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Abstract
This paper presents a power dispatch strategy combining the main grid and distributed generators based on aggrega-
tive game theory and the Cournot price mechanism. Such a dispatch strategy aims to increase the electricity under
the power shortage situation. Under the proposed strategy, this paper designs a discrete-time algorithm fusing the
estimation technique and the Digging method to solve the power shortage problem in a distributed way. The dis-
tributed algorithm can provide privacy protection and information safety and improve the power grid’s extendibility.
Moreover, the simulation results show that the proposed algorithm has favorable performance and effectiveness in
the numerical example.

Keywords: Aggregative game, power dispatch, Cournot price mechanism, distributed discrete-time algorithm.

1. INTRODUCTION
With the fast development of the electricity network, power networks must face a more complicated situation.
Additionally, the rapidly increasing scale of the electricity networks makes the traditional centralized algo-
rithm unable to fit the actual power dispatch process [1–4]. Under such a background, designing an algorithm
in a distributed manner becomes a recommendable choice to meet the actual needs. In a power shortage sce-
nario, the priority in the power grid operation lies in increasing the power supply immediately. Otherwise,
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the best choice is to cut the loads. However, in the actual situation, increasing the power supply is usually
not an easy task when the main power source cannot offer enough power. Due to the rapid emergence of dis-
tributed generators and energy, a natural idea arises, i.e., encouraging distributed generators to turn up their
outputs when a power shortage occurs. Since the distributed generators may belong to different companies or
individuals, designing a reasonable strategy for increasing electricity becomes challenging. As one of the most
influential and general methods, the price incentive fits the market laws and meets the practical demand. The
logic behind it is quite clear, i.e., improving the power selling price for the operators when the power shortage
happens. Such a strategy prompts the users to produce more energy. The strategy mentioned above involves
several research fields, which are introduced in the following subsection.

1.1. Literature review
In general, the main states of the power operation can be divided into three situations: the regular running
state, the power shortage state, and the collapse state. In different operation states of the power grid, distributed
algorithms have different applications. Under the regular running state of the large-scale power grid, the main
target focuses on a distributed economic dispatch. In this research area, there already exist fruitful results. In
the early research, the distributed algorithm is used to solve the conventional economic dispatch problem only
subjecting to the supply–demand global constraint. For example, Yu et al. [5] employed the Laplacian dynamics
to ensure that the incremental cost reaches a consensus. Compared with algorithm designs based on dual
theory (see [4]), such a method avoids the update of the Lagrange multipliers and reduces the computation
complexity. However, the introduction of the Lagrange multipliers endows the algorithm with the capacity
to deal with the global inequality constraints (see [4]). On the basis of the work in [5], Li et al. [6] introduced
the event-triggered scheme to reduce the communication burden caused by the continuous-time algorithm.
From then on, researchers began employing many methods to improve the performance and adaptation of
the applicable consensus algorithm. For instance, Wen et al. [7] presented the adaptive consensus-based robust
strategy to fit the uncertain communication graph scenario. To increase the convergence of the algorithm
in [6], He et al. [8] designed the second-order algorithm. After that, He et al. [9] developed an ADMM algorithm
to solve the economic dispatch problem under the discrete-time communication environment. It needs to be
emphasized that the above studies only focused on the dispatch problemwith few fundamental constraints. To
meet the requirements of the actual system, more constraints need to be considered in this given framework.
These constraints include ramp-rate constraints, transmission line limit constraints, power loss constraints,
etc. (see [4]). In recent years, since game theory is a recommendable method to describe the influence of
human factors in the power dispatch models, researchers have begun to consider game theory, which extends
the scope of model description. From the distributed control aspect, Liu et al. [3] proposed a non-cooperative
distributed coordination control strategy to address themulti-operator energy trading problem. Such a strategy
involves electricity trading during the control process and makes the model more reasonable. From the game
and optimization aspect, Ye et al. [10] introduced the Cournot price mechanism to describe the market trading
process. This mechanism makes the price change with the total energy demand and matches the law of the
market. Based on the work in [10], Fu et al. [11] introducedmore constraints in the market trading process. Such
an adjustment also changes the algorithm design principle and introduces the multiplier consensus algorithm
to deal with the global constraints. A similar technique also can be found in [12,13]. Besides, the authors of [13]

also introduced some techniques applicable to the non-smooth case.

1.2. Feature of the paper
This paper aims to design a distributed strategy for electricity trading in an energy shortage environment.
Such a strategy is required to match the law of the market and adapt to the complicated communication graph.
Furthermore, in the process of implementing the above strategy, there also exist the following challenges:

• The enormous number of distributed generators makes it impossible for the centralized algorithm to dis-
patch all distributed power simultaneously to compensate for the power shortage.

• How to design a suitable strategy that ensures the benefits of all the generators and maintains the initiative
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of the power operator (i.e., the pricing power) is the main difficulty in trading strategy design.
• Due to the character of the complicated communication graph, employing a discrete-time algorithm design
principle becomes the first choice [4].

To solve the above challenges, this paper first formulates the power shortage situation as an aggregative game
involving the Cournot price mechanism. In this game, the electricity is supplied by two parts: one is the main
power grid, and the other consists of distributed generators. Then, this paper designs a distributed strategy
based on the Digging algorithm [14] and the estimation strategy [15]. The features of this distributed strategy are
concluded as follows:

• The discrete-time algorithm construct offers the power grid dispatch process favorable properties of privacy
protection, information safety, and extendibility.

• The employment of the Cournot price mechanism aggregates the distributed generators within a feasible
and market-determined framework.

The rest of the paper is arranged as follows. The problem formulation is introduced in the next section. Then,
the problem analysis section is presented to analyze the proposed problem and explain the designed algorithm.
The simulation results are given to verify the proposed algorithm’s performance and effectiveness in the sim-
ulation section. The last section concludes the paper.

2. PROBLEM FORMULATION
In this section, we introduce an aggregative game model to describe the electricity energy trading. By solv-
ing this game, we aim to design a distributed strategy that encourages operators to supply electricity to the
main grid. When the power on the main grid is insufficient (caused by attacks, generator failures, or capacity
limitations), such a strategy allows us to adjust the sold price of electricity. After promoting the sold price of
electricity, the operators will benefit more by selling more electricity, which improves the motivations of the
operators and conforms to the law of the market. The detailed model is presented as:

min
𝑖∈N

𝐶𝑖 (𝑃𝑖 , 𝐺𝑖) − 𝑅𝑖 (𝑃1, · · · , 𝑃𝑁 )

s.t.
𝑁∑
𝑖=1

𝑃𝑖 +
𝑁∑
𝑖=1

𝐺𝑖 =
𝑁∑
𝑖=1

𝐷𝑖 ,

𝑃min
𝑖 ≤ 𝑃𝑖 ≤ 𝑃max

𝑖 ,

𝐺min
𝑖 ≤ 𝐺𝑖 ≤ 𝐺max

𝑖 ,

(1)

where 𝑃𝑖 and 𝐺𝑖 denote the power output of the distributed generators and the power obtained from the main
grid in the operator 𝑖 node, respectively, which comply with the output limits presented as the second and
the third constraints of the problem in Equation (1) with the superscripts min and max denoting the minimal
and maximal values of the corresponding variables. 𝐷𝑖 represents the load demand in operator 𝑖 node and
N = {1, . . . , 𝑁} represents the operator index set. The power balance limit is described as the first constraint
of the problem in Equation (1). The cost function of each operator 𝑖 is defined as follows:

𝐶𝑖 (𝑃𝑖 , 𝐺𝑖) = 𝑎𝑖𝑃
2
𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 + 𝛼𝑖𝐺

2
𝑖 + 𝛽𝑖𝐺𝑖 + 𝛾𝑖 ,

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝛼𝑖 , 𝛽𝑖 , and 𝛾𝑖 are positive parameters, 𝐶𝑖 (𝑃𝑖 , 𝐺𝑖) represents the electricity cost of the operator
𝑖, the additional value added for the operator 𝑖 is described as

𝑅𝑖 (𝑃1, · · · , 𝑃𝑁 ) =
(
−𝑟

𝑁∑
𝑖=1

𝑃𝑖 + 𝑙

)
𝑃𝑖 ,

where 𝑟 and 𝑙 are both positive parameters adjusted by the main grid. Note that the additional value added
function is designed based on the Cournot price model, and it can be considered as an extra bonus for the

http://dx.doi.org/10.20517/ces.2022.20


Page 4 of 11 Xu et al. Complex Eng Syst 2022;2:14 I http://dx.doi.org/10.20517/ces.2022.20

 

Figure 1. Explanation for the problem in Equation (1).

power supply provided by the operators. When the total power of the distributed generators increases, the
additional value added will decrease. When the main grid turns up the parameters 𝑟 and 𝑙, the additional value
added will go up, which contributes to the increase of the distributed generators output. Figure 1 concludes
the above process and the challenges.

Compared with the optimization problem, the problem in Equation (1) has multiple objection functions. Such
a problem setting makes the aggregative game in Equation (1) possess the capacity to consider each operator’s
cost independently rather than the sum of the cost.

3. PROBLEM ANALYSIS
In this section, we analyze the proposed problem in Equation (1) based on Lagrange dual theory and game
theory. Note that the problem in Equation (1) is a game theory problem, thus some transformations are re-
quired such that it can match the framework of the distributed algorithm. For convenience, define the local
objective function 𝐹𝑖 (𝑃𝑖 , 𝐺𝑖) of the problem in Equation (1) as follows:

𝐹𝑖 (𝑃, 𝐺𝑖) = 𝐶𝑖 (𝑃𝑖 , 𝐺𝑖) − 𝑅𝑖 (𝑃1, · · · , 𝑃𝑁 ) . (2)

Note that 𝑃𝑖 and 𝐺𝑖 are the decision variables of the operator 𝑖 in the above definition (Equation (2)), while
other operators’ decisions are considered as independent variables. Define the pseudo-gradient ∇𝐹 (𝑆) as

∇𝐹 (𝑆) ≜

∇𝐹1 (𝑃1, 𝐺1)

...

∇𝐹𝑁 (𝑃𝑁 , 𝐺𝑁 )

 , (3)

where 𝑆 = [𝑃1, 𝐺1 . . . , 𝑃𝑁 , 𝐺𝑁 ]𝑇 . To keep the later analysis going on wheel, we assume that the problem in
Equation (1) satisfies the following assumption:

Assumption 1 The pseudo-gradient ∇𝐹 (𝑆) consisting of the gradients of the local objective functions satisfies the
following monotone condition,⟨

∇𝐹 (𝑆) − ∇𝐹 (𝑆), 𝑆 − 𝑆
⟩
≥ 𝜎

2
∥𝑆 − 𝑆∥2

2, ∀𝑆 ∈ Ω, (4)

where 𝜎 > 0 is the strongly monotone parameter and Ω represents the feasible set restricted by all the constraints
in Equation (1).

Based on the Lagrange dual theory, we can define the Lagrange dual function as follows:

𝑑𝑖 (𝜆𝑖) = min
(𝑃𝑖 ,𝐺𝑖)∈Ω𝑖

{
𝐹𝑖 (𝑃, 𝐺𝑖) +

⟨
𝜆𝑖 ,

𝑁∑
𝑖=1

𝑃𝑖 +
𝑁∑
𝑖=1

𝐺𝑖 −
𝑁∑
𝑖=1

𝐷𝑖

⟩}
, (5)
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where 𝜆𝑖 denotes the Lagrange multipliers of the operator 𝑖 ∈ N , 𝑑𝑖 (𝜆𝑖) is the function only associated with 𝜆𝑖 ,
and Ω𝑖 represents the feasible local set defined as

Ω𝑖 =
{
(𝑃𝑖 , 𝐺𝑖) ∈ R2 | 𝑃min

𝑖 ≤ 𝑃𝑖 ≤ 𝑃max
𝑖 , 𝐺min

𝑖 ≤ 𝐺𝑖 ≤ 𝐺max
𝑖

}
.

Note that the rivals’ decisions 𝑃1, . . . , 𝑃𝑖−1, 𝑃𝑖+1, . . . , 𝑃𝑁 are considered as the exogenous variables. Since the
feasible set of the problem in Equation (1) is a hyperplane, we can obtain the optimal solution of Equation (1)
by solving the following dual problem:

∀𝑖 ∈ N , max
𝜆𝑖

𝑑𝑖 (𝜆𝑖). (6)

Clearly, problem in Equation (6) is still a game problem that has no constraints. To transform the above
problem in Equation (6) into a problem suitable for the distributed algorithm framework, some stronger re-
strictions are required. According to the analysis in [16] (Theorem 1), the variational solution is the generalized
Nash equilibrium [17] of Equation (6). For such a solution, all the associated optimal Lagrange multipliers 𝜆𝑖
with 𝑖 ∈ N have the same value. By considering this as a constraint in the above problem (Equation (6)), we
can obtain the following problem:

max
𝜆

−
𝑁∑
𝑖=1

𝐹∗
𝑖 (𝜆𝑖) s.t 𝜆𝑖 = · · · = 𝜆𝑁 , (7)

where 𝜆 = [𝜆1, . . . , 𝜆𝑁 ]𝑇 , and the conjugate function 𝐹∗
𝑖 (𝜆𝑖) is defined as

𝐹∗
𝑖 (𝜆𝑖) ≜ max

(𝑃𝑖 ,𝐺𝑖)∈Ω𝑖

{−𝐹𝑖 (𝑃, 𝐺𝑖) − ⟨𝜆𝑖 , 𝑃𝑖 + 𝐺𝑖 − 𝐷𝑖⟩} . (8)

We need to emphasize that the variational solution of a game problem is only one of the generalized Nash
equilibria. In other words, we cannot obtain all the generalized Nash equilibria by solving different varia-
tional inequalities [17]. Based onTheorem 12.60 stated in [18], the conjugate function 𝐹∗

𝑖 (𝜆𝑖) is a strong convex
function with respect to 𝜆𝑖 , 𝑖 ∈ N . Clearly, the problem in Equation (7) is no longer a game problem but an
optimization problem. Besides, the objection function of the problem in Equation (7) has no variable coupling.
According to the analysis in [19] (Section 1.5), the constraint in Equation (7) can be replaced by the constraint
(𝐼 +𝑊) 𝜆 = 0, where 𝐼 and 𝑊 represent the identity matrix and the nonnegative double stochastic matrix,
respectively. Then, on the basis of the dual theory and the augmented Lagrange method [20], we can transform
the problem in Equation (7) into the following unconstrained optimization problem:

max
𝜃

min
𝜆

{
𝑁∑
𝑖=1

𝐹∗
𝑖 (𝜆𝑖) + ⟨𝜆, (𝐼 +𝑊) 𝜆⟩ + ⟨𝜃, (𝐼 +𝑊) 𝜆⟩

}
, (9)

where ⟨𝜆, (𝐼 +𝑊) 𝜆⟩ represents the augmented item and 𝜃 denotes the Lagrange multiplier with respect to the
consensus constraint of the problem in Equation (7). To solve the dual problem presented above, a distributed
algorithm is proposed in this paper:

(𝑃𝑖 (𝑘 + 1) , 𝐺𝑖 (𝑘 + 1)) = arg min
(𝑃𝑖 ,𝐺𝑖)∈Ω𝑖

{
�̄�𝑖 (𝑃𝑖 , 𝑃𝑖 (𝑘) , 𝐺𝑖 , 𝑢𝑖 (𝑘)) + ⟨𝜆𝑖 (𝑘) , 𝑃𝑖 + 𝐺𝑖 − 𝐷𝑖⟩

}
, (10)

𝜆𝑖 (𝑘 + 1) =
𝑁∑
𝑗=1

𝑊𝑖 𝑗 (𝑘) 𝜆𝑖 (𝑘) − 𝛿𝑦𝑖 (𝑘) , (11)

𝑦𝑖 (𝑘 + 1) =
𝑁∑
𝑗=1

𝑊𝑖 𝑗 (𝑘) 𝑦𝑖 (𝑘) + (𝑃𝑖 (𝑘) − 𝑃𝑖 (𝑘 + 1)) + (𝐺𝑖 (𝑘) − 𝐺𝑖 (𝑘 + 1)) , (12)

𝑢𝑖 (𝑘 + 1) =
𝑁∑
𝑗=1

𝑊𝑖 𝑗 (𝑘) 𝑢𝑖 (𝑘) + 𝑃𝑖 (𝑘 + 1) − 𝑃𝑖 (𝑘) , (13)
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where 𝛿 > 0 denotes the step-size of the designed algorithm, the initial value satisfies 𝑦𝑖 (0) = −𝑃𝑖 (0)−𝐺𝑖 (0)+
𝐷𝑖 and 𝑢𝑖 (0) = 𝑃𝑖 (0), and arg min denotes the variable which can make the corresponding function achieve
its minimum value. We use the subscripts 𝑖 and 𝑗 to represent the 𝑖th row and 𝑗 th column of matrix 𝑊 (𝑘).
Moreover,𝑊 (𝑘) satisfies Assumptions 3.1–3.3 in [14]. The function �̄�𝑖 (𝑃𝑖 , 𝑃𝑖 (𝑘) , 𝐺𝑖 , 𝑢𝑖 (𝑘)) is defined as

�̄�𝑖 (𝑃𝑖 , 𝑃𝑖 (𝑘) , 𝐺𝑖 , 𝑢𝑖 (𝑘)) = 𝐶𝑖 (𝑃𝑖 , 𝐺𝑖) − (−𝑟𝑁𝑢𝑖 (𝑘) + 𝑙 + 𝑟𝑃𝑖 (𝑘)) 𝑃𝑖 + 𝑟𝑃2
𝑖 . (14)

By following the analysis in [14] (Lemma 3.13), we can confirm that if the initial condition satisfies 𝑦𝑖 (0) =
−𝑃𝑖 (0)−𝐺𝑖 (0)+𝐷𝑖 and the sumof all 𝑦𝑖 (𝑘) is always equal to the gradient of �̄�𝑖 (𝑃𝑖 (𝑘) , 𝑃𝑖 (𝑘) , 𝐺𝑖 (𝑘) , 𝑢𝑖 (𝑘))
for all 𝑘 ≥ 0. In other words, 𝑦𝑖 (𝑘) is used to track the corresponding local gradient. Similarly, 𝑢𝑖 (𝑘) is
employed to track the sum of all 𝑃𝑖 (𝑘). If the algorithm converges, 𝜆𝑖 (𝑘 + 1) and 𝑢𝑖 (𝑘 + 1) will reach the
average consensus when 𝑘 → ∞, i.e.,

𝜆1 (𝑘 + 1) = · · · = 𝜆𝑁 (𝑘 + 1) , 𝑢1 (𝑘 + 1) = · · · = 𝑢𝑁 (𝑘 + 1) = 1
𝑁

𝑁∑
𝑖=1

𝑃𝑖 (𝑘 + 1). (15)

The above result also implies 𝑦1 (𝑘 + 1) = · · · = 𝑦𝑁 (𝑘 + 1) = 0. Hence, by a simple verification and the KKT
condition of Equation (1) (refer to [17]), we can deduce that, if the algorithm converges, it converges to the
solution of Equation (1).

Obviously, the optimal sub-problem within the proposed algorithm is a simple quadratic programming prob-
lem with the box constraints, which can be solved by a simple method at every iteration. Note that the al-
gorithm proposed above is a fully distributed algorithm and the time-varying stochastic matrix allows the
communication links among the agents to varying from different iterations. Compared to the decaying step-
sizes, the constant step-size 𝛿 employed here helps improve the proposed algorithm’s convergence rate.

Remark 1 The proposed algorithm is designed based on the combination of the Digging algorithm proposed in [14]

and the distributed algorithm presented in [15]. In this paper, the Digging algorithm is used to calculate the optimal
strategy of each operator, while the distributed estimation of the total power of the distributed generators is updated
in a distributed way, which has a similar construct to the algorithm proposed in the reference [14]. Hence, to confirm
the convergence result of the algorithmproposed in this paper, the combination of the analysismethods in [14,15] is an
effective method. First, the small gain theory introduced in [14] is employed to construct the convergence structure
cyclic of the algorithm proposed in this paper. Second, the analysis methods used in [15] is used to quantify the
influences caused by the aggregative variables.

4. SIMULATION
In this section, a simulation based on IEEE 14 bus is presented to verify the performance of the proposed
algorithm. Table 1 shows the main grid generator cost coefficients of the proposed case. The coefficients,
which include cost coefficients, constraints, and initial power, are presented in Table 2. The load demand
of each operator is selected as 𝐷 = [205, 60, 30, 30, 28, 35]𝑇 (p.u.), and the parameters 𝑟 and 𝑙 are chosen
as 0.00001($/p.u.2) and 0.02($/p.u.), respectively. We set the step-size as 𝛿 = 0.002 and assume that the
communication graphs satisfy the satisfies Assumptions 3.1–3.3 in [14] and switch randomly.

Figure 2a shows the evolutionary trajectory of the optimal power output of the main grid. As shown in Figure
2a, the power output converges to a stable state after 100 iterations, which implies that the designed algorithm
has a fast convergence rate under the time-varying communication graph environment. Figure 2b shows the
evolutionary track of the optimal power output of the distributed generators. Similarly, the evolutionary track
converges to a stable state at around 100 iterations. Note that there exist some fluctuations during the conver-
gence of the algorithm. These fluctuations are caused by the time variation of the communication graph and
can be eliminated if the communication graph is fixed.

http://dx.doi.org/10.20517/ces.2022.20


Xu et al. Complex Eng Syst 2022;2:14 I http://dx.doi.org/10.20517/ces.2022.20 Page 7 of 11

Table 1. The main grid cost coefficients and constraints

Generator 𝑎𝑖 ($/p.u.2) 𝑏𝑖 ($/p.u) 𝑐𝑖 ($) 𝑃min
𝑖 (p.u.) 𝑃max

𝑖 (p.u.) Initial power (p.u.)

𝑃1 0.0037 2 1 50 200 140
𝑃2 0.0175 1.75 0.75 20 80 40
𝑃3 0.0625 1 0.75 15 50 35
𝑃4 0.0083 3 1.25 10 35 20
𝑃5 0.025 2 2 10 40 15
𝑃6 0.025 1.5 1 12 40 23

Table 2. The distributed generator cost coefficients and constraints

Generator 𝛼𝑖 ($/p.u.2) 𝛽𝑖 ($/p.u) 𝛾𝑖 ($) 𝐺min
𝑖 (p.u.) 𝐺max

𝑖 (p.u.) Initial power (p.u.)

𝐺1 0.064 1.25 0.75 8 70 40
𝐺2 0.0638 1.35 0.25 13 50 30
𝐺3 0.0622 1.5 0.5 8 20 18
𝐺4 0.0628 2.15 1.25 5 25 20
𝐺5 0.0653 2 1.75 7 20 14
𝐺6 0.0658 2 2 5 20 12
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(b) The optimal power output of the distributed generators
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Figure 2. The optimal power output.
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Figure 3. The incremental cost of each operator.

The incremental cost of each operator is shown in Figure 3. The consensus of the incremental cost (i.e., the
value of 𝜆) implies that the algorithm converges to the solution satisfying the condition in Equation (15) and the
equality constraint in Equation (7). As shown in Figure 4a, the estimation of the sum of all the power outputs,
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Figure 4. The estimation value and the estimation error.
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(b) The partial derivative with respect to power output G
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(c) The power mismatch of the whole grid
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Figure 5. The partial derivative and the power mismatch.

𝑃𝑖 , 𝑖 ∈ N , converges to a consensus value under the situation that the communication graph is time-varying.
Figure 4 b confirms that the estimations obtained from each operator are consistent with the actual value, which
reflects that the proposed algorithm has a favorable performance on the aggregation of the corresponding
decisions. Figure 4 indicates that the proposed algorithm has a favorable convergence even if some information
is based on estimation.

In this case, all the optimal outputs of 𝑃 and 𝐺 are within the given limits, which means that, if the con-
vergence values of the proposed algorithm are the optimal solution, the partial derivative of the function
�̄�𝑖 (𝑃𝑖 , 𝑃𝑖 (𝑘) , 𝐺𝑖 , 𝑢𝑖 (𝑘)) + ⟨𝜆𝑖 (𝑘) , 𝑃𝑖 + 𝐺𝑖 − 𝐷𝑖⟩must be equal to 0. The aforementioned optimal condition is
confirmed by the results in Figure 5a,b. Figure 5c shows that the mismatch of the whole power grid is equal to
0, which means that the proposed algorithm can maintain the global power balance constraint when the algo-
rithm converges. Hence, by combining the results in Figures 2–5, we can verify that the algorithm converges
to the KKT solution of Equation (7).

Figure 6 shows the optimal output of the main grid and distributed generators when the Cournot price mech-
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(b) The optimal power output of the main grid
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Figure 6. The optimal power output without the Cournot price mechanism.
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(b) The optimal power output of the main grid
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Figure 7. The optimal power output calculated by the continuous-time algorithm.

anism is nonexistent [i.e., deleting 𝑅𝑖 in Equation (2)]. By comparing Figures 2 and 6, we can observe that the
distributed generators’ output decrease and the main grid’s output increase when the Cournot price incentives
are absent. Such results show that the Cournot price incentives can stimulate operators to increase the output
when the power grid is in an energy shortage environment. Besides, setting a larger 𝑙 and smaller 𝑟 will help
to increase the distributed generators’ output.

We next employ the algorithm proposed in [11] to make a comparison. Since the algorithm proposed in [11] is a
continuous-time algorithm and the communication graph is fixed, we assume that the communication graph
is a ring, and the abscissa is time instead of iterations. As shown in Figure 7, we can observe that the two
algorithms converge to the same optimal solution. However, the algorithm proposed in [11] asks for a fixed
communication graph and continuous-time calculation. Such a requirement may not be suitable for some
wireless networks operated in a discrete time.

5. CONCLUSION
In this paper, based on an aggregative game, we design a distributed electricity energy strategy to encourage
the operators to supply electricity when the power output of the main grid is in a shortage situation. The
simulation results confirm the performance and effectiveness of the proposed strategy/algorithm. In future
work, based on the push-sum algorithm analytical framework and the corresponding discrete algorithm, we
will further analyze the convergence of the proposed strategy by a rigorous mathematical method.

http://dx.doi.org/10.20517/ces.2022.20


Page 10 of 11 Xu et al. Complex Eng Syst 2022;2:14 I http://dx.doi.org/10.20517/ces.2022.20

DECLARATIONS
Authors’ contributions
Made substantial contributions to conception and design of the study and performed data analysis and inter-
pretation: Fu Z, Liu H
Performed data acquisition, as well as provided administrative, technical, and material support: Xu Q, Yu C,
Yuan X

Availability of data and materials
Not applicable.

Financial support and sponsorship
This work was supported by the Science and Technology Project from State Grid Zhejiang Electric Power CO.
Ltd (5211JY20001Q).

Conflicts of interest
All authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2022.

REFERENCES
1. Hu X, Liu ZW,Wen G, Yu X, Li C. Branchwise parallel successive algorithm for online voltage regulation in distribution networks. IEEE

Trans Smart Grid 2019;10:667889. DOI
2. Hu X, Liu ZW, Wen G, Yu X, Liu C. Voltage control for distribution networks via coordinated regulation of active and reactive power of

DGs. IEEE Trans Smart Grid 2020;11:4017–31. DOI
3. Liu ZW,Wen G, Yu X, Guan ZH, Huang T. Delayed impulsive control for consensus of multiagent systems with switching communication

graphs. IEEE Trans Cybern 2020;50:304555. DOI
4. Wang K, Fu Z, Xu Q, Chen D, Wang L, Yu W. Distributed fixed stepsize algorithm for dynamic economic dispatch with power flow

limits. Sci China Inf Sci 2021;64. 2021;64:1–13. DOI
5. Yu W, Li C, Yu X, Wen G, Lü J. Economic power dispatch in smart grids: a framework for distributed optimization and consensus

dynamics. Sci China Inf Sci 2018;61:1–16. DOI
6. Li C, Yu X, Yu W, Huang T, Liu ZW. Distributed eventtriggered scheme for economic dispatch in smart grids. IEEE Trans Ind Inf

2015;12:1775–85. DOI
7. Wen G, Yu X, Liu ZW, Yu W. Adaptive consensusbased robust strategy for economic dispatch of smart grids subject to communication

uncertainties. IEEE Trans Ind Inf 2017;14:2484–96. DOI
8. He X, Ho DW, Huang T, Yu J, AbuRub H, et al. Secondorder continuoustime algorithms for economic power dispatch in smart grids.

IEEE Trans Syst Man Cybern, Syst 2017;48:1482–92. DOI
9. He X, Zhao Y, Huang T. Optimizing the dynamic economic dispatch problem by the distributed consensusbased ADMM approach. IEEE

Trans Ind Inf 2019;16:3210–21. DOI
10. Ye M, Hu G. Distributed Nash equilibrium seeking in multiagent games under switching communication topologies. IEEE Trans Cybern

2017;48:3208–17. DOI
11. Fu Z, Yu W, Lü J, Yao Y, Mei F. A distributed normalized Nash equilibrium seeking algorithm for power allocation among microgrids.

Sci China Technol Sci 2021;64:341–52. DOI
12. Zhu Y, Yu W, Wen G, Chen G. Distributed Nash equilibrium seeking in an aggregative game on a directed graph. IEEE Trans Automat

Contr 2020;66:2746–53. DOI
13. Zhu Y, Wen G, Yu W, Yu X. Nonsmooth resource allocation of multiagent systems with disturbances: A proximal approach. IEEE Trans

Control Netw Syst 2021;8:1454–64. DOI

http://dx.doi.org/10.20517/ces.2022.20
http://dx.doi.org/10.1109/TSG.2019.2910169
http://dx.doi.org/10.1109/TSG.2020.2989828
http://dx.doi.org/10.1109/TCYB.2019.2926115
http://dx.doi.org/10.1007/s11432-019-2638-2
http://dx.doi.org/10.1007/s11432-016-9114-y
http://dx.doi.org/10.1109/TII.2015.2479558
http://dx.doi.org/10.1109/TII.2017.2772088
http://dx.doi.org/10.1109/TSMC.2017.2672205
http://dx.doi.org/10.1109/TII.2019.2908450
http://dx.doi.org/10.1109/TCYB.2017.2764141
http://dx.doi.org/10.1007/s11431-019-1538-6
http://dx.doi.org/10.1109/TAC.2020.3008113
http://dx.doi.org/10.1109/TCNS.2021.3068349


Xu et al. Complex Eng Syst 2022;2:14 I http://dx.doi.org/10.20517/ces.2022.20 Page 11 of 11

14. Nedic A, Olshevsky A, Shi W. Achieving geometric convergence for distributed optimization over timevarying graphs. SIAM J Optim
2017;27:2597–633. DOI

15. Koshal J, Nedić A, Shanbhag UV. Distributed algorithms for aggregative games on graphs. Operations Research 2016;64:680–704. DOI
16. Yi P, Pavel L. An operator splitting approach for distributed generalized Nash equilibria computation. Automatica 2019;102:111–21.
17. Nabetani K, Tseng P, FukushimaM. Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared

constraints. Comput Optim Appl 2011;48:423–52. DOI
18. Rockafellar RT. Convex analysis. vol. 18. Princeton university press; 1970.
19. Chung FR, Graham FC. Spectral graph theory. vol. 92. American Mathematical Soc.; 1997.
20. Rockafellar RT. Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J Contr 1974;12:268–85.

http://dx.doi.org/10.20517/ces.2022.20
http://dx.doi.org/10.1137/16M1084316
http://dx.doi.org/10.1287/opre.2016.1501
http://dx.doi.org/10.1007/s10589-009-9256-3

	1. Introduction
	1.1. Literature review
	1.2. Feature of the paper

	2. Problem Formulation
	3. Problem Analysis
	4. Simulation
	5. Conclusion
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright


