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Abstract
Over the past decade, researchers have identified and characterized the diverse cell populations within the tumor 
microenvironment of pancreatic cancer. The interplay between these cells in the TME either promotes or inhibits 
the malignant behavior of pancreatic cancer cells. Cancer-associated fibroblasts, previously thought to be one main 
subset, can now be broadly subclassified into three main types: inflammatory, myofibroblastic, and antigen-
presenting, with the former and the latter two exerting pro-tumoral and anti-tumoral functions, respectively. 
Myeloid cells include myeloid-derived suppressor cells and tumor-associated macrophages. Myeloid-derived 
suppressor cells can be further divided into polymorphonuclear and monocytic and exhibit pro-tumoral activities. 
Tumor-associated macrophages exhibit M1 (anti-tumoral) or M2 (pro-tumoral) phenotypes, which are present in a 
dynamic fashion between the two phenotypes. Other constituents of the immune make-up of the tumor 
microenvironment include T and B cells and less described subsets which include natural killer cells, γδ T cells, and 
group 2 innate lymphoid cells. This review provides an overview of the studies that lead to the discovery of those 
cellular populations and highlights the recent efforts to utilize them as therapeutic targets in pancreatic cancer.
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INTRODUCTION
Pancreatic adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths and is expected to 
be the second cause by 2030[1,2]. Multiple factors contribute to the dismal prognosis of PDAC, including 
resistance to chemotherapy and propensity for early metastasis[3]. Mutations in four main genes support the 
evolution of PDAC, which activate mutations in Kras and loss-of-function mutations in TP53, 
P16/CDKN2A, and SMAD4/DPC4[3]. Current standard chemotherapeutic regimens, such as FOLFIRINOX 
and gemcitabine/nab-paclitaxel, only modestly improve survival[4]. Additionally, immunotherapy, which has 
revolutionized the treatment of patients with other malignancies, has been largely ineffective in pancreatic 
cancer[5]. The exception is a small subset of patients with microsatellite instability-high disease, but those 
only account for approximately 1% of all patients[6].

One of the key features of PDAC that support its chemoresistance is its desmoplastic stroma which prevents 
the delivery of chemotherapeutic agents[7]. Moreover, its tumor microenvironment (TME) comprises a 
number of non-neoplastic cell populations, such as cancer-associated fibroblasts and suppressive immune 
cells, that prevent effector immune cell infiltration[3]. Novel research over the last few years, coupled with 
advances in technology such as single-cell sequencing, has improved our understanding of TME and the 
many processes that occur both intra- and intertumorally, and has provided the space to test innovative 
treatment combinations that provide the basis for future efforts in diseases that have traditionally been very 
difficult to treat[3]. This review highlights the different immune cell populations in the TME of PDAC.

CANCER-ASSOCIATED FIBROBLASTS 
Cancer-associated fibroblasts (CAFs) are central to the development of the non-neoplastic components of 
the TME[8]. Although not immune cells, CAFs influence the interplay between cancer cells and immune cells 
in the TME either through secreted factors or direct cell-cell interactions[8]. Initially thought to exclusively 
arise from PSCs, studies now suggest that CAFs can arise from different populations, including: PSCs[9], 
circulating bone marrow-derived cells called fibrocytes[10], adipose-derived mesenchymal stem cells 
(MSCs)[11], and epithelial and endothelial cells through epithelial- and endothelial-to-mesenchymal 
transition[12,13]. The old concept that CAFs are solely tumor-promoting has been challenged by recent efforts 
to target the stromal aspect of PDAC[14]. Evidence suggests that subpopulations of CAFs restrain tumor 
growth rather than promote it[14], explaining why non-selective targeting of CAFs results in conflicting 
outcomes[14]. For example, depleting alpha-smooth muscle actin (α-SMA)-positive cells reduced desmoplasia 
in samples from PKT and KPC mice but resulted in highly undifferentiated tumors, further diminished 
intratumoral blood vessels with evident hypoxic necrosis, and shorter survival[14]. Deletion of type I collagen 
in αSMA-positive myofibroblasts augmented immune suppression and resulted in a more aggressive cancer 
phenotype[15,16]. Similar findings were observed when treated with an inhibitor of Smoothened, which is 
overexpressed on CAFs, or neoplastic cell deletion of Sonic Hedgehog 1, a major mediator of 
desmoplasia[17,18]. These findings explain the poor survival outcomes observed in a phase I/II trial of sonic 
hedgehog inhibitor, IPI-926, in combination with chemotherapy[19].

Single-cell RNA sequencing by Elyada, Hosein, and others shows heterogeneity in the CAF population that 
is present within the stroma of PDAC and confirms the presence of at least three different types of CAFs: 
myofibroblastic, inflammatory, and  antigen-presenting [Figure 1][20-24]. These distinct CAF populations are 
stimulated through different pathways/cytokines, play different roles in PDAC, and reside in specific areas 
in the TME relative to cancer cells[20-24].

Myofibroblastic CAFs
Myofibroblastic CAFs (myCAFs), reside in the periglandular region and have an alpha-smooth muscle actin 



Page 3 of Diab et al. J Cancer Metastasis Treat 2022;8:42 https://dx.doi.org/10.20517/2394-4722.2022.60 14

Figure 1. Origins (left) and differentiation (right) of cancer-associated fibroblasts. MSC: Mesenchymal stem cell; EndMt: endothelial-to-
mesenchymal transition; EMT: epithelial-to-mesenchymal transition; MMT: mesenchymal-to-mesenchymal transition; CAF: cancer-
associated fibroblast; myCAFs: myofibroblastic cancer-associated fibroblasts; iCAFs: inflammatory cancer-associated fibroblasts; 
apCAFs: antigen-presenting cancer-associated fibroblasts[8]. (Adopted from Herting et al., Cancer Metastasis Rev. 2021; 
doi:10.1007/s10555-021-09988-w).

(α-SMA)high interleukin-6 (IL-6)low phenotype[25]. They are stimulated via the TGF-β/SMAD2/3 pathway 
when they come in direct contact with cancer cells which explains their localization to the periglandular 
region[25]. myCAFs have upregulated pathways involved in smooth muscle contraction, focal adhesion, 
extracellular matrix (ECM) organization, and collagen formation[20]. They express upregulated connective 
tissue growth factor and collagen type I alpha 1 (Col1α1), which are stimulated by actin alpha 2 and 
transforming growth factor-β (TGF-β)[25]. Protein activity analysis showed activated proteins in myCAFs 
include Twist family BHLH transcription factor 1 (TWIST1), in addition to TGF-β1 and SMAD family 
member 2 (SMAD2), as well as the contractile proteins transgelin, the myosin light chain 9, tropomyosins 1 
and 2, the ECM modulators matrix metallopeptidase 11 and periostin, and the homeobox transcription 
factor HOPX[20]. Lastly, Wnt signaling molecules (WNT2, WNT5A), which are implicated in myocyte 
differentiation and fibrosis, are overexpressed in myCAFs[20].

Inflammatory CAFs
Inflammatory CAFs (iCAFs), reside near the tumor periphery, express an α-SMAlow IL-6high phenotype, and 
are stimulated by the IL-1/JAK-STAT3 pathway[20,25,26]. Interestingly, while TGFβ promotes the 
transformation of fibroblasts to myCAFs, it inhibits their transformation to iCAFs by downregulating 
interleukin-1 (IL-1) receptor expression[26], and it is hypothesized that myCAFs and iCAFs are 
interchangeable based on their location and their exposure to cancer cells[26]. Although iCAFs lack an 
activated TGF-β program, they show a differential activation of TGFβ receptors TGFBR2 and TGFBR3[20]. 
This expression may indicate a negative feedback loop arising from the absence of TGF-β signaling in 
iCAFs[20]. iCAFs have enriched expression of inflammatory pathways such as IFNγ response, TNF/NF-κB, 
IL2/STAT5, IL6/JAK/STAT3, nuclear factor kappa B (NF-κB) pathway, and others that are known to 
regulate immune response[20]. iCAFs overexpress platelet-derived growth factor receptor alpha (PDGFRA), 
IL-6, Interleukin 8 (IL-8) and chemokines such as CXCL1, CXCL2, CCL2, and CXCL12[20]. In addition, they 
exhibit strong expression of complement factor D (CFD) and matrix proteins such as lamin A/C and 
dermatopontin (DPT)[20]. Additionally, the hypoxia regulator HIF1α and the redox regulators Nrf2 and 
superoxide dismutase 2 are active in iCAFs, suggesting a potential role for iCAFs in oxidative stress relief[20]. 
Intriguingly, iCAFs also express the hyaluronan synthases (HAS1, HAS2), the enzymes responsible for the 
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synthesis of hyaluronan, which is a major component of the ECM regarded as a significant barrier to the 
treatment of PDAC[20]. Efforts targeting hyaluronan in PDAC include the use of pegylated hyaluronidase in 
combination with chemotherapy[27,28]. Although early results were promising, later-phase trials showed no 
survival benefit[27,28].

Antigen-presenting CAFS
Like iCAFs, antigen-presenting CAFs (apCAFs), also reside in the periphery of tumor in areas of extensive 
desmoplasia and are likely regulated by interferon gamma (IFNγ) signaling[20]. apCAFs express genes that 
belong to the major histocompatibility complex (MHC) class II family, such as histocompatibility 2, class II 
antigen A, alpha (H2-Aa) and beta 1 (H2-Ab1), that encode the alpha and beta chains of MHC class II, and 
CD74 that encodes the invariant chain[20]. Additionally, they express unique markers such as Serum 
Amyloid A3, which is regarded as a pro-tumorigenic factor in pancreatic CAFs, and Secretory Leukocyte 
Peptidase Inhibitor, which was previously identified as a pro-inflammatory gene in dysplastic skin 
fibroblasts[20]. Pathways upregulated in apCAFs include those involved in antigen presentation and 
processing, fatty acid metabolism, MYC and MTORC1 signaling[20]. Proteins upregulated in apCAfs include 
other regulators of immune activity such as Bcam (CD239) and F11r (CD321), members of the 
immunoglobulin superfamily, and interferon regulatory factor 5, which is an Interferon-regulating 
protein[20]. apCAFs exhibit a higher activity for Stat1, which is known to mediate MHCII expression in 
response to IFNγ[20]. apCAFs have the capacity to present a model antigen to CD4+ T cells, but they lack the 
costimulatory molecules needed to induce T cell proliferation. Therefore, it is likely that the MHC class II 
expressed by apCAFs serves as a decoy receptor to deactivate CD4+ T cells by inducing either anergy or 
differentiation into regulatory T cells (Tregs), and in that, contributes to an immune suppressive TME[20].

MYELOID CELLS
One of the abundant immune cells that play a crucial role in the progression of PDAC is myeloid cells[29]. Of 
those, myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) are some of 
the most studied types[29]. Although with similar phenotypes and surface markers, MDSCs and TAMs are 
two distinct populations [Figure 2][29]. Sophisticated cross-talk between these cells and tumor cells 
collectively leads to resistance to chemotherapy, inhibition of effector T cell, and promotion of tumor 
invasiveness and metastases.

MDSCs
MDSCs are characterized by an immature, immune suppressive phenotype[30]. MDSCs are classified into 
two subsets: 1- polymorphonuclear-MDSC (PMN-MDSC) that share markers expressed on neutrophils, 
and 2- monocytic-MDSC (M-MDSC) that share markers expressed on monocytes and macrophages[6,29]. A 
third subpopulation of MDSCs exists, representing a common progenitor of MDSCs, referred to as early-
stage MDSC or eMDSC[29,31,32]. This subpopulation has yet to be functionally evaluated in PDAC[29]. MDSCs 
in PDAC are bone marrow-derived, and their formation is driven by kras, tumor-derived granulocyte-
macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and 
macrophage colony-stimulating factor (M-CSF)[30]. Although PMN-MDSCs are more abundant than M-
MDSCs, M-MDSCs are more immune suppressive[30,33]. Phenotypic differences between murine and human 
MDSCs exist[31,32]. For example, murine MDSCs were originally described as CD11b+ and Gr-1+[31,32]. Gr-1 is 
composed of a subunit from the Ly6 family and further classifies cells into M-MDSCs, which are CD11b+

Ly6G-Ly6Chi, or PMN-MDSCs, which are CD11b+Ly6G+Ly6Clo[31,32]. Other markers suggested for more 
effective identification of murine MDSCs include CD84, CD244, fatty acid transporter protein 2 (FATP2) 
and CD36[31,32]. On the other hand, human MDSCs are characterized by CD11b+CD14+CD15-HLA-DRlo/- for 
M-MDSCs and CD11b+CD14-CD15+HLA-DR- for PMN-MDSCs[31,32]. The low expression of HLA-DR 
distinguishes M-MDSCs from monocytes[31,32]. CD33 can be used instead of CD11b, as it is expressed in high 
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Figure 2. Myeloid cell lineage differentiation and markers. HSC: Hematopoietic stem cells; CMP: common myeloid progenitors; MDSC: 
myeloid-derived suppressor cell; TAM: tumor-associated macrophage; PMN-MDSC: polymorphonuclear MDSC; M-MDSC: monocytic 
MDSC[29].

levels in M-MDSCs and dimly in PMN-MDSCs[31,32]. Additionally, CD15 or CD66b can be used as a marker 
for PMN-MDSCs[31,32].

MDSCs exert their immune suppressive functions through multiple mechanisms[33]. MDSCs release both 
reactive oxygen species (ROS) and reactive nitrogen species (RNS), which inhibit T cells fitness, 
proliferation and migration within the TME[33]. MDSCs produce high levels of Arginase 1 and indoleamine 
2,3-dioxygenase 1, which metabolize L-arginine and L-tryptophan, respectively, and lead to effector T cell 
suppression[33]. Additionally, MDSCs induce T cell tolerance through the expression of inhibitory receptors 
such as the PD-L1 and CTLA-4 receptors, as well as sustain the development of Tregs through the CD40 
engagement in the presence of interleukin-10 (IL-10) and TGF-β[34,35]. MDSCs produce HB-EGF, an EGFR 
ligand, which activates EGFR/MAPK signaling in tumor cells and leads to increased PD-L1 expression[36]. 
Activated NF-κB promotes the functions of MDSCs through the production of colony-stimulating factors 
such as GM-CSF, as well as the secretion of chemokines, such as CXCL1, 2, and 5 that recruit CXCR2+ 
MDSCs to the TME[37,38]. The frequency of tumor-infiltrating T cells correlates inversely with the presence of 
MDSCs[33]. MDSCs also promote tumor progression through non-immune processes, including tumor 
angiogenesis through the secretion of vascular endothelial growth factor (VEGF)[34].

Due to their tumor-promoting nature, restraining the expansion or functions of MDSCs is an interesting 
therapeutic target. Decreased tumor growth and increased effector T cell infiltration were observed in GM-
CSF knock-down mouse grafts[39]. Similar results were observed through the depletion of PMN-MDSCs 
using a Ly6G-targeting antibody in mouse models[40]. In another mouse model, inhibition of CXCR2, which 
is upregulated in MDSCs and regulates their recruitment to the TME, resulted in reduced metastatic 
potential, synergy with immunotherapy, and improved survival[41].

TAMs
Macrophages arise from tissue-resident as well as bone marrow-derived macrophages[42]. They are linked to 
poor survival[43]. Tissue-resident macrophages originate from embryonic precursors or adult hematopoietic 
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stem cell progenitors[43]. Marrow-derived macrophages are recruited into tissues by chemotactic signals[43]. 
The origin of TAMs has an implication on their function, as monocyte-derived TAMs have increased 
antigen presentation abilities, while embryonically derived TAMs have profibrotic features[44]. Macrophages 
are present in early pancreatic intraepithelial neoplasia (PanIN) lesions and are regarded as one of the 
earliest immune responses[45]. Mutation in kras ubiquitously present in these early lesions drives an 
epithelial-macrophage interplay that promotes a pro-tumorigenic phenotype in the TAMs[46]. Macrophages 
in these early PanIN lesions secrete inflammatory factors that facilitate epithelial cell growth[47]. In addition, 
macrophages can serve as sources of IL-6 and IL-10 that activate STAT3 and fuel tumorigenesis through 
direct impacts on tumor cells or infiltrating cytotoxic immune cells[47].

TAMs have different polarization states within the TME, and their function can be pro-inflammatory/anti-
tumoral (M1 phenotype) or anti-inflammatory/pro-tumoral (M2 phenotype)[29]. M1 TAMs are induced via 
IFNγ and tumor necrosis factor α (TNFα), and they exhibit a high expression of interleukin 12 (IL-12), TNF, 
and inducible nitric oxide synthase[29,48]. IFNγ and TNFα are produced by antigen-presenting cells upon 
recognition of pathogenic signals, but they are also secreted by T-cells and natural killer (NK) cells[29,48]. 
Upon activation, M1 TAMs secrete pro-inflammatory cytokines (e.g., TNFα, IL1β, IL12), effector molecules 
(e.g., reactive nitrogen intermediates), and chemokines (e.g., CXCL9, CXCL10) to amplify and sustain their 
tumoricidal activity[29,48]. M2 TAMs are stimulated by interleukin 4 (IL-4) and interleukin 13 (IL-13)[42]. M2 
macrophages lose their antigen presentation abilities and function instead to suppress the immune response 
through a variety of mechanisms. M1 TAMs reside in the periglandular region close to cancer cells, while 
M2 TAMs usually reside more peripherally[6]. Interestingly, when M2 TAMs are observed close to cancer 
cells, they are associated with worse survival[6]. While the M1/M2 classification is a useful and simplified 
approach to understanding the TAM population, it should be noted that TAMs exist in a fluid and dynamic 
state, where their polarization is part of the continuous spectrum between M1 and M2 and can change 
depending on cytokines and interactions with other cells in the TME[48].

Initiatives tailored to TAMs as therapeutic targets have focused on two main concepts, either 
reprogramming TAMs to be anti-tumor or retrieving their antigen-presenting abilities. The current review 
summarizes some of these initiatives. The colony-stimulating factor 1 (CSF1) polarizes TAMs toward their 
immunosuppressive phenotype via colony-stimulating factor 1 receptor[49]. Research on human and mouse 
samples shows that the TME is infiltrated with CSF1R+ macrophages[49]. Inhibiting CSF1R in KPC mouse 
models resulted in an increase in effector T cell infiltrations and decreased tumor burden[49]. Additionally, in 
syngeneic orthotopic mouse models using KC and KI cells, CSF1R blockade sensitizes tumors to immune 
checkpoint blockade with PD-1 or CTLA-4 antagonists[50]. Cabiralizumab, a CSF1R blocking antibody, is the 
subject of an ongoing phase 2 clinical trial evaluating its use in combination with nivolumab and 
chemotherapy in patients with advanced PDAC[51].

The CCL2/CCR2 axis is another pathway that is integral to the genesis of TAMs[43]. Human PDAC cells 
secrete CCL2 that recruits CCR2+ monocytes from the bone marrow to the circulation, which then 
differentiate into TAMs after entering the tumor tissue[43]. In orthotopic mouse models of PDAC (C57BL/6 
and CCR2-/- mice), blockade of CCR2 results in retention of monocytes in the bone marrow and impaired 
tumor growth[43]. Synergy was observed with the addition of gemcitabine[43]. In an early phase clinical trial, 
the combination of chemotherapy with a CCR2 inhibitor (PF-04136309) was associated with a reduction in 
circulating CCR2+ monocytes and TAMs in the tumor and an increase in CD8+ T cells in patients with 
PDAC[52]. However, there was a lack of clinical benefit in further trials[53].
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CD40, a member of the TNF receptor superfamily, is expressed broadly on immune cells, including 
monocytes and macrophages[54]. In KPC mouse models, treatment with the CD40 agonist FGK45 resulted in 
upregulation of MHC II in macrophages from the tumor and spleen, suggesting that CD40 activation 
reprograms TAMs to their anti-tumor phenotype[54]. Combining CD40 agonism with chemotherapy 
resulted in increased T cell infiltration, decreased tumor burden, and increased susceptibility to immune 
checkpoint therapy[54-56]. In a phase 1 trial with treatment-naïve metastatic PDAC patients, the combination 
of the CD40 agonist APX005M (sotigalimab) with chemotherapy was associated with a promising response 
rate of 58%[57].

In addition to the many functions in PDAC, myeloid cells play a role in establishing a pre-metastatic niche 
and promoting metastatic disease[58]. This is carried out either by 1- the physical translocation of myeloid 
cells to organs outside of the pancreas and direct cross-talks with host organs or by 2- tumor-derived 
exosomes which can carry out these changes more distally[29]. A body of evidence now shows that MDSCs 
colonize distal organs prior to tumor cells[58]. Granulin secreted from macrophages recruited to the liver 
activates myCAFs and creates a permissible environment for tumor growth and survival[59]. Lastly, 
upregulated STAT3 in hepatocytes recruits myeloid cells to the liver by secreted serum amyloid A1 and A2, 
leading to liver fibrosis[58]. This results in increased susceptibility of the liver to tumor seeding and 
growth[58]. Ablation of the IL6/STAT3/serum amyloid A pathway resulted in fewer recruited MDSCs which 
translated to the prevention of metastatic dissemination[58].

LYMPHOCYTES
T cells 
The T cell population in PDAC TME encompasses different subpopulations with distinguished spatial 
distributions and roles that can be immune stimulating or suppressive, the former of which is largely 
restrained by tumor cells and the other constituents of the TME [Figure 3]. Cytotoxic or effector CD8+ T 
cells represent a small subset and are confined to the tumor periphery[60]. A high cytotoxic T cell infiltration 
of tumors is associated with improved survival[60]. A growing body of literature shows that cytotoxic T cells 
strongly express immune checkpoint markers, such as PD-1, VISTA, and TIGIT, and are exposed to their 
ligands expressed on immune suppressive stromal cells, which make them susceptible to inhibition by 
different mechanisms[61-63]. Additionally, cytotoxic T cells are the subject of immunosuppressive cytokines 
produced by tumor and stromal cells, such as IL-6, TGFβ1, CXCL12, and IL-10[61-63]. Cytotoxic T cell 
function is further inhibited by the relative scarcity of antigen-presenting cells within the TME and 
insufficient tumor antigenicity[60,64]. Lastly, the dense stroma surrounding tumors acts as a physical barrier 
for the recruitment of cytotoxic T cells[16,65]. An abundant component of the extracellular matrix is fibrillar 
collagens, such as type I and III collagen[16,65]. The major producer of fibrillar collagens are CAFs, and tumor 
cells produce a small amount of CAFs[66].

Initiatives to enhance the activity of cytotoxic T cells are ongoing[67]. This includes a phase I/II trial that is 
being conducted by our group (NCT04191421)[67]. In this trial, patients with metastatic, treatment-refractory 
disease receive spartalizumab, a checkpoint inhibitor of PD-1, and siltuximab, which inhibits IL-6, in an 
attempt to sensitize these tumors to PD-1 blockade[67].

Studies on human as well as mouse models (KPC and others) showed that blockade of the CXCR4/CXCL12 
pathway resulted in increased T cell infiltration and synergized with immune checkpoint inhibitors[68-70]. 
Combining the CXCR4 blocker BL-8040 (motixafortide) with chemo- and immunotherapy showed a 
promising signal in patients with metastatic PDAC in the phase II trial COMBAT[68].
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Figure 3. T lymphocytes within the TME of PDAC. Regulatory T cell (Tregs) and CD4+ helper 17 (Th17) cells. Along with tumor-
associated macrophages, they inhibit cytotoxic T lymphocytes. Additionally, the dense stroma confers elevated intratumoral pressures 
resulting in vascular compression, which reduces the recruitment of cytotoxic T lymphocytes to the TME. CTL: cytotoxic T lymphocyte; 
TAM: tumor-associate macrophage; ECM: extracellular matrix; PDAC: pancreatic adenocarcinoma; Treg: regulatory T lymphocyte. 
TH17, CD4+ helper 17 lymphocyte. (Adopted from Carr et al., EMBO Mol Med. 2016;8:80-2. doi:10.15252/emmm.201505948).

CD4+ T cells include Tregs and CD4+ helper 17 (Th17), both of which exert tumor-promoting functions[71]. 
Tregs express a CD3+CD4+CD25+FoxP3+ phenotype and are associated with poor prognosis[72,73]. Tregs 
communicate intimately with MDSCs primarily through cell-cell interactions to promote their survival and 
promote an immunosuppressive TME[74]. Interestingly, depletion of Tregs in KC;Foxp3DTR and KC;CD4-/- 
mice resulted in an increase of MDSCs within tumors and pronounced tumor growth[74]. These results 
highlight the effects of one cell population on the rest of the whole population.

Th17 cells produce IL-17, a crucial cytokine in the development and progression of PDAC[75,76]. Oncogenic 
Kras drives the expression of IL-17 receptor on PanIN lesions, and IL-17 from lymphocytes promotes 
tumor progression and induces cancer stemness through pathways such as IL-6/STAT3 and NF-κB[75,76]. 
Recent efforts showed that CD11b+CD103- dendritic cells produce IL-23 and TGF-β and induce CD4+

FOXP3-IL10+IL-17+IFNγ+ T cells[77]. Identifying additional interactions these cells have with other 
constituents of the TME can be exploited as therapeutic targets.

B cells
Contrary to other immune cells in the TME of PDAC, B lymphocytes are some of the least studied cell 
populations and their role in the development of PDAC remains controversial[78,79]. Research shows the 
presence of B cells in the early stages of PanIN lesions[78]. Recent work shows that B cells can be found in 
two main locations in PDAC[80]: 1- scattered infiltrating the tumor-stromal surface and 2- organized in 
ectopic lymph-node like structures called tertiary lymphoid tissue (TLT)[80]. After affinity maturation of 
CD20+ naïve B cells in the germinal centers of TLT, circulating plasmablasts are produced[81]. Those 
plasmablasts have been shown to be the most potent subset of B cells to stimulate collagen production by 
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CAFs, and they show high expression of genes involved in fibroblast activation and proliferation, including 
the collagen genes COL1A1 and COL1A2, insulin-like growth factor-1 (IGF-1), and lysyl oxidase homolog 2 
(LOXL2)[81]. A high density of B cells in TLT is associated with improved survival[80]. Interestingly, in a 
mouse model devoid of TLT, depletion of B cells using an anti-CD20 antibody restored anti-tumor 
immunity[80]. Therefore, the prognostic relevance and anti-tumor potential of B cells rely on their spatial 
organization within PDAC[80]. The spatial localization of T and B lymphocytes within TLT is crucial for the 
recruitment of tumor-infiltrating T cells[80]. B cells appear to be regulated by follicular helper T cells[80]. 
Interestingly, depletion of B cells may prevent the formation of TLT, which might be detrimental in PDAC 
as the tumors are deprived of effector cell localization and anti-tumor immune response[78].

A subset of regulatory B cells, also referred to as B1 regs, produce IL35, which promotes tumor progression 
and cytotoxic T cell evasion[78]. Bregs express high levels of PD-L1 which interacts with PD-1 on cytotoxic T 
cells, rendering them exhausted[82,83]. Through the activity of Bruton tyrosine kinase (BTK), B cells interact 
with TAMs and reprogram them to the pro-tumoral M2 phenotype[84]. In studies with Ink4 2.2 and p53 2.1.1 
mouse cell lines and male FVB/n mice, inhibition of BTK with ibrutinib resulted in the reprogramming of 
TAMs to the anti-tumoral M1 phenotype, increased cytotoxic T cell infiltration, and decreased tumor 
growth[84]. This provided the basis of the RESOLVE trial, in which treatment-naïve metastatic PDAC 
patients were randomized to ibrutinib or placebo, combined with chemotherapy[85]. Unfortunately, the 
combination failed to show a survival benefit[85]. This underscores that there are likely more intricate cross-
talks between tumor and stromal cells and that targeting one signaling pathway is not sufficient[86]. 
Additionally, caution must be exercised when deducing results from preclinical models, as they might not 
accurately mimic human cancer[86]. One example is that orthotopic models lack TLT[80].

As mentioned above, CD40, a member of the tumor necrosis factor receptor superfamily, activates antigen-
presenting cells, such as dendritic cells and B cells[57,87]. In studies on Panc02 mouse pancreatic cancer cell 
lines and C57BL/6 (H-2b) mice, treatment with CD40 agonistic antibody resulted in T-cell-dependent 
tumor regression and improved survival[46]. Synergy was observed with PD-1 blockade on similar models[88]. 
A phase 1 trial evaluated the safety of the CD40 agonist APX005M (sotigalimab) in combination with 
chemotherapy, with or without nivolumab in treatment-naïve metastatic PDAC patients[57]. The 
combination was safe and associated with a promising efficacy signal[57]. Other CD40 agonists are currently 
being tested in earlier stages of PDAC[89].

Dendritic cells and other populations
Over the last decade, dendritic cells (DCs) have gained popularity as a subject of interest in the field of 
PDAC, especially in the development of cancer vaccines[90]. DCs represent a diverse group of antigen-
presenting cells that are able to recognize tumor antigens and generate tumor-specific immunity[91]. The 
presence of DCs is associated with longer survival in PDAC, both in the metastatic and early stages[92,93]. 
They are also associated with a greater infiltration of cytotoxic T cells[94]. However, DCs are a rare 
population in PDAC, have an attenuated function, and are localized to the periphery of the tumor, all of 
which inhibit their anti-tumor effects[95]. Several trials are capitalizing on DCs as a therapeutic target, 
including the use of CD40 agonisms mentioned above[96-98].

Other components of innate and adaptive immunity, including natural killer cells, γδ T cells, and other 
innate lymphoid cells (ILCs), have recently gained attention; however, their roles continue to be 
incompletely understood. A key component of innate immunity, natural killer cells (NK cells) in PDAC also 
have an attenuated anti-tumor function, tend to reside in the periphery of the tumor, and are associated 
with improved survival[99,100]. γδ T cells are a more abundant type of lymphocyte with pro-tumoral activity 
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Table 1. Clinical trials evaluating therapeutic approaches for PDAC TME

NCT number Target Drug Reference

NCT03336216 CSF1R Cabiralizumab [51]

NCT01413022, NCT02732938 CCR2 PF-04136309 [52,53]

NCT03214250 CD40 Sotigalimab [57]

NCT04191421 PD-1, IL-6 Spartalizumab, siltuximab [67]

NCT02826486 CXCR4 Motixafortide [68]

PDAC: Pancreatic adenocarcinoma; TME: tumor microenvironment.

and their presence is associated with poor prognosis[101,102]. They reside within the tumor and suppress the 
anti-tumoral activities of αβ T cells[101,102]. Lastly, the innate lymphoid cells (ILCs) groups 1, 2, and 3 
represent a heterogeneous group of tissue-resident cells that play conflicting roles in solids tumors[103].  In 
PDAC, ILC2s were shown to amplify PD-1 blockade by activating tissue-specific cancer immunity through 
IL-33-dependent mechanisms[104]. Targeting these subsets for the treatment of PDAC is still in its infancy. 
Table 1 summarizes the efforts aimed at targeting the immune populations of the TME.

CONCLUSION
Previously regarded as an “immune desert”, we now know that the TME of PDAC is enriched with immune 
cells that play both pro- and anti-tumoral roles and interact very intimately with tumor cells as well as the 
other cellular populations in the TME. Many of the pro-tumoral immune subsets are present in the very 
early stages of cancer development and govern the progression and metastases of PDAC through 
mechanisms that include producing a dense stroma, creating a niche in metastatic sites, and maintaining an 
immune suppressive environment that inhibits the activities of anti-tumoral populations. However, recent 
advances in single-cell analysis highlight several anti-tumoral subsets that are not only associated with 
improved survival but can also be used as therapeutic targets. Ongoing trials are studying novel dendritic 
cell vaccines, as well as different combinations of immune modulators with immune checkpoint inhibitors 
in an attempt to render “cold” tumors into “hot” tumors. Additionally, more research is urgently needed to 
better identify the potential role of rarer subsets, such as NK cells, as therapeutic targets.
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