 
suppress tumor growth

[246-249]

SDF-1/CXCL12 CDXR4 antagonist (Plerixafor) Disrupt SDF-1 signaling to reduce tumor growth and 
metastasis

[250]

Fibroblasts 

HGF/c-MET mAb or nAb Inhibit tumor growth and metastasis [251]

Immunomodulatory agents 
(thalidomide; lenalidomide)

Inhibit angiogenesis and cancer-stroma adherence, and 
stimulate the immune system

[252,253] VEGF

Bevacizumab; ramucirumab Inhibit angiogenesis to reduce tumor blood supply [254,255]

Endothelium

PDGF Olaratumab Inhibit stromal cell recruitment and activation to disrupt 
angiogenesis, stromal support, and bone metastasis

[256]

MMPs MMP inhibitors Inhibit ECM remodeling to reduce tumor cell migration

Collagen Collagenase Reduce ECM stiffness and density to improve drug and 
immune cell infiltration

 
[257]

TNC mIL12-R6N mAb Antitumor activity [258]

CTGF mAb Modulate the TME to reduce fibrosis and enhance the 
efficacy of other treatments

[259]

Integrins mAb Disrupt cell-ECM interactions, inhibiting tumor cell migration [260]

FN1 mAb Inhibit cell proliferation and migration [261]

ECM

TGF-β nAb Reduce immunosuppression and increase immune cell 
infiltration in the TME

[262]

Sipuleucel-T in 2010. While certain patients exhibit enhanced immune reactions and positive clinical 
outcomes, such as reduced PSMA levels and tumor regression, these effects are not universally 
observed[279,280]. This variability raises questions about the therapy's reliability, making its therapeutic value 
uncertain.

The effectiveness of DC therapy hinges on the selection of appropriate TAAs and the successful maturation 
of the DC themselves. Common TAAs in prostate cancer - such as PSA, PSMA, PAP, and PSCA - show 
variable expression across different tumors, affecting the efficacy of the therapy[281,282]. Additionally, the 
immunogenicity of these antigens may not always be sufficient to induce a strong immune response[283]. 
Compounding these issues are the technical complexities in producing functionally mature DCs. The 
in vitro generation process, influenced by factors like the source of DCs, culture conditions, and maturation 
stimuli, is intricate and can significantly affect the therapy's success. Hence, the lack of standardized 
protocols for antigen selection and DC maturation further complicates the development of an effective 
therapy[284].

The prostate cancer TME presents another hurdle, often characterized by immunosuppressive elements that 
can impede the activity of cytotoxic T cells, undermining the effectiveness of DC therapy. Furthermore, 
even when initial immune responses are elicited, sustaining these responses over time remains a challenge, 
frequently leading to disease progression[285]. This lack of durable response necessitates repeated 
administrations or combination therapies, increasing treatment complexity and costs. The dynamic nature 
of the TME, with its evolving mechanisms of immunomodulation, makes it a moving target for DC therapy. 
Efforts to understand and manipulate this environment could be key to enhancing the therapy's 
effectiveness and durability.

DC therapy directly targeting the stromal compartment itself in prostate cancer offers a novel therapeutic 
avenue. For instance, immunotherapies directly targeting CAFs for depletion or reprogramming have the 
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potential to reduce or eliminate tumor-promoting and immunosuppressive properties. However, this 
strategy faces challenges due to heterogeneity, phenotypic plasticity, and complex interactions within the 
tumor-stroma ecosystem, which can impede the efficacy of the immune response. Understanding and 
effectively manipulating these interactions are crucial for the success of DC therapy in targeting the stroma, 
potentially leading to more effective control of prostate cancer growth and metastases[286].

Despite being generally safe, DC therapy can induce adverse events like flu-like symptoms, injection site 
reactions, and potential autoimmunity[287,288]. These adverse events require careful monitoring to ensure 
patient safety. In conclusion, while DC therapy in prostate cancer represents a significant advancement in 
cancer immunotherapy, it is constrained by challenges such as inconsistent clinical responses, antigen 
selection, DC maturation difficulties, immune suppressive TME, transient immune responses, and safety 
issues. An important future approach should be focused on identifying biomarkers that could predict 
responses to DC therapy, thereby refining patient selection. Additionally, exploring synergies between DC 
therapy and other immunomodulatory approaches may unlock new avenues for more effective and 
comprehensive cancer treatment strategies.

SUMMARY
The survival of an organism is dependent on the maintenance of robust and dynamic systemic homeostatic 
mechanisms regulating physiological responses to both internal stimuli (wound repair, inflammation, and 
diseases) and external stimuli (food, pathogens, toxic pollutants, and drugs). Homeostasis is coordinated by 
the different functional systems within the body via a multitude of long-range (endocrine), short-range 
(paracrine, juxtacrine, neuronal signaling at synaptic junctions), and self (autocrine) cellular signaling. At 
the tissue level, the intracellular machinery of tissue-resident cells needs to coordinate and integrate 
complex signals from cellular and non-cellular components of the tissue environment. However, in the case 
of cancer, accumulating genomic or epigenetic aberrations in cancerous cells can decouple their functional 
interactions within a tissue, resulting in the development of neoplasia. Despite the dependence of cancer 
cells on multicellular interactions with the respective TME as well as systemic physiological environments, 
collectively referred to as "systems biology of cancer", conventional research continues to follow a 
reductionist approach, predominantly focusing on cancer-specific intracellular factors, overlooking broader 
systems influences on cancer pathobiology[279,280].

Although localized or locally advanced prostate cancer patients undergo definitive therapy with curative 
intent, up to 50% experience recurrence, progressing to mCRPC. While immunomodulatory therapies like 
ICIs have advanced as first- or second-line treatments, yielding promising results in various cancers, 
including non-small cell lung cancer (NSCLC) and colorectal cancer, their efficacy in advanced prostate 
cancer remains limited. Prostate cancer's immunologically "cold" TME underscores the need for a systems 
biology approach to identify and characterize spatial and temporal TME signatures. These signatures are 
crucial determinants in immunomodulation, disease progression, and treatment response[7,281-283].

In this review, we have highlighted the critical role of reactive stromal response in the evolution of cancer 
pathobiology through immunomodulation of the TME [Figure 2]. The reactive stromal response is an 
emergency/emergent response of the tissue to undergo rapid repair and reset homeostasis, a biological 
priority. The multifaceted role of reactive stromal cells includes their intercellular communication with 
tissue-resident and immune cells in the systemic circulation to enhance tissue repair while minimizing 
damage. Thus, to preserve homeostatic balance, the reactive stromal response encompasses immune-
regulatory functions[284]. Therefore, adopting a cancer systems biology approach is crucial for fully grasping 
the dynamic interactions within the reactive/repair-centric TME. This methodology will enable researchers 
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to identify key regulatory factors influencing cancer progression, survival, and resistance to 
immunotherapy, ultimately uncovering potential therapeutic targets. For instance, by integrating 
phenotypic and functional variations of the TME with molecular characteristics of cancer, an integrative 
model can be developed to delineate dynamic immunomodulation concurrent with tumor progression at 
the systems level. This approach will facilitate the discovery of new biomarkers that can be used for 
predicting immunotherapy response, aid in patient stratification, and inform on effective drug 
combinations to overcome drug resistance. However, a drawback of systems biology is its reliance on large 
sets of high-quality patient data collected over various time scales and concepts, which necessitates 
advanced downstream analyses and computations. Therefore, developing cost-effective and accessible 
technologies with user-friendly algorithms to integrate data from different omics platforms can 
revolutionize personalized cancer pathobiology modeling. These integrative, hypothesis-driven, and 
predictive models can advance our understanding of disease mechanisms and improve personalized 
treatment strategies[279,280].
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