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Abstract
Single-atom catalysts (SACs) and hollow microstructured materials have recently undergone significant 
advancements in the field of catalysis. The combination of SACs and hollow microstructured materials can further 
endow them with extraordinary characteristics, such as high loadings, uniform active sites and unique metal-
support interactions and electronic structures. In this review, we focus on the design and construction of SACs 
supported on hollow microstructured materials for enhancing electrocatalytic reactions. Due to these unique 
hollow microstructures, most of the active sites can be fully exposed in catalysis. Therefore, the atomic utilization 
rate is greatly improved. Furthermore, the synergistic effect of SACs and hollow microstructured supports can 
bring about unpredictable characteristics. The hollow microstructures not only adjust the geometry and electronic 
structure of the SACs to improve their activity but the SACs can also serve as an auxiliary stimulus to the intrinsic 
activity of the support to achieve better performance. Compared with the reported traditional dual atomic 
catalysts, hollow microstructures are conducive for the isolation of atomically dispersed binary atom active sites on 
both sides of the particle shell. Combined with the current development status, we summarize the challenges and 
prospects in this area. This review is conducive to the reasonable design and manufacture of advanced SACs 
supported on hollow materials and the promotion of their future industrial usage in energy applications.
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INTRODUCTION
As the energy crisis and environmental problems intensify, it is necessary to rapidly develop sustainable and 
clean energy sources[1-9]. Among the wide variety of proposed technologies, electrochemical energy 
transformation technologies, such as water splitting, CO2 reduction, fuel cells and metal-air batteries, are 
considered to be among the most effective substitutes for traditional fossil energy[10-18]. Previously reported 
electrocatalysts have shown high activity and superior stability, most of which are composed of precious 
transition-metal nanoparticles (NPs), such as Pt/C, RuO2 and IrO2

[19-24]. However, these precious metal-
based catalysts have high costs and scarce reserves, which severely restrict their large-scale application[25-31]. 
Therefore, it is necessary to develop advanced catalysts to reduce catalyst usage without sacrificing the 
catalytic performance.

Hollow structures are types of functional nanomaterials with cavities or void spaces inside a defined shell[32]. 
Due to their unique structural characteristics and physical and chemical properties, advanced hollow 
structures exhibit some functions that simple NPs cannot obtain, especially in heterogeneous catalysis. 
Compared with their solid counterparts, hollow structures have several advantages. They effectively isolate 
the catalytic material and stabilize the NPs to prevent sintering. They can achieve cascade reactions by 
regulating the spatial position of catalytically active sites. By precisely controlling the pore size in the shell, 
the hollow structures improve the selectivity of the catalytic reaction through the difference in molecular 
sieve or nanopore diffusivity. In addition, hollow structures are generally suitable for improving mass 
transfer[33-35].

Metal-based NPs are important heterogeneous catalysts, since they not only have high activity and 
selectivity for specific chemical reactions but also have good stability under harsh conditions[36]. Among the 
various strategies utilized, the downsizing of metal NP catalysts to the atomic scale, especially precious 
metal catalysts, is an effective strategy to construct advanced catalysts[37-43]. Single-atom catalysts (SACs) 
have received significant attention because of their maximum utilization of metal atoms and unique 
electronic structures in heterogeneous and electrochemical reactions[30,44-54].

The design concept of highly dispersed active species as heterogeneous catalysts be traced back to the 
research of Maschmeyer et al.[55] in 1995. They found that Ti highly dispersed on mesoporous MCM-41 
could be used for the epoxidation of cyclic olefins by grafting organometallic complexes into mesoporous 
silica[55]. In 2003, Fu et al.[56] reported an ionic Au-cerium oxide catalyst for the water-gas shift reaction 
without Au particles. They demonstrated that the metal NPs were not active for the water-gas shift reaction. 
In 2007, Hackett et al.[57] reported the use of atomically dispersed PdII supported on mesoporous Al2O3 for 
the selective aerobic oxidation of allylic alcohols. In 2011, Qiao et al.[39] proposed the concept of SACs for 
the first time, which has attracted significant attention in the field of catalysis. They reported single Pt atoms 
dispersed on FeOx with high CO oxidation activity. In 2016, Yin et al.[58] made a major breakthrough in the 
preparation of high-loaded SACs (4 wt.%), which opened up new avenues for the general synthesis of 
various SACs.

Compared with conventional catalysts, SACs fully expose every atom as a catalytic site, which maximizes 
the atomic efficiency of metals and minimizes the amount of precious metals. SACs have the advantages of 
heterogeneous and homogeneous catalysts and bridge the gap between heterogeneous and homogeneous 
catalysts[59]. SACs can realize the rational use of metal resources and promote atomic economy by 
maximizing the efficiency of atom utilization[60,61]. Due to their quantum size and structural effects and 
strong metal-support interactions, SACs have additional advantages. In addition, the unique electronic 
structure and unsaturated coordination environment of the active sites in SAC can significantly improve the 
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catalytic performance[62-66]. Moreover, SACs with uniform metal active sites are beneficial to the study of 
electrocatalytic mechanisms[67-70].

A large number of reviews have focused on the influence of geometric and electronic structure regulations 
on the catalytic performances of SACs[38,71-77]. In contrast, relatively few reviews have discussed the 
relationship between SACs supported by hollow microstructures and catalytic activity. The catalytic 
properties of SACs rely on the characteristics of the active sites and their accessibility to reactants, which are 
greatly affected by the hollow microstructures of the supports. Hollow structured materials as SAC supports 
have several unique features, including high surface area, low density and high loading capacity, for 
catalysis[33,78-81]. Compared with bulk materials supporting SACs, confined SACs can be directly exposed as 
active sites on hollow microstructured supports, thus ensuring 100% exposure of single atoms to reactants. 
Cascade reactions can be achieved by placing SACs on hollow microstructures with controllable spatial 
localization. Hollow microstructures with thin shells provide more expedited mass-transfer processes. 
Finally, the thin shells in hollow structures enhance catalytic selectivity.

This review focuses on the design and construction of SACs supported on hollow microstructured materials 
for enhancing electrocatalytic reactions. Recent configurations of hollow microstructures supporting SACs 
can be divided into three types, namely, single-shell hollow, core-shell and yolk-shell structures [Figure 1]. 
The accessibility of SACs in hollow microstructures and their performance in mass diffusion are 
highlighted. In addition, the research progress of SACs supported on hollow microstructures in 
electrocatalysis and their advantages/disadvantages in electrocatalysis are discussed. Moreover, we 
emphasize the importance and challenges in the rational design of hollow microstructured catalysts in 
electrocatalytic reactions, which have excellent potential for applications in energy conversion.

A HOLLOW MICROSTRUCTURAL MODULATION STRATEGY FOR SACS
The accessibility and nature of single atomic sites are significantly affected by the microstructures of the 
catalysts, including their morphology, size, shape and surface structure[35,82,83]. As a special type of 
microstructure, hollow microstructures have attracted particular attention[81,84-86]. Compared with solid 
materials, hollow microstructures not only greatly increase the specific surface area of catalysts to expose the 
active sites but also facilitate the diffusion of the substrate[82,87-89]. Therefore, the regulation of hollow 
microstructures can remarkably affect and even manipulate the catalytic performance of SACs[80,90-93]. 
Herein, we focus on studying the methods, intrinsic properties and regulation of hollow microstructures to 
improve the electrocatalytic performance.

SACs supported on single-shell hollow materials
Single-shell hollow microstructures have empty spaces inside a single shell. The physicochemical properties 
of hollow microstructures can be modulated via a series of parameters, including external shape, internal 
configuration and shell architecture[81]. The shell composition of hollow microstructures has changed from 
carbon species (or metal oxides) to multiple compounds, such as metal-organic frameworks (MOFs), in 
recent years. Many strategies for the successful synthesis of hollow microstructures have been reported. 
Hollow microstructures with internal voids can effectively improve the weight fraction and mass activity of 
SACs. In addition, hollow structures provide more accessible areas to expose the active sites of SACs in 
catalysis[84-89].

Recently, MOFs composed of metal ions/clusters and functionalized organic linkers have been investigated 
as ideal supports for anchoring SACs[25,28,31,47,94-99]. For instance, Liang et al.[100] demonstrated a strategy for 
preparing isolated Fe atomic sites anchored in hollow carbon polyhedra (Fe-SAs/NPS-HC) derived from 
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Figure 1. Schematic illustration of (A) single-shell hollow, (B) core-shell and (C) yolk-shell structures.

MOF@polymer composites via the Kirkendall effect [Figure 2A]. A series of controlled experiments proved 
that sulfur plays a significant role in the construction of single-shell hollow microstructures. The uniform 
single-shell hollow morphology of Fe-SAs/NPS-HC was identified by transmission electron microscopy 
(TEM) and high-angle annular dark field scanning TEM (HAADF-STEM), with a shell thickness of ~20 nm 
[Figure 2B]. In addition, energy-dispersive spectroscopy mappings proved the uniform spatial distribution 
of iron, carbon, nitrogen, phosphorus and sulfur throughout the hollow shell. Furthermore, aberration-
corrected HAADF-STEM (AC HAADF-STEM) and XANES analysis directly confirmed the atomic 
dispersion of Fe [Figure 2C-E]. Due to the structure function and electronic control of Fe SACs, the 
catalysts exhibit significant oxygen reduction reaction (ORR) performance in both alkaline and acid media 
[Figure 2F and G].

Similarly, Chen et al.[101] also constructed unique Co SACs supported on hollow carbon polyhedra (Co1-N3

PS/HC). The synergistic coordination of N, P and S atoms was introduced into the single-shell hollow 
carbon polyhedra to adjust and optimize the electronic density of Co SAC active centers and construct 
novel optimal Co-N3PS active configurations. Co1-N3PS/HC exhibits an efficient ORR reactivity 
(176 mW cm-2 at a current density of 280 mA cm-2) better than commercial Pt/C (117 mW cm-2), significant 
ORR kinetics and excellent stability in both alkaline and acid media. Furthermore, a Zn-air battery based on 
Co1-N3PS/HC showed outstanding battery performance (786 mAh g-1 at 10 mA cm-2) and long-term 
charge/discharge durability. Moreover, they used the same method to synthesize a single-atom Ir catalyst on 
a single-shell hollow carbon substrate[78]. It was shown that the designed hollow structure plays an important 
role in accelerating the kinetics and improving performance. He et al.[102] synthesized a series of noble-metal 
(Ir, Pt, Ru, Au and Pd) single atoms immobilized on hollow nanotubes derived from a zirconium-
porphyrinic MOF, which are equipped with square-planar four coordinate porphyrin units to anchor a 
single atom. This unique single-shell hollow structure was beneficial for fast mass diffusion.

Yang et al.[103] reported a solid phase thermal diffusion approach to prepare Mn isolated single-atom site 
catalysts on N-doped carbon nanotubes by the pyrolysis of a MnO2 nanowires@ZIF-8 core-shell structure. 
After NH3 treatment, the Mn SAs-N2 coordination sites were controllably transformed into Mn SAs-N4 
coordination sites. This method generally uses acids and bases to etch the template, which may damage the 
composition and structure of the nanomaterial. Wang et al.[104] constructed single Fe atom catalysts 
supported on N-doped hollow carbon nanocages by the pyrolysis of ZIF-8 and pyrrole. As more single Fe 
atom active sites are exposed in the hollow carbon structure, the obtained Fe-ISAs/H-CN catalysts show 
high-efficiency activity in alkaline solutions. The typical ZIF-8 has been widely used to construct M-NC 
catalysts. Unfortunately, the resulting dense carbon framework hinders mass transfer and blocks many 
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Figure 2. (A) Illustration of the synthetic strategy of Fe-SAs/NPS-HC. (B) TEM and (C) AC HAADF-STEM images of Fe-SAs/NPS-HC. 
(D) Fe K-edge XANES and (E) Fe K-edge k3-weighted Fourier transform (FT) spectra of Fe-SAs/NPS-HC, Fe2O3 and Fe foil. (F) ORR 
polarization curves, (G) Jk at 0.85 V and E1/2 of Fe-SAs/NPS-HC, Fe-SAs/NPS-C and NPS- HC[100]. TEM: Transmission electron 
microscopy; HAADF-STEM: high angle annular dark field scanning TEM; ORR: oxygen reduction reaction.

metal sites. Li et al.[105] proposed a dual-linker zeolitic tetrazolate framework‐engaged strategy to prepare 
single Ni atom catalysts supported on hollow plates. 5-Aminotetrazole was used as a self-sacrificing 
template and 2-methylimidazole was mainly used as a carbon and nitrogen source to form a hollow N-rich 
carbon matrix. The hollow structure of the obtained catalysts had more mesoporosity and available surface 
area, which promote mass transfer and provide abundant single Ni sites that are beneficial to enhancing the 
catalytic performance for electrochemical CO2 reduction with high selectivity (~100%) to CO.

The synergistic effect based on the interface of binary atom sites provides a unique perspective for 
understanding the reaction mechanism in the electrocatalytic process[106]. Han et al.[107] reported atomically 
dispersed binary Co-Ni sites supported in N-doped single-shell hollow carbon cubes (CoNi-SAs/NC) by the 
pyrolysis of CoNi-MOFs [Figure 3]. Such single-shell hollow carbon generates high surface areas and 
abundant mesopores, which shorten the paths for ionic/electronic diffusion and provide effective mass 
transfer channels. Benefiting from the abundant single-atom active sites and the synergistic effect of Co-Ni 
sites, the resultant CoNi-SAs/NC catalysts provide a low overpotential, high electron transfer number and 
good reversibility in alkaline electrolytes. Density functional theory results revealed that the rate-
determining step (RDS) on single-shell hollow NC and Ni-N is the hydrogenation of molecular O2, while 
the RDS on Co-Ni-N becomes the protonation of OH*, thereby highlighting the critical role of bimetallic 
Co/Ni sites in energetically facilitating the ORR process. Furthermore, they emphasize the accessibility of 
SACs with high activity and the synergistic interaction of Co-Ni-N in reducing the energy barrier and 
improving the reaction kinetics. Deng et al.[108] used a hollow ZIF-8 precursor to prepare N-doped hollow 
carbon polyhedra implanted with single Fe atoms (C-FeHZ8@g-C3N4). The obtained FeHZ8@g-C3N4 
catalysts possessed an exclusively high density of Fe-N4 sites and exhibited excellent ORR activity with a 
half-wave potential of 0.78 V in an acidic medium and 0.845 V in an alkaline medium. In addition, the 
catalysts display remarkable performance in H2/O2 proton exchange membrane fuel cells.

Due to their large-scale preparation and high uniformity, SiO2 materials as physical scaffolds are often used 
as hard templates. In short, the hard template synthesis includes the following steps: (1) preparing a hard 
template with a specific shape; (2) coating (or depositing) the target material on the template; and (3) 
removing the internal template. The hard template method is the common and effective method to fabricate 
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Figure 3. (A, B) SEM, (C, D), TEM, (E) HRTEM and (F) AC HAADF-STEM images of CoNi-SAs/NC. (G) Co K-edge XANES spectra and 
(H) Fourier transforms of Co K-edge spectra of CoNi-SAs/NC and CoNi-NPs/NC (inset: the model of Ni-Co dual sites). (I) Schematic 
illustration of the formation of CoNi-SAs/NC. (J) ORR polarization curves and (K) OER polarization curves of CoNi-SAs/NC and 
reference samples[107]. SEM: Scanning electron microscope; HRTEM: high resolution TEM; XANES: X-ray absorption near edge 
structure; OER: oxygen evolution reaction.

hollow nanostructures loaded with single atoms. Su et al.[109] used silica as a template to construct Fe-N/C 
and Fe-ND/C on hollow carbon spheres. The Fe-ND/C catalysts with the proposed coordination structure 
facilitate the desorption of OH*. Kuang et al.[110] prepared N-doped mesoporous hollow carbon spheres 
loaded with Pt single atoms (Pt1/NMHCS) via a SiO2 template strategy. Due to the strong electronic metal-
support interaction between the single-shell hollow carbon support and Pt SACs, the obtained Pt1/NMHCS 
possessed more electron depletion and a higher oxidation state than single Pt atoms. This greatly promoted 
the outstanding hydrogen evolution reaction activity. Pt1/NMHCS exhibits a higher mass activity 
(2.07 A/mgPt at a 50 mV overpotential) than that of PtNP/MHCS (0.89 A/mgPt) and 20 wt.% Pt/C 
(0.58 A/mgPt).

The reasonable design of cost-effective non-precious metal-based catalysts to substitute Pt in the ORR is 
ideal for the development of sustainable energy conversion equipment. Recently, transition-metal SACs 
have become new cutting-edge catalysts with high activity, stability and selectivity, illustrating their 
remarkable potential for various electrocatalytic applications. For instance, Chen et al.[111] developed a 
modified hard-templating strategy to prepare SACs supported on functional Janus hollow graphene. As 
shown in Figure 4A, the surface of the positively charged SiO2 nanospheres first adsorbs the electronegative 
[Ni(CN)4]2-. SiO2@[Ni(CN)4]2- intermediates are then tightly wrapped by graphene oxide (GO) nanosheets. 
Subsequently, the Fe2+ phthalocyanine (FePc) is adsorbed on the outer surface and then pyrolyzed at 700 °C. 
Finally, the SiO2 hard template is etched with a NaOH solution to obtain Ni-N4/GHSs/Fe-N4. Ni-N4 and Fe-
N4 species are uniformly dispersed on different sides of single-shell hollow graphene [Figure 4]. The 
combination of experiment and theory proved that the external Fe-N4 and internal Ni-N4 sites in Ni-N4

/GHSs/Fe-N4 are active for the ORR and OER, respectively. Compared with reported traditional dual 
atomic catalysts, Ni-N4/GHSs/Fe-N4 catalysts can isolate the active sites of Fe-N4 and Ni-N4 to balance the 
competition between the ORR and OER rate-limiting steps. Due to their dual-function characteristics, Ni-
N4/GHSs/Fe-N4 catalysts exhibit remarkable energy efficiency and cycling stability in rechargeable Zn-air 
batteries.
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Figure 4. (A) Schematic diagram of the formation of single-shell hollow Ni-N4/GHSs/Fe- N4. (B) TEM and (C) AC HAADF-STEM 
images of single-shell hollow Ni-N4/GHSs/Fe- N4. (D) Ni K-edge XANES spectra and (E) FT EXAFS of the Ni K-edge of Ni-N4/GHSs, 
NiO and Ni foil. (F) Fe K-edge XANES spectra and (G) FT EXAFS of the Fe K-edge of Fe-N4/GHSs, Fe2O3 and Fe foil. (H) ORR and (J) 
OER polarization curves in O2-saturated 0.1 M KOH. (I, K) Tafel plots of Ni-N4/GHSs/Fe-N4 and reference catalyst. (L, M) Schematic 
diagram and (N) discharge curves of a Zn-air battery assembled with Ni-N4/GHSs/Fe-N4

[111]. TEM: Transmission electron microscopy; 
AC-HAADF-STEM: aberration-corrected high angle annular dark field scanning transmission electron microscopy; FT: fourier 
transforms; EXAFS: extended X-ray absorption fine structure; XANES: X-ray absorption near edge structure; ORR: oxygen reduction 
reaction; OER: oxygen evolution reaction.

Chen et al.[112] also reported a SiO2 template strategy to synthesize single Fe atoms on single-shell hollow N-
doped carbon nanospheres (Fe-N-C HNSs). Benefiting from Fe-N4 parts and a unique hollow structure with 
large surface area and high conductivity, the obtained Fe-N-C HNSs have significant ORR performance and 
high stability in alkaline solutions, as well as excellent methanol resistance. Compared with N-doped carbon 
hollow nanospheres without single Fe atoms and Fe-N-C samples without hollow nanospheres, the Fe-N-C 
HNSs emphasized the high activity of SACs and the structural advantages of single-shell hollow structures. 
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They revealed that the hollow carbon nanospheres with a thin shell and open framework could effectively 
expose active sites, thereby making fully use of the active Fe-N-C components.

Zhang et al.[113] constructed a single-shell hollow N-doped carbon matrix (HCM) by the SiO2 template 
method to anchor isolated Ni atoms. The isolated Ni atoms coordinate with the surrounding N atoms and 
the synergistic effect of Ni-N coordination can reduce EF and the adsorption energy of intermediates, which 
is essential for promoting the OER kinetics in alkaline conditions[113]. In order to study the correlation 
between Ni-Nx geometry and CO2RR performance, Xiong et al.[114] used SiO2 as a hard template to construct 
a series of Ni-N4 catalysts on carbon spheres with different geometric structures. They conducted an in-
depth study of the geometric parameters of the carbon support for the first time. The ultra-thin carbon shell 
changes the electronic structure of the carbon skeleton. By optimizing the carbon geometry, they obtained 
an ultra-thin carbon shell Ni/HMCS-3-800 with a higher pyrrole-N content and larger structural defects, 
which are conducive to CO2 activation. Simultaneously, mesopores (7-10 nm) have also been proved to be 
beneficial to CO2 transfer and adsorption. Thus, the geometry plays a key role in the RDS[114].

Qiu et al.[115] discovered the influence of the dimensionality of the graphene matrix on the formation of Fe 
SACs [Figure 5]. They revealed that single-shell hollow graphene spheres play a critical role in the 
preparation of single Fe atom catalysts. Due to the accumulation and aggregation of two-dimensional (2D) 
GO during the pyrolysis process, its surface area is reduced, single atomic sites are buried and mass transfer 
is blocked. Meanwhile, the FePc-immobilized 2D GO usually causes sintering and the aggregation of 
particles during pyrolysis, which has a negative impact on catalysis. In order to overcome these difficulties, 
single-shell hollow three-dimensional graphene spheres are used as scaffolds to immobilize Fe SACs (Fe 
ISAs/GHSs). The combination of single-atom Fe active sites and highly stable hollow structures endows Fe 
ISAs/GHSs with excellent ORR performance and improved activity and stability that are better than for 
most advanced commercial Pt/C catalysts. Li et al.[116] used silica spheres as hard templates to fabricate Co 
SACs anchored in single-shell hollow carbon spheres (CoSAs-NHCS). The Co atoms were uniformly 
dispersed on the NHCS and coordinated with N to construct Co-N-C active sites. The high surface area of 
CoSAs-NHCS can expose more active sites and promote mass and electron transport. The single-shell 
structure of CoSAs-NHCS not only lowers the reaction barrier but also contains more discharge products.

The hard template method often complicates the process of making hollow structures. According to the 
self-template method reported by Liang et al.[117], single-shell hollow spheres with a single Fe atom were 
fabricated. The single-shell hollow structures increase the exposure of Fe-N4 active sites, which show 
excellent ORR performance. Theoretical calculations combined with experiments revealed that Fe/NC(PS) 
has outstanding ORR catalytic performance due to the low reaction barrier, adjustable electronic structure 
and suitable adsorption energy in Fe-N4 active sites. In addition, Zhang et al.[118] presented an efficient 
strategy to fabricate various SACs on single-shell hollow structured carbon. In this strategy, metal 
hydroxides or oxides [such as Co(OH)2 nanoplates, MnO2 nanowires and NiFe2O4 NPs] are first wrapped 
with polymers, pyrolyzed and acid leached at high temperature and then SACs are immobilized on the 
internal wall of the single-shell hollow pipe. Zhao et al.[119] reported a urea-bridging strategy to prepare N-
doped hollow carbon tubes to anchor SACs (EA-SA). The results show that the atomically dispersed SACs 
on hollow carbon tubes are beneficial for increasing the exposed active sites and the transport of relevant 
species. These structural features endow EA-SAs with excellent ORR and OER activity. It is significant to 
fabricate heteroatom-doped metal tannic acid coordination materials with controllable morphology and 
stable chemical structures. Wei et al.[120] proposed a template-free strategy to prepare cross-linked 
polyphosphazene hollow nanospheres. After pyrolysis, they constructed single metal atoms on N/P-doped 
mesoporous carbon nanospheres with a high surface area (411.60 m2 g-1). They showed the importance of 
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Figure 5. (A, B) Schematic illustration of the formation of Fe single atoms. (C) SEM, (D) TEM, (E) HRTEM, (F) elemental mapping and 
(G, H) AC-HAADF-STEM images of Fe-Nx ISAs/GHSs. TEM: Transmission electron microscopy; HRTEM: high resolution TEM; AC-
HAADF-STEM: aberration-corrected high angle annular dark field scanning transmission electron microscopy.

mesoporous hollow structures and well-dispersed single Co atoms (Co-N2P2) through controlled 
experiments. The Co-N2P2 catalysts exhibited excellent electrocatalytic ORR activity, durability and 
methanol tolerance.

SACs supported on core-shell materials
Core-shell structures are composite materials where a solid core is directly coated with a different 
composition (shell). Therefore, core-shell structures can combine the characteristics of the core and the 
shell, rather than the single function of an individual NP. For instance, Hai et al.[121] reported a synthetic 
route to prepare a core-shell structured Co-SAC by pyrolysis of core-shell structured zeolitic imidazolate 
frameworks. The Co-N3C1@GC possessed a high density of Co-N3C1 active sites in N-doped microporous 
carbon, which were coated by a mesoporous carbon (shell) [Figure 6]. The catalysts showed excellent ORR 
performance and high stability (5000 cycles). Due to the reasonable design of the core-shell Co-N3C1@GC 
catalysts, the thermodynamic and kinetic constraints can be overcome to achieve high-efficiency 
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Figure 6. (A) STEM-EDS elemental mapping of core-shell Co/Zn-ZIF@ZIF-67. (B) SEM, (C) TEM and (D) AC STEM images of core-
shell Co-N3C1@GC. Co K-edge (E) FT-EXAFS, (F) XANES and (G) the corresponding XANES fitting curves of Co-N3C1@GC and 
reference samples. (H) Schematic illustration of the formation of Co-N3C1@GC. (I) LSV curves, (J) Tafel plots and (K) LSV curves 
before and after 5000 cycles of Co-N3C1@GC. (L) A polarization curve of the battery and corresponding power density plot[121]. EDS: 
Energy-dispersive spectroscopy. EDS: Energy-dispersive spectroscopy; STEM: scanning transmission electron microscopy; AC STEM: 
aberration-corrected scanning transmission electron microscopy; FT-EXAFS: fourier transforms extended X-ray absorption fine 
structure; XANES: X-ray absorption near edge structure; LSV: linear sweep voltammetry.

performance. Compared with Co-N2C2 and Co-N4, the Co-N3C1 promotes both the electronic hybridization 
with O2 and subsequent protonation of adsorbed O2* to form OOH*. Co-N3C1 has a unique near-Fermi 
electronic structure before and after O2 adsorption, resulting in outstanding ORR performance. The 
Co-N3C1-SAC core-shell structures significantly improve the mass and electron transfer, thereby further 
enhancing the performance of the ORR and Zn-air batteries.
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Song et al.[86] reported that single Fe atoms supported on a 2D carbon nanoplate (Fe/CNP) derived from 2D 
ZnO@Zn/Fe-ZIF show excellent ORR performance. The core-shell NiFe-LDH@Fe/CNP present stable ORR 
and OER performance. He et al.[122] proposed a low-temperature CVD strategy to synthesize sheet-like open 
structures in which Ni NPs are coated by a Ni SAC supported carbon layer (Ni-NC@Ni) [Figure 7]. The 
obtained Ni-NC@Ni catalysts present high Faradaic efficiency (~87%) for CO2 electroreduction and 
significant current density (14.8 mA cm-2 at 670 mV), as well as stability (150 h). In addition, the core-shell 
structured Ni-NC@Ni promotes electron transport and mass transfer and the exposure of active site Ni-N 
species. Harzandi et al.[21] proposed an efficient method for constructing the core-shell OER catalysts, in 
which metallic Ru (core) is coated with RuOx (shell) supported Ni SACs. The obtained catalysts present 
outstanding activity (10 mA cm-2 at a low overpotential of 184 mV) and stability (~200 h) simultaneously in 
strong acidic media.

Pt SACs and bimetallic Pt3Co are considered the best ORR catalysts. Therefore, Lai et al.[123] constructed 
sustainable quasi-Pt-allotrope catalysts, which consist of a Pt3Co alloy (cores) and Pt1N-C in N-doped 
carbon (shells). The core-shell structure makes the internal and external spaces easy to access, thereby 
exposing a high active surface area and active sites. In addition, the novel Pt1N-C shells not only effectively 
protect the H-PtCo cores from agglomeration but also improve the efficiency of the ORR with the help of Pt 
SACs. Thus, the core-shell H-PtCo@Pt1N-C catalysts exhibit high stability (10000 cycles) in a HClO4 
solution. They thoroughly studied the synergistic effect between the hollow structure of PtCo and single Pt 
atoms. Compared with H-PtCo@Pt1N-C catalysts, the ORR performance of ZIF-67-50-750 is reduced due to 
the deformation of the hollow structure and the agglomeration of single Pt atoms after high-temperature 
treatment. They revealed that the ultra-fine Pt3Co alloy (cores), N-doped carbon (shells) and single Pt atoms 
synergistically endow H-PtCo@Pt1N-C with enhanced ORR performance. First-principles calculations 
showed that the smaller the number of N atoms adjacent to Pt, the smaller the corresponding overpotential, 
with PtNC3 being the most favorable atomic local environment. Cheng et al.[124] demonstrated the synthesis 
of Co NPs (core) surrounded by N co-doped carbon nanofibers (shell) with Co SAC (Co@SACo-N-C). The 
core-shell Co@SACo-N-C presents outstanding ORR activity with an onset potential of 0.925 V and high 
stability in a 0.1 M HClO4 solution. The results strongly reveal that the introduction of Co NPs (core) makes 
the free energy diagrams on Co-N-C shell closer to the ideal case, thus improving the ORR performance.

SACs supported on yolk-shell materials
Due to the limited storage capacity provided by the core-shell structure, researchers are seeking superior 
designs and microstructural modifications for greater flexibility. Yolk-shell structures combine the high 
storage capacity of hollow structures and the advantages of core-shell structures and create voids between 
the external shell and internal core.

For example, Zhao et al.[79] designed and constructed a yolk-shell biomimetic composite, in which Fe1 sites 
were atomically dispersed in a N-doped carbon shell and Pd SACs were anchored in a MOF-derived yolk. 
HAADF-STEM images show that the obtained yolk-shell Pd1@Fe1 has an ultrathin carbon shell (~10 nm) 
and an octahedral yolk derived from the MOF. This unique yolk-shell configuration may facilitate the 
exposure of catalytic sites and facilitate enhanced mass transfer during reactions. The Fe SACs strongly 
coordinate with four N atoms in the graphitic carbon shell. In addition, the corresponding fitting results 
show that both Pd and Fe have the same coordination number. Compared with Pd1-N4, the larger charge 
difference between the Fe and adjacent N atoms indicates that Fe1-N4 is more stable. This unique yolk-shell 
structure effectively regulates the spatial distribution of Pd and Fe SACs in one configuration, which can 
simultaneously activate molecular oxygen and hydrogen in the catalytic cycles without influence. By directly 
using the O2 and H2 produced by the electrocatalytic overall water splitting, the Fe SACs in the carbon shell 
and the Pd SACs in the yolk can simultaneously catalyze the hydrogenation of nitroaromatic hydrocarbons 
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Figure 7. (A) Schematic illustration of the formation of Ni-NC@Ni. (B) HAADF-STEM and (C) AC HAADF-STEM images of Ni-NC@Ni. 
(D) High-resolution Ni 2p and (E) N 1s XPS spectra of Ni-NC@Ni (inset: atomic structure)[122]. AC HAADF-STEM: Aberration-corrected 
high angle annular dark field scanning transmission electron microscopy.

and the epoxidation of olefins, which leads to the cascade formation of amino alcohols. The void-free core-
shell Pd1@Fe1 (21%), yolk-shell Fe1@Pd1 (4.9%) and hollow Pd1@Fe1 (28%) exhibit weak chemoselectivity for 
1-phenyl-2-(phenylamino) ethanol, which shows that the void and distribution order of the Pd and Fe SACs 
can synergistically accelerate the subsequent epoxide ring-opening amination reaction of the intermediate 
product.

Cai et al.[125] proposed an effective strategy where Au yolks can diffuse into and even be atomically dispersed 
in the Ni2P shell by simple pyrolysis of the yolk-shell Au@Ni2P [Figure 8]. In-situ STEM shows the atomic 
diffusion of Au yolks and single-atom formation in the Ni2P shell. The obtained Au-Ni2P samples showed 
significantly improved OER performance, which was 16 times higher than that of a commercial IrO2 
sample. They revealed that the active sites originate from the synergy between Au SACs and the Ni2P shell. 
In addition, the Au-Ni2P samples may cause changes in electronic structure, which also enhance OER 
performance.

There is a significant need for efficient dual-function catalysts to accelerate the ORR and OER. 
Furthermore, interfacial adjustment also improves the activity of catalysts. For example, Gao et al.[126] 
reported a synchronous reduction method to prepare yolk-shell Co3O4@Co3O4/Ag catalysts. Due to the 
synergistic interaction, the obtained Co3O4@Co3O4/Ag shows a high initial capacity (12000 mAh g-1 at 
200 mA g-1), high rate capability (4700 mAh g-1 at 800 mA g-1), low overpotential and long cycle life. The 
atomically dispersed Ag on the Co3O4 shell not only strengthens the Ag/Co3O4 interfacial binding but also 
adjusts the valence electronic structure of Ag and Co species and improves the electronic conductivity. The 
yolk-shell structure offers more active sites for the ORR and OER and also improves the catalytic activity.

CONCLUSIONS
Due to their maximum utilization of metal atoms and unique electronic/coordination structures, SACs 
supported on microstructures have attracted significant attention in the field of energy conversion. The 
catalytic properties of SACs rely on the characteristics of the active sites and their accessibility to reactants, 
which are greatly affected by hollow microstructures. In this review, we have summarized recent process 
regarding SACs supported on hollow microstructures, including single-shell hollow, core-shell and yolk-
shell structures, and their application in energy conversion. First, we showed the inherent characteristics of 
SAC related to the hollow microstructures. Due to the unique hollow microstructures, most of the active 
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Figure 8. (A) Schematic illustration of the formation of Au-Ni2P. (B) HAADF-STEM and (C) AC HAADF-STEM images of Au-Ni2 P[125]. 
AC HAADF-STEM: Aberration-corrected high angle annular dark field scanning transmission electron microscopy.

sites can be exposed during the actual catalysis process. Compared with the bulk supports, the atomic 
utilization rate is truly improved. In addition, the interaction between SACs and hollow microstructured 
supports brings about unpredictable characteristics. This means that hollow microstructured supports 
cannot only adjust the geometry and electronic structure of SACs to improve activity but SACs can also 
serve as an auxiliary stimulus to the intrinsic activity of support to achieve better performance. The local 
and global structure of SAC-NC can profoundly affect the electrocatalytic performance. In addition, it has 
been proved that the geometric factors of the hollow carbon support (shell thickness, compactness and pore 
size) affect the electrocatalytic performance. How to design isolated atom pairs through effective strategies 
while avoiding the coexistence of a large number of atoms is a challenge. Compared with the reported 
traditional dual atomic catalysts, hollow microstructures are conducive to the isolation of atomically 
dispersed binary atom active sites on both sides of the shell.

However, despite the great progress made in the past few decades, there are still some challenges that need 
to be solved urgently. Herein, we have described some challenges of SACs supported on hollow structures 
to demonstrate the necessary via microstructure regulation. Hollow structured materials usually have a large 
specific surface area but how to increase the loading of a single atom to make full use of the surface area is 
still a great challenge. The hard template method often complicates the process of making hollow structures. 
In addition, the microenvironment of SACs is complex and flexible, and the electronic structure and 
coordination environment of the metal active sites are also dynamically evolving during the catalytic 
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process, which makes the variability of the microstructure and the complexity of the catalytic reaction 
mechanism. Simplifying the synthesis steps of hollow structures is another critical challenge. From a 
synthesis perspective, precise control and manipulation of highly complex hollow structures remains 
challenging. It is generally accepted that more complex target structures usually require more complex 
synthesis procedures. The ultimate goal of SAC is to be used in industry. However, the particularity and 
complexity of hollow microstructures may make it difficult for SACs to achieve industrial applications. In 
addition, the cost and complexity of the catalyst is another factor that should be considered. These problems 
make the real application of SACs/2DM still have a long way to go, and more efforts are needed to solve 
these problems as soon as possible. Ensuring and identifying the uniformity of actual active sites are very 
important for the study of catalytic properties but are also challenging issues. Due to the harsh synthesis 
conditions and interference in the hollow microstructured supports, the coordination structure of the real 
active site may be diverse, which is not conducive to exploring the real structure-performance relationship. 
Furthermore, adjusting the thickness of the shell is a key method to adjust the catalytic performance.

We expect that the application of SACs supported on hollow microstructures will continue to expand in 
electrocatalysis. In the future, SACs will be able to effectively solve actual energy and environmental 
problems.
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