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Abstract
Obesity is associated with chronic inflammation in adipose tissue (AT), mainly evidenced by infiltration and 
phenotypic changes of various types of immune cells. Macrophages are the major innate immune cells and 
represent the predominant immune cell population within AT. Lymphocytes, including T cells and B cells, are 
adaptive immune cells and constitute another important immune cell population in AT. In obesity, CD8+ effector 
memory T cells, CD4+ Th1 cells, and B2 cells are increased in AT and promote AT inflammation, while regulatory T 
cells and Th2 cells, which usually function as immune regulatory or type 2 inflammatory cells, are reduced in AT. 
Immune cells may regulate the metabolism of adipocytes and other cells through various mechanisms, contributing 
to the development of metabolic diseases, including insulin resistance and type 2 diabetes. Efforts targeting 
immune cells and inflammation to prevent and treat obesity-linked metabolic disease have been explored, but have 
not yielded significant success in clinical studies. This review provides a concise overview of the changes in 
lymphocyte populations within AT and their potential role in AT inflammation and the regulation of metabolic 
functions in the context of obesity.
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INTRODUCTION
Obesity, which is mainly caused by positive energy imbalance and is associated with aging, has become a 
global health problem and increases the risk for type 2 diabetes mellitus, cardiovascular diseases, and many 
other diseases[1]. Studies have indicated that low-grade chronic inflammation characterized by immune cell 
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infiltration and phenotypic changes in adipose tissue (AT) and other tissues occurs in obesity and may 
contribute to obesity-associated diseases[2-9]. Macrophages are the most abundant immune cells in AT, can 
change to classically activated (M1)- or metabolically activated-like phenotypes in obesity, and play an 
important role in AT inflammation by secreting proinflammatory cytokines, including tumor necrosis 
factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)[10-17].

In addition to macrophages, lymphocytes, including T lymphocytes and B lymphocytes, are another type of 
immune cells in AT that play a crucial role in AT inflammation and may contribute to insulin resistance 
(IR)[6,18-24]. In this review, we summarize the current knowledge of T cells and B cells in AT and their 
potential roles in obesity-linked metabolic disease, aiming to provide a new perspective on targeting these 
immune cells to prevent obesity and related IR.

T cells and B cells
T cells and B cells are both adaptive immune cells responsive to antigens. While T cells are responsible for 
cellular immunity mainly by producing cytokines or via cell interactions, B cells mediate humoral immunity 
mainly by producing antibodies.

Based on T cell receptors (TCRs), T cells can be categorized into αβT cells and γδT cells, both of which play a 
crucial role in immune functions[25,26]. The majority of T cells in most tissues are αβT cells, which express α 
and β TCR chains[25]. γδT cells possess a TCR consisting of γ and δ chains[26]. TCRαβ and TCRγδ share some 
similarities but are also different in several aspects. Although the variable (V) regions of TCRαβ and TCRγδ 
exhibit a similar structure, the distance between the immunoglobulin-like domains and the disulfide bond 
in the connecting peptide is longer in TCRγδ compared to TCRαβ. In addition to polar amino acids located 
in the transmembrane (TM) region, the sequence of other amino acids in the TM region of TCRγδ and TCR
αβ differs greatly. TCRαβ can recognize foreign or mutated peptides presented on major histocompatibility 
complex (MHC) molecules, whereas the majority of TCRγδ does not recognize MHC molecules[25].

Within the αβT cell population, CD4+ T cells can differentiate into T helper cells (Th) after antigen 
stimulation. Depending on stimuli and environment, CD4+ T cells can polarize into type 1 (Th1), type 2 
(Th2), type 17 (Th17), or other types of T helper cells, which are different in numerous surface markers and 
released cytokines and therefore play different roles in inflammation [Table 1]. CD4+ T cells also contain a 
special regulatory subset known as regulatory T cells (Tregs), which are characterized by the expression of 
CD25 and Foxp3 and exhibit immunoregulatory functions mainly by inhibition of activation of 
conventional T cells, B cells, and natural killer (NK) cells. Tregs are involved in the maintenance of tissue 
homeostasis and self-tolerance, or contribute to the pathogenesis of some morbidities by downregulating 
immune responses[21]. Of the αβT cell population, CD8+ T cells predominantly mediate cell killing by 
secreting granzymes and perforin and are therefore also known as cytotoxic T lymphocytes (CTLs). In 
addition, CD8+ T cells can mount immune responses through the secretion of cytokines.

Similar to T cells, B cells are heterogeneous and consist of several distinct subsets. Broadly, B cells have been 
identified as B1, B2, and regulatory B cells (Bregs), which differ in originations, phenotypes, locations, and 
functions[27,28]. B1 cells primarily originate from the fetal liver and can be further classed into B1a and B1b 
cells, which are both CD19high, B220-/low, IgMhigh, IgDlow, CD23-, CD43+, and CD1dmid, but different in CD5 
with B1a being CD5+ and B1b being CD5-[28]. B1 cells are abundant in mucosal tissues, peritoneal cavities, 
omentum, and fat pads near the peritoneal cavity[29,30]. B2 cells are mainly derived from the bone marrow 
and are CD19+, B220+, CD21high, CD43-, and CD5-[27,28]. B2 cells constitute the major B cell population in 
secondary lymphoid organs and play a pivotal role in adaptive immune responses[27,28]. In contrast, Bregs 
primarily function to restrain immune responses by producing cytokines such as IL-10[27,28].
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Table 1. Major AT lymphocytes and their roles in obesity

Cell phenotypes Markers Major cytokines secreted Changes in obesity and 
role in IR

Surface CD3+, CD4+, CD8-, CCR1+, CCR5+, 
IL-12 R β2+, IL-27 R α+, IFN-γ R2+, 
IL-18 Rα+, and CXCR3+

Th1 

Intracellular STAT1+, STAT4+, and T-bet+

INF-γ, IL-2, TNF-α, and TNF-β Increase in obesity; 
promote IR[19,32,34-36,38,40] 

Surface CD3+, CD4+, CD8-, CCR3+, CCR4+

, 
CCR8-, CD14-, CD19-, CXCR4+,  
IL-4 R α+, IL-17RB+, ST2/IL-33R+, 
and TSLP R+

Th2 

Intracellular GATA-3+, IRF4+, STAT5+, and 
STAT6+

IL-4, IL-5, IL-9, IL-10, IL-13, 
and IL-21

Decrease in obesity; 
alleviate IR[23,40,44,45]

Surface CD3+, CD4+, CD8-, CCR4+, CCR6
+,  
CD14-, CD19-, IL-1 RI+, IL-6 R α+,  
IL-21 R+, IL-23 R+, and TGF-β RII+

T  
helper [120-123]

Th17 

Intracellular Batf+, IRF4+, RORα+, RORC2+, and 
STAT3+

CCL20, IL-17A, IL-17F, IL-21, 
and IL-22

Increase in obesity; 
promote IR[48-50]

Surface CD3+, CD4+, CD5+, CD14-, CD19-,  
CD25+, CD39+, CD103+, 
CD127low,  
CTLA-4+, folate receptor 4+, GITR
+,  
CD223+, LAP+, LRRC32+, BDCA-4
+,  
OX40+, and CD62+

CD4+

Treg[124,125]

Intracellular FoxP3+ and STAT5+

Galectin-1, IL-10, IL-35, and 
TGF-β

Decrease in diet-induced 
obesity, but increase with  
aging; alleviate IR in diet-
induced obesity[59,64,65,67],  
promote obesity and IR with 
aging[71]

Surface CD3+, CD4-, CD8+, CD28+, CCR4
+,  
CCR6+, CD69+, CD103+, and 
KLRB1+ 

CD8+[126]

Intracellular TBX21+, GATA3+, IRF4+, and 
RORC+ 

TNFα, INF-γ, IL-2, IL-4, IL-5, 
IL-9, IL-10, and IL-17

Increase in obesity; 
promote IR[18,22] 

Surface CD3+, CD4+/-, CD8+/-, CD56+,  
CD161+, CD1d+, NK1.1+ (in mice) 
and CD94+

αβ T

NKT[127]

Intracellular T-bet and Eomes

IFN-γ and IL-4 Increase in obesity; 
promote IR[80-82] 
Decrease in obesity; 
alleviate IR[79,83,84]

Surface Vγ7+, Vγ1+, Vγ4+, Vγ5+, Vγ6+, 
CD27+/-, CD45RB+ and NK1.1+

γδ T[26] IL-17A Increase in obesity; 
promote IR[75] 
Increase in obesity; 
alleviate IR[77,128]

Surface CD19high, B220–/low, IgMhigh, 
IgDlow,  
CD23–, CD43+, and CD1dmid

B1[28,129] IL-10 and IgM Decrease in obesity; 
alleviate IR[24,29,90]

Surface CD19+, B220+, CD21high, CD11blow,  
CD43–, and CD5–

B2[130] IFN-γ, IL12, IL10, IL4 and IgG Increase in obesity; 
promote IR[24,90] 

Surface CD1dhigh, CD5+, CD19+, CD40+, 
CD21+ 
CD24+, IgD+, and IgM+

Breg[130]

Intracellular EBF-1+, E2A+, Oct2+, and Pax5+

IL-10, IL-35, and TGF-β Decrease in obesity; 
alleviate IR[27,28,97]

Surface CD19+, IgM+CD11c+ CD21- and 
CD23-

B Cells

T-bet+

Intracellular T-bet+

IgG2a/c Increase in obesity; 
promote IR[100]
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T cells in adipose tissue
In obesity and IR conditions, the proportions of Th1 cells are increased, whereas Th2 and Tregs are 
decreased in both humans and mice[6,19,21-23,31]. Animal studies indicated that Th1 cells and IFN-γ, the 
signature cytokine of Th1 cells, promote and Th2 cells and Tregs protect against IR in obesity 
[Table 1][6,19,21,23,32].

Th1 subset
The proportion of AT Th1 cells and the Th1 signature cytokine, IFN-γ, highly correlate with body mass 
index[23,33] and are positively associated with AT inflammation and IR both in mice and humans[19,34]. The 
accumulation and polarization of Th1 cells in AT in obesity may be induced by the increased expression of 
class II major histocompatibility complex (MHC II) and costimulatory molecules on macrophages and 
adipocytes[34-36]. MHC II on either macrophages or adipocytes is sufficient to promote Th1 cell polarization 
and IFN-γ production[35,36]. In addition, AT macrophage- or dendritic cell-released IL-12 promotes Th1 
differentiation and IFN-γ expression via activating signal transducer and activator of transcription 4 
(STAT4)[37].

Ablation of Th1 cells or IFN-γ in mice attenuates obesity-linked AT inflammation and IR, supporting a 
promoter role of Th1 cells and IFN-γ in AT inflammation and IR[19,32,38]. Mechanistically, Th1 cells may 
adversely regulate adipocyte or preadipocyte metabolism including impairing insulin signaling possibly via 
IFN-γ[19,20,39]. Th1 cells and IFN-γ may also contribute to AT inflammation and IR by inducing recruitment 
and M1-like phenotypic changes of macrophages in AT with obesity[19,32,40]. Deficiency of IFN-γ or its 
signaling molecule, STAT1, inhibits M1-like macrophage recruitment and TNF-α levels in AT and improves 
IR with obesity[32,40]. In addition, CD40L (CD154) expressed on Th1 cells may contribute to the 
accumulation of M1-like macrophages and the production of proinflammatory cytokines via interaction 
with CD40 expressed on macrophages in obese mice. CD40L deficiency in mice attenuates obesity-linked 
AT inflammation and hepatic steatosis and increases systemic insulin sensitivity[41].

Th2 subset
Th2 cells can be identified by the expression of cytokines such as IL-4, IL-5, IL-9, and IL-13 and induce 
macrophage polarization into M2 phenotypes[42]. The proportion of Th2 cells is decreased in AT of obese 
humans and mice[43]. A previous study revealed that after adoptive transfer into obese T cell-deficient mice, 
CD4+ T cells from wild-type mice polarized into Th2 cells, which were associated with reversal of enhanced 
weight gain and IR in recipient T cell-deficient mice. In contrast, the transfer of T cells from Stat6-deficient 
mice, which have impairment in Th2 cell polarization, did not have these effects[23]. These data support a 
protective role of Th2 in the development of obesity and its related IR. Th2 cells and related cytokines may 
protect against obesity and metabolic complications by directly regulating adipocyte metabolism or by 
impacting other immune cells, such as M2 macrophages and eosinophils, both of which may have beneficial 
effects on obesity-related metabolism[40,44,45].

Th17 subset
Th17 cells can be distinguished from other T cell subtypes by expression of IL-17[46]. IL-17 interacts with IL-
17 receptor (IL-17R) expressed on other immune cells and epithelial cells and activates several signaling 
cascades such as NFκB, mitogen-activated protein kinases (MAPKs), and the CCAAT-enhancer-binding 
proteins (C/EBPs) cascades in these cells to produce inflammatory molecules. Th17 cells have been 
implicated in various autoimmune disorders and inflammation[47]. However, the role of Th17 cells in obesity 
and IR remains largely unexplored. An elevated proportion of Th17 cells is observed in AT, peripheral 
blood, spleen, and lymph nodes in both humans and mice with obesity[48,49]. The accumulation of Th17 cells 
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in AT positively correlates with AT inflammation and IR, and studies in mice with the absence of IL-17 
support the proinflammatory role of IL-17 in AT[50]. IL-17 may promote AT inflammation but inhibit 
adipocyte differentiation through TANK-binding kinases 1 (TBK1) and I-kappa-B kinase epsilon 
(IKBKE)[50].

In AT, Th17 cells interact with and are regulated by other immune cells and adipocytes[51,52]. A distinct 
subset of dendritic cells characterized by being CD11chighF4/80lowCX3CR1+ has been shown to correlate with 
Th17 differentiation in AT[53]. Adipose-derived stem cells (ASCs) from human subjects with obesity have 
been demonstrated to enhance IL-17 release by Th17 cells but inhibit the expression of IFN-γ and TNF-α by 
Th1 cells[54]. Furthermore, dysregulation of Tregs in obesity may contribute to the increase in Th17 in AT. 
Under healthy conditions, Th17 and Tregs cells are balanced; however, imbalance occurs in inflammatory 
conditions such as obesity and IR[55]. Th17 cells are susceptible to suppression by naïve and memory Tregs, 
which inhibit the production of IL-17, IL-22, and CXCL8[56]. Rab4b, a small GTPase governing endocytic 
trafficking in T cells, exhibits decreased expression in individuals with obesity, which may also contribute to 
the elevation of Th17 cells and reduction of Tregs within AT in obesity[57].

Tregs
Tregs are usually a small portion of CD4+ T cells but are enriched in visceral AT (VAT) in lean 
conditions[21,58]. VAT enrichment of Tregs shows sexual dimorphism, with more Treg enrichment in male 
than female VAT[58]. AT Tregs exhibit elevated expression levels of CTLA-4, GITR, OX40, peroxisome 
proliferator-activated receptor (PPAR)-γ, and IL-10[59]. Obesity diminishes accumulation of Tregs in both 
VAT and subcutaneous AT (SAT) in mice and humans[21,59] and changes VAT Treg signature. Depletion of 
Tregs in mice leads to increased gene expression of inflammatory mediators, including TNF-α, IL-6, and 
CCL5, and impaired metabolic signaling pathways within VAT, and expansion of Tregs improves insulin 
sensitivity in mice fed high-fat diet (HFD)[21,60], supporting a protective role of Tregs in AT inflammation 
and IR associated with diet-induced obesity.

Tregs also participate in the regulation of adipocyte browning[61]. Brown AT or white AT browning 
facilitates nonshivering thermogenesis, representing a capacity for energy expenditure and holding potential 
for the treatment of obesity[62]. A unique subset of Tregs characterized by the expression of CD73hiST2lo in 
AT exerts IR-improving effects by promoting white AT beiging through the augmentation of adenosine 
production[63].

Although the mechanisms responsible for the enrichment and function of Tregs in lean VAT have not been 
fully elucidated, several factors are considered crucial for Tregs accumulation in AT. PPAR-γ, the “master 
regulator” of adipocyte differentiation, is an essential regulator of the phenotype and function of Treg 
accumulation in VAT and contributes to Treg upregulation in conjunction with Foxp3. In obesity, the 
phosphorylation of PPAR-γ at Ser273 leads to the disappearance of this VAT Treg signature[59,64,65]. The 
enzyme hydroxyprostaglandin dehydrogenase (HPGD), which exhibits high expression levels in VAT 
Tregs, plays a pivotal role in maintaining VAT homeostasis and metabolic regulation and contributes 
significantly to the suppressive capabilities of VAT Tregs, which are partially induced by PPAR-γ[66]. 
Furthermore, adipocytes and other immune cells within AT also contribute to the accumulation, 
phenotype, and function of VAT Tregs. MHCII molecules are highly expressed on adipocytes and 
negatively correlated with Tregs in AT. The specific knockout of MHCII in adipocytes promotes Treg 
accumulation and M2-like macrophage polarization, possibly by inhibiting IFN-γ production in Th1 
cells[67]. Costimulatory B7 molecules (CD80 and CD86) on antigen-presenting cells (APCs) may be 
important in maintaining Tregs in AT. CD80/CD86 double knockout in mice reduces AT Tregs, with 
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enhanced AT inflammation and IR, while adoptive transfer of Tregs effectively mitigates IR and AT 
inflammation in CD80/CD86 double-knockout mice[68]. In addition, ST2, the IL-33 receptor, is highly 
expressed on VAT Tregs from humans and mice; IL-33 drives VAT Treg proliferation and is able to rescue 
VAT Treg numbers in obese mice, along with improving AT inflammation and IR[69,70].

In contrast to the changes and role in diet-induced obesity, AT Tregs are increased with aging and may play 
an adverse role in age-associated immune responses and IR.[71]

CD8+ T cells
CD8+ T cells increase early and mainly accumulate in VAT in obesity[22] and may participate in the 
progression of obesity-associated AT inflammation and IR[18,19,22]. Along with macrophages, CD8+ T cells 
participate in crown-like structure formation[22,36]. In obesity, AT CD8+ T cells polarize into an effector 
memory phenotype, with elevated expression of IFN-γ and granzyme B[18,22]. The accumulation and 
activation of CD8+ T cells may be induced by elevated IL-12 and IL-18 in obese AT[18]. Similar to Th1 cells, 
CD8+ T cells promote AT inflammation and IR[18,22]. CD8+ T cell deficiency in mice improves IR in obesity, 
associated with reduced macrophage infiltration and decreased M1-like macrophage recruitment[22,72]. In 
addition, blocking CD4+ and CD8+ T cell activation in mice with anti-CD40L antibody reduces weight 
gain, mitigates VAT inflammation, and alleviates obesity-induced IR, also supporting the role of T cell 
activation in the development of obesity and IR[73,74]. CD8+ T cells may contribute to the development of 
obesity and IR through inhibition of beige adipogenesis[72].

γδT cells
Similar to αβT cells, γδT cells accumulate within AT during obesity and play a role in AT inflammation and 
macrophage recruitment[75]. Mice with a deficiency of γδT cells have reduced M1-like macrophage 
accumulation and increased M2-like macrophage enrichment in VAT[75]. Upon activation, γδT cells mainly 
function through the production of cytokines and growth factors[76]. γδT cells are one major source of IL-
17A in AT[75], thereby contributing to AT inflammation, adipogenesis, and glucose metabolism. γδT cell-
secreted IL-17 may also promote AT sympathetic innervation and thermogenesis through the IL-17 
receptor C/TGFβ1 pathway in adipocytes[77]. Further, based on the BTB-POZ transcription factor, PLZF, γδT 
cells can be distinguished into two distinct populations with differences in IL-17A production[78]. Mice 
lacking γδT cells or IL-17A exhibit a low abundance of ST2+ Tregs and IL-33 in VAT and have impaired 
capacity to regulate core body temperature when exposed to cold[69,78], supporting a role of AT resident γδT 
cells in the maintenance of AT immune homeostasis and control of body temperature.

NKT cells
Natural killer T (NKT) cells are characterized by the co-expression of NK cell markers (NK1.1 or CD56) 
and T cell marker (αβTCR)[79]. NKT cells primarily identify glycolipid antigens presented by the MHC class 
I-like molecule CD1d and can be categorized into two main types: type I and type II NKT cells[6]. Both NKT 
subtypes can produce Th1 and Th2 cytokines such as IFN-γ and IL-4 and contribute to the regulation of 
adaptive immunity. Type I NKT cells express the invariant TCRα (Vα14-Jα18 in mice, Vα24-Jα18 in 
humans) and are also named invariant NKT (iNKT)[6]. While some initial studies indicated that obesity in 
mice increased VAT NKT cells, including iNKT, and that NKT cells may promote obesity-linked AT 
inflammation[80-82], others reported that iNKT cells are highly enriched in AT of lean humans and mice and 
are decreased in AT of obese individuals[79,83,84].

The presence and activation of iNKT cells in AT depend on their interaction with CD1d molecules 
expressed on adipocytes[79]. In normal conditions, adipocytes with high CD1d expression act as APCs that 
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present lipid antigens to iNKT cells, thereby sustaining iNKT cell populations and promoting their 
activation within AT[84]. Obesity is associated with a decrease in CD1d expression in both human and mouse 
AT, resulting in a reduction of iNKT cells in AT[85].

AT iNKT cells have a unique transcriptional program and produce IL-2 and IL-10, which may promote 
M2-like macrophage polarization and control the proliferation and suppressive function of Tregs in AT[86]. 
While some studies showed that iNKT cell deficiency in mice did not impact weight gain[81,86], with no 
effects on glucose tolerance[86] or with improved insulin resistance[81], another study showed that mice with 
iNKT cell deficiency had increased weight gain and exacerbated insulin resistance, along with 
proinflammatory macrophage infiltration[83]. The reasons for the data discrepancy are not clear. Differences 
in housing conditions and environment may have contributed to the discrepancy.

B cells in adipose tissue
Similar to T lymphocytes, B cells infiltrate VAT and undergo functional and phenotypic changes in 
response to diet-induced obesity and IR[24,87-90]. B1 cells negatively correlate with AT inflammation and IR, 
whereas B2 cells are positively associated with AT inflammation and IR [Table 1][24,89,90].

B1 cells
Of the B1 cells, B1a cells are recognized as the primary producers of natural IgM antibodies, while B1b cells 
are responsible for initiating adaptive humoral immune responses against T cell-independent antigens[91]. In 
AT, B1 cells constitute a small portion of B cells, accounting for ~20%-30% of total B cells[24,29,90]. Reports on 
changes in AT B1 cells in obesity were not consistent, with some studies[29,90] showing reductions but 
another study[24] showing slight increases in AT B1 cells in mice with obesity. B1a cells are identified as the 
major producers of B cell-derived IL-10, which exerts anti-inflammatory functions in obesity-induced AT 
inflammation[29]. Adaptive transfer of B1a cells or IL-10 rapidly improves insulin resistance and glucose 
tolerance, supporting the protective role of B1a and IL-10 in IR[29]. B1b cells in AT reduce cytokine 
production by M1-like macrophages, and adoptive transfer of B1b cells exerts anti-inflammatory effects in 
AT[89]. Further, B-1b cells protect against the development of obesity-associated glucose intolerance in an 
IgM-dependent manner[89]. In addition, B1 cell-produced IgM antibodies exhibit cross-reactivity with 
membrane lipids and circulating oxidized low-density lipoprotein (oxLDL)[92]. The neutralization of oxLDL 
by natural IgM antibodies has been demonstrated to protect against inflammation associated with 
atherosclerosis[93].

B2 cells
B2 cells produce specific antibodies in response to T cell-dependent antigens[94]. Depending on the 
microenvironment, B2 cells also possess the capacity to differentiate into effector cells, which can produce 
proinflammatory cytokines such as IFN-γ and IL-12 and anti-inflammatory cytokines including IL-10 and 
IL-4[95]. In AT, B2 cells account for ~70%-80% of total B cells and are significantly increased in VAT of mice 
with HFD-indued obesity[24,90]. B cell deficiency in mice reduces obesity-induced AT inflammation and 
improves IR, with impacts on weight gain, and adoptive transfer of AT B2 cells from wild-type mice restores 
AT inflammation and insulin resistance in mice with B cell deficiency[24,90], indicating a promoting role of B2 
cells in the development of AT inflammation and IR in obesity. B2 cells may promote IR and AT 
inflammation by activating macrophages and T cells through cytokine production and antigen presentation 
and by producing pathogenic IgG antibodies[24,96]. The recruitment and activation of B2 cells in AT in 
obesity may be mediated by the interaction of leukotriene B4 (LTB4) and its receptor LTB4R1, which is 
highly expressed on AT B2 cells[90].
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Breg cells
Bregs are characterized by producing IL-10 and transforming growth factor-β (TGF-β) and have anti-
inflammatory effects[27,28,97]. However, various other B cell subsets, including B1a and B1b, are able to 
produce IL-10[27-29]. Nishimura et al. reported that B cells in AT, but not in the spleen, in old normal chow-
fed mice express IL-10 and that these IL-10-expressing B cells in AT are distinct from other known IL-10-
expressing B cell subsets and are considered Bregs[97]. Diet-induced obesity in mice reduces IL-10 expression 
in AT B cells[97]. The frequencies of Bregs are also diminished in AT of individuals with overweight and 
obesity compared to individuals with normal weight[98]. B cell-specific IL-10 deletion aggravates AT 
inflammation and IR in obese mice, whereas adaptive transfer of AT Bregs ameliorates these effects[97], 
supporting a protective role of IL-10-expressing Bregs in obesity-linked inflammation and IR.

T-bet+ B cells
T-bet+ B cells are a subset of B cells that express T-bet and CD11c but lack CD21 and CD23, and expand 
during chronic inflammation[99]. The frequencies of T-bet+ B cells are elevated in AT of humans and mice 
with obesity[100,101]. The increased frequencies of AT T-bet+ B in obesity rely on iNKT cells and TLR7 
stimulation[100-102]. Mice with ablation of T-bet in B cells are protected from AT inflammation and IR with 
obesity, while the adaptive transfer of T-bet+ B cells aggravates IR in obesity, suggesting a proinflammatory 
and pathological role of T-bet+ B cells in obesity-linked inflammation and metabolic complications[100]. 
T-bet+ B cells may contribute to inflammation through the production of IgG2c during obesity. Along with 
the reductions in inflammatory cytokines and macrophages in AT, mice with ablation of T-bet in B cells 
have reduced serum levels of IgG2c[100].

Conclusion and perspective
Obesity is mainly caused by an energy imbalance between energy intake and energy expenditure and is 
associated with aging[103]. It has been well recognized that obesity is associated with low-grade chronic AT 
inflammation, with changes in the numbers and phenotypes of various types of immune cells[4-9]. While 
macrophages are the immune cells first reported in AT[10,17], lymphocytes including T cells and B cells also 
reside in AT and undergo numeric and phenotypic changes in obesity[20,24]. Obesity increases CD8+ effector 
memory T cells, CD4+ Th1 cells, and B2 cells, but reduces Treg and Th2 cells, in AT[18,19,21-24,90].

Many studies mainly performed in rodent models have demonstrated that AT inflammation and immune 
cells may play a role in the development of obesity-associated metabolic complications, including IR and 
type 2 diabetes, through various mechanisms. Therefore, efforts targeting immune cells and inflammation 
have been explored to prevent and treat obesity-related diseases[104-106]. The classical generic anti-
inflammatory drugs, salicylates, have been shown to lower blood glucose levels in humans with obesity 
and/or type 2 diabetes[104,107-109]. Another generic anti-inflammatory drug, methotrexate, reduces hemoglobin 
A1c levels in patients with rheumatoid arthritis[110]. Several large clinical trials have shown the efficacy of 
therapies targeting inflammation in the prevention of atherosclerotic cardiovascular diseases over the past 
few years[111-113]. However, targeting inflammation or immune cells has not proven very successful for the 
prevention and treatment of obesity-related metabolic disease in large clinical trials. A significant barrier to 
the development of effective immune therapies for obesity and its metabolic complications is our limited 
knowledge of the mechanisms that regulate immune responses specific to obesity and the precise pathways 
through which immune cells influence metabolism.

The JAK/STAT pathways play critical roles in inflammation and have recently been active therapeutic 
targets for inflammatory diseases. Several JAK inhibitors have been approved by the US Food and Drug 
Administration (FDA) for the treatment of inflammatory diseases such as rheumatoid arthritis and 
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psoriasis[114]. The JAK/STAT pathways are also activated early and persistently in AT with obesity and may 
contribute to AT inflammation and IR in obesity[39,40,115]. Therefore, we and others tested the effects of 
targeting the JAK/STAT pathways on immune and metabolic phenotypes in mouse models of HFD-
induced obesity. Of note, treatment with baricitinib, an FDA-approved JAK1/JAK2 inhibitor for 
rheumatoid arthritis, reduces Th1 cells in AT and improves insulin sensitivity in mice fed HFD[34,116,117]. A 
phase 2 randomized controlled clinical trial involving 129 participants showed that baricitinib treatment 
(for 24 weeks) of humans with type 2 diabetes and diabetic kidney disease reduced inflammation, improved 
renal functions, and lowered hemoglobin A1c levels[118], indicating a potential of repurposing FDA-
approved medications to treat obesity- and/or diabetes-related complications. Another example is 
auronofin, another FDA-approved rheumatoid arthritis drug, which exerts beneficial effects on obesity-
associated metabolic abnormalities in mouse models of diet-induced obesity[119]. Future studies will need to 
focus on deeper insights into the roles and mechanisms of immune cells in metabolic diseases, which could 
potentially unveil innovative paths for identifying new pharmacological targets and agents for the 
prevention and treatment of metabolic diseases, including type 2 diabetes.
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