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Abstract
Despite intense research and the development of several new chemotherapeutics, the prognosis for specific 
subsets of acute myeloid leukemia (AML) has not improved significantly. Thus, the investigation of signaling 
pathways associated with the pathogenesis and progression of AML has become a source for the discovery of 
more effective treatments. The epidermal growth factor receptor (EGFR) belongs to the HER family of tyrosine 
kinase (TK) receptors and is involved in the progression of a variety of solid tumors. Although the expression of 
members of the HER family appears to be limited to epithelial tissues and derived neoplasms, there is evidence 
demonstrating their role in hematopoiesis and hematological neoplasms. In AML, preclinical studies and two 
anecdotal cases of response to EGFR TK inhibitors (TKI) supported the EGFR signaling pathway as a potential 
therapeutic target. Indeed, the presence of EGFR ligands in the bone marrow microenvironment has been shown to 
play pathological and regenerative/protective roles in AML. However, data reporting the expression of EGFR in 
AML remain controversial and the EGFR pathway inhibition in AML patients has demonstrated limited clinical 
significance. Further studies are required to determine the relevance of the EGFR pathway in AML biology and 
which patients may benefit from using EGFR TKI or other drugs that target TK receptors.
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INTRODUCTION
Epidermal growth factor receptor (EGFR) is a type of tyrosine kinase (TK) receptor recognized as an 
important player in the tumor biology of many solid neoplasms, making it a key target for therapeutic 
strategies, especially in non-small cell lung cancer (NSCLC). EGFR TK inhibitors (TKI) have demonstrable 
efficacy in the treatment of patients with EGFR-mutated NSCLC with a favorable impact on progression-
free survival, but not in the subgroup of EGFR wild-type tumors[1,2]. In contrast, EGFR mutations are rarely 
found in AML[3,4], while their expression has been reported to be associated with poor prognostic 
outcomes[5]. Accordingly, in vitro, ex vivo, and in vivo results demonstrate that EGFR TKI induces terminal 
differentiation and cell death of AML cells[2,6-8]. Moreover, in the bone marrow microenvironment, 
interactions between leukemia stem/progenitor cells (LSPCs) and immune cells promoted the expansion of 
leukemia cell subsets, which was associated with the upregulation of interleukin (IL)-3 gene expression in 
LSPCs [Figure 1][9,10]. Of note, Radpour et al.[11] showed that, in favorable-risk AML, IL-3 gene expression in 
CD34+ LSPCs was positively correlated with EGF/EGFR gene expression in CD8+ T cells. Furthermore, this 
finding was functionally validated in a co-culture system with CD8+ T cells and CD34+ LSPC. Accordingly, 
CD8+ T cells promoted the expansion of LSPC by increasing IL-3 mRNA and protein. On the other hand, 
IL-3 gene expression and cell proliferation were reduced in LSPC in the presence of the neutralizing 
antibody to EGFR[11]. Together, these data support the idea that EGFR TKI could be a promising alternative 
therapy to treat AML. However, EGFR expression is low or absent in most AML samples and cell lines[2,5,12], 
indicating that the anti-proliferative and pro-apoptotic effects of EGFR TKI may occur by EGFR-
independent mechanisms, through interaction with other TK receptors[2,6,7,13,14]. Among them, preclinical 
data identify SYK (Spleen tyrosine kinase)[15], Lyn[16], other TK of the Src family kinases (SFKs)[17], signal 
transducer and activator of transcription 5, and Janus kinase 2[2] as off-targets of the EGFR TKI erlotinib 
and gefitinib in AML cells. However, it needs to be pointed out that no difference in survival or objective 
response was observed in clinical trials of patients with AML in which EGFR TKI was administered[18-20].

Therapeutic strategies that target the EGFR pathway have received considerable attention in other oncologic 
settings, but it is still unclear which patients with AML may benefit from EGFR TKI therapy. In this review, 
we summarize the knowledge regarding the role of the EGFR signaling pathway in AML and provide an 
overview of experimental and clinical studies using EGFR TKI to suppress leukemia progression.

EGFR
EGFR (also described as HER1 and ERBB1) is a transmembrane glycoprotein (170 kDa) that belongs to the 
HER family of TK receptors, which comprises four members (HER1 or EGFR, HER2, HER3, and HER4) 
and plays an important role in regulating cell proliferation, survival, differentiation, angiogenesis, and 
metastatic spread[21-23]. The extracellular domain of this receptor can bind to seven official different types of 
ligands: EGF, transforming growth factor-alpha, amphiregulin (AREG), EGF-like heparin-binding factor 
(HB-EGF), betacellulin, epiregulin (EPR), and epigen[24,25]. Moreover, the connective tissue growth factor 
(CTGF/CCN2) has been identified as a new EGFR ligand[26]. Interestingly, the affinity of EGFR can be 
varied, depending on the specific ligand, tissue, and physiological and pathological conditions, which cause 
different cellular responses[27-29]. The interactions of EGFR with its ligands induce the homodimerization or 
heterodimerization of the receptor with another member of the HER family. Dimerization leads to EGFR 
autophosphorylation at specific tyrosine residues in the intracellular domain, triggering the activation of 
downstream signaling pathways, such as mitogen-activated protein kinases (MAPK), phosphatidylinositol 
3-kinase/protein kinase B (PI3K/AKT), and Janus-activated kinase/signal transducer and activator of 
transcription (JAK-STAT)[24,25].
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Figure 1. Schematic representation of the EGFR signaling axis and its most important downstream targets in the AML microenvironment. 
EGFR ligands in the bone marrow microenvironment phosphorylate EGFR receptors on the surface of LSPC or CD8+ T cells, leading to 
the production and release of IL-3. In turn, IL-3 induces proliferation signals in LSPCs, promoting the expansion of AML cells. Direct 
arrows represent direct interactions, and the dotted arrow represents indirect effects. AML: Acute myeloid leukemia; LSPCs: leukemia 
stem/progenitor cells; IL-3: interleukin-3; EGFR: epidermal growth factor receptor; EGF: epidermal growth factor; TGF-α: transforming 
growth factor-alpha; AREG: amphiregulin; HB-EGF: EGF-like heparin-binding factor; BTC: betacellulin; EPR: epiregulin; SFK: src family 
kinases; PI3K: phosphatidylinositol 3-kinase; AKT: protein kinase B; JAK2: Janus-activated kinase 2; JAK: Janus-activated kinase; STAT5: 
signal transducer and activator of transcription 5. Image created using BioRender.com.

The aberrant expression and/or mutation of EGFR, as well as the continuous stimulation of this receptor 
due to the greater presence of its ligands in the tumor microenvironment, have a direct implication in the 
pathogenesis and progression of cancer since they are associated with increased tumor growth, invasion, 
and metastasis[30]. For this reason, EGFR has been described as an important therapeutic target in several 
malignant neoplasms, such as pancreas, colorectal, lung, breast, and head and neck carcinomas[31]. However, 
in hematological malignancies, EGFR mutations are very rare[3,4,32], and its expression and clinical response 
to EGFR TKI in AML is still controversial.

EGFR EXPRESSION IN AML
Aberrant expression of EGFR has been associated with aggressive behavior in a wide range of solid 
tumors[31], but the role and pattern of EGFR expression in hematological malignancies are still not well 
understood. Specifically, in AML, EGFR mRNA was detectable in approximately 35% of patients and 
correlated with decreased overall (OS) or event-free survival[5,33]. Notably, although acute promyelocytic 
leukemia (APL) is the most curable form of AML in adults, the EGFR gene expression in 5/29 (17.5%) of the 
patients was also associated with an adverse clinical outcome[34]. At the protein level, some studies pointed 
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out the absence of EGFR expression in some AML cell lineages and primary cells[2,6,8,35]. However, 
Mahmud et al.[12] demonstrated that 11% (57/511) and 18% (93/511) of AML patients express high levels of 
total and phosphorylated EGFR, respectively, when compared to CD34+ healthy bone marrow samples, 
suggesting that this subset could benefit from EGFR TKI therapy. Accordingly, only leukemic cell lines 
positive for EGFR were responsive to cetuximab-induced cell death[5]. Specifically, in APL samples, our 
group detected total and phosphorylated EGFR protein in 6/21 (28.5%) and 4/21 (19%) of APL patients, 
respectively, but not in CD34+ healthy bone marrow samples. In addition, we demonstrated that gefitinib 
enhanced the all-trans retinoic acid (ATRA)-induced differentiation in EGFR-negative APL cells lines NB4 
and NB4-R2 (de Almeida LY and Rego EM, own unpublished observation, 15 June 2021).

The reason EGFR expression affects the prognosis of patients with AML has not been addressed so far. 
Interestingly, increased HSC mobilization induced by granulocyte colony-stimulating factor (G-CSF) was 
achieved in healthy donors after the pharmacological inhibition of EGFR activity through activation of 
GTPase Cdc42 (cell division control protein-42)[36]. In addition, in a chemotherapy-induced 
myelosuppression model, the combination of G-CSF and EGF was synergistic for regeneration of the bone 
marrow compared to either G-CSF or EGF alone, and EGF increased G-CSF receptor expression following 
exposure to 5-fluorouracil. Conversely, G-CSF treatment increased both EGFR and phosphorylation of 
EGFR in hematopoietic stem/progenitor cells. Considering that in AML sensitization of leukemic cells with 
hematopoietic growth factors may enhance the cytotoxicity of chemotherapy, the association of G-CSF and 
EGFR TKI may be beneficial[37]. Accordingly, a Japanese nationwide retrospective analysis of the outcome of 
cord blood transplantation for AML showed that the addition of G-CSF-combined cytarabine to a total 
body irradiation plus cyclophosphamide conditioning regimen resulted in a significantly better disease-free 
survival and OS and a reduced relapse rate[38]. It is conceivable that the association of EGFR TKI to G-CSF 
could increase the sensitization of leukemic cells to cytotoxic therapy and further improve the outcome of 
HCT in AML.

EGFR LIGANDS EXPRESSION IN AML
The mRNA expression of AREG[39], HB-EGF[40], and EREG[41] genes, whose translational products are EGFR 
ligands, were previously detected in AML samples, but their prognostic relevance has not been defined. The 
AREG expression pattern has been recognized to be useful to distinguish AML from B-cell lymphoblastic 
leukemia[39]. Similarly, HB-EGF is expressed in human myeloid and T, but not B, lymphoid cell lines[40]. 
Moreover, the main differentially expressed gene between arginase-resistant and -sensitive AML is EREG, 
which encodes the protein EPR[41]. Indeed, EREG overexpression in solid tumors was associated with cancer 
cell proliferation via EGFR/MAPK/PI3K/AKT signaling[42]. However, more investigation is necessary to 
understand the biological implications of EREG signaling in AML.

Wu et al.[43] evaluated the urine of 18 patients with APL and found that they had significantly elevated levels 
of EGF when compared to healthy patients. Besides, lower and higher levels of EGF excretion were 
associated with complete remission and clinical recurrence, respectively, in patients with APL. Thus, these 
authors suggested that quantifying EGF levels may serve as a means of monitoring this disease. However, 
the significant correlation between EGF and creatinine detected in the urine did not have a direct 
relationship with EGF levels in blood serum or plasma[44]. It suggests that EGF is mainly derived from 
kidney biosynthesis secretion and that the levels of EGF in the urine are probably a reflection of treatment 
with ATRA rather than that released by the APL cells themselves. In the bone marrow microenvironment, 
CD8+ T cells promoted LSPCs expansion via upregulation of IL-3 through EGF/EGFR signaling in 
favorable-risk, but not intermediate- or adverse-risk, AML[11]. In vitro, the pro-proliferative effect of CD8+ T 
cells on LSPCs was abrogated in the presence of anti-EGFR antibodies[11]. The differential response of LSPC 
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cells to the CD8+ T stimuli suggests that LSPCs in favorable-risk AML cases display a higher dependence on 
the microenvironment to expand [Figure 1]. We found that EGF bone marrow plasma levels were lower in 
APL patients when compared to healthy control subjects. In addition, AREG was detected in 5/17 APL bone 
marrow plasma samples and absent in 20 control samples. However, the significance of these ligands in APL 
development remains to be determined once our in vivo data show that gefitinib treatment did not provide 
additional survival benefit in a transgenic mouse model of APL. (de Almeida LY and Rego EM, own 
unpublished observation, 15 June 2021).

EGFR ligands exert distinct functions depending on the biological context and on what type of cell they 
originate. Ramadan et al.[45] experimentally demonstrated that a specific T cell subtype [T9IL-33 (interleukin-9-
producing T cells activated via the ST2-IL-33 pathway)], responsible for graft-vs.-leukemia reactivity, 
express high levels of AREG, and the AREG blockade on T cells increased graft-vs.-host disease severity in 
vivo, but it did not affect their ability to kill myeloid leukemia cells in vitro. In chronic myeloid leukemia 
(CML), CML cell-derived exosomes carrying AREG activated the EGFR signaling in stromal cells, which in 
turn secreted IL-8, stimulating the proliferation of leukemic cells[46]. Furthermore, in the context of 
myelosuppression, EGF promoted survival and regeneration of hematopoietic stem cells following 
irradiation[47], thereby providing a beneficial improvement for myeloid reconstitution. Together, these 
findings suggest that EGFR ligands have important pathological and protective functions in myeloid 
leukemogenesis.

THE ROLE OF EGFR TKI IN THE TREATMENT OF AML
Since EGFR activation is involved in cancer progression, a variety of drugs targeting this signaling pathway 
have been developed and proven to be effective in the treatment of solid tumors and, particularly, in 
NSCLC[48]. The main classes of FDA-approved drugs that act on the EGFR pathway are monoclonal 
antibodies (e.g., cetuximab and panitumumab), which bind to the EGFR extracellular domain competing 
with endogenous ligands, and the TKI (e.g., gefitinib, erlotinib, and afatinib), which block the intracellular 
domain of this receptor, impairing the activation of cell signaling cascades that promote the proliferation of 
malignant cells[49-51]. EGFR-based therapies were also tested in leukemic settings, demonstrating to induce 
apoptosis and differentiation of AML cell lines and primary blasts at low micromolar concentrations that 
are achievable in clinical practice, as summarized in Table 1. Noteworthy, unlike healthy CD34+ cells, 
erlotinib particularly induced AML-derived CD34+ cells apoptosis in a time- and dose-dependent 
manner[2]. In addition, a complete remission of AML in two adult patients with concurrent NSCLC was 
obtained after treatment with erlotinib[35,52]. Although EGFR gene expression may be clinically useful for 
predicting AML outcomes[5,33,34], the receptor was not detected in the blasts of these patients, suggesting that 
erlotinib probably acted via EGFR-independent mechanisms. Thus, based on the controversial data 
regarding EGFR expression in AML samples, further studies analyzed the cross-pharmacological 
interactions of EGFR TKI to predict potential off-targets. In this regard, preclinical data demonstrate that 
erlotinib induces apoptosis in AML cells by inhibiting JAK-2 and STAT-5[2] and reduced the activation of 
SFK and mTOR signaling pathways[17], which are constitutively activated in AML blasts. In addition, 
proteomic and genetic approaches identified SYK as a gefitinib target for AML differentiation in vitro[15]. It 
is particularly noteworthy that increased expression of phosphorylated SYK in AML samples, especially in 
those harboring internal tandem duplication mutations in the FLT3 gene (FLT3-ITD), was related to 
unfavorable clinical outcomes[53,54]. Recently, Cao et al.[16] demonstrated that erlotinib plays a dual role 
targeting FLT3 in FLT3-ITD mutant AML cells and SYK and Lyn, another TK associated with leukemia 
proliferation, in FLT3-ITD negative AML cells, thereby showing a potential advantage of erlotinib use to 
overcome the cellular heterogeneity that exists in AML.
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Table 1. Effects of EGFR inhibitors in AML

Study Sample Study design Type of EGFR inhibitor Result

Boehrer et al.[2], 2008 P39, KG-1, HL-60 EGFR negative AML cell lines 
CD34+ EGFR negative AML primary blasts 
SCID mice inoculated with KG-1 cells

In vitro and in vivo treatments Erlotinib Off-target effects: differentiation, cell cycle arrest, and 
apoptosis 
Apoptosis 
Reduced tumor growth

Sun et al.[5], 2012 HL-60, HEL, Molt-4, and Hut78 EGFR negative AML cell 
lines 
K562 and CEM EGFR positive AML cell lines 
EGFR negative and positive AML primary cells

In vitro treatment 
 
 

Cetuximab (monoclonal antibody 
anti-EGFR) 

EGFR positive AML cells are responsive to the 
cytotoxicity of cetuximab 
 

Stegmaier et al.[6], 
2005 

HL-60, Kasumi-1, U937 EGFR negative AML cell lines 
AML primary blasts

In vitro treatment Gefitinib Off-target effects: cell differentiation 
Cell viability inhibition and differentiation

Boehrer et al.[7], 2008 P39, MOLM-13, MV4-11, U937, HL-60, KG-1 MDS 
(myelodysplastic syndrome)/AML cell lines 
CD34+ EGFR negative MDS/AML primary blasts

In vitro treatment 
 

Erlotinib and gefitinib Off-target effects: cell viability inhibition, differentiation, 
and apoptosis

Lindhagen et al.[8], 
2008 

AML primary blasts and MV4-11 EGFR negative AML cell 
lines

In vitro treatment with gefitinib 
alone or combined to standard 
antileukemic drugs

Gefitinib alone or combined to 
standard antileukemic drugs

Off-target effects: apoptosis via caspase-3 pathway 
Synergistic interaction with etoposide 
Additive interactions with doxorubicin, cytarabine, and 
cisplatin 

Miranda et al.[13], 2008 HL-60, NB4, U937 AML cell lines In vitro treatment Gefitinib alone or combined to 
all-trans retinoic acid (ATRA)

Gefitinib enhanced ATRA-induced cell differentiation 
MEK/ERK pathway is potentially involved in the process 
of AML differentiation induced by ATRA/gefitinib 

Noh et al.[14], 2010 NB4 AML cell line In vitro treatment Gefitinib and arsenic trioxide 
(ATO)

Gefitinib enhanced ATO-induced cell differentiation and 
reactive oxygen species (ROS) generation 
ERK pathway is required for gefitinib enhancement of 
ATO-induced cell differentiation 
P38 MAPK pathway is potentially involved in the process 
of AML differentiation induced by ATO/gefitinib 

Hahn et al.[15], 2009 HL-60 AML cell line Mass spectrometry and RNAi 
screening

Gefitinib Syk was identified as a target for gefitinib-induced cell 
differentiation 
Gefitinib inhibits Syk phosphorylation 

Cao et al.[16], 2020 MV4-11 and KG-1 AML cell lines In vitro and in vivo treatments Erlotinib Erlotinib inhibits the in vitro growth of MV4-11 and KG-1 
cells via targeting FLT3 and Lyn, respectively 
Erlotinib inhibits the in vivo growth of MV4-11 cells 

Boehrer et al.[17], 2011  KG-1, KG-1a, MOLM-13, and HL-60 AML cell lines In vitro treatment Erlotinib alone or combined to 
rapamycin 

Synergistic interaction in reducing the proliferation of 
AML cells by decreasing the constitutive activation of 
SRC family kinases (SFK) 

Deangelo et al.[18], 2014 18 (11 relapsed) AML patients negative for FLT3-ITD 
mutation with a median age of 72 (range 57-84 years)

Phase II prospective non-
randomized clinical trial

Gefitinib No patients had objective responses 
1 patient had a prolonged stable disease (16 months) 

26 patients (90%) discontinued therapy due to disease 
progression 
2 patients discontinued therapy due to adverse events 
2 patients had > 50% reduction in bone marrow blasts 

Abou Dalle et al.[19], 
2018 

29 relapsed/refractory AML patients with a median age 
of 67 (range 20-83 years)

Pilot phase II prospective non-
randomized clinical trial 

Erlotinib 
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1 patient achieved complete remission 

Sayar et al.[20], 2015 11 de novo AML patients (2 with relapsed/refractory 
disease and 9 with previously untreated AML) with a 
median age of 76 (range 60-85 years) 

Pilot prospective non-randomized 
clinical trial 

Erlotinib 2 patients had > 50% reduction in circulating blasts 
followed by disease progression 
9 patients had disease progression without any response 
No immunophenotypic evidence of cell differentiation 

Chan and 
Pilichowska[35], 2007

68-year-old male AML patient with concurrent non-small 
cell lung cancer

Case report Erlotinib Complete remission of AML 
Blasts negative for EGFR

Pitini et al.[52], 2008 64-year-old male AML patient with concurrent non-small 
cell lung cancer

Case report Erlotinib Normal blood count and absence of circulating blasts 
after 3 months of erlotinib therapy 
Less than 2% blasts in bone marrow after 7 months of 
erlotinib therapy 

Lainey et al.[55], 2013 SKM1, MOLM-13, KG-1, Kasumi-1, HL-60, and MV4-11 
AML cell lines 
Primary MDS and AML cells

In vitro treatment Erlotinib alone or combined to 
azacytidine

Synergistic cytotoxic and antiproliferative effects

Lainey et al.[56], 2013 HL-60 and MOLM-13 AML cell lines 
CD34+ AML primary blasts 

In vitro treatment Erlotinib/Gefitinib alone or 
combined to ATRA or vitamin D 
(VD) 

Synergistic pro-differentiation, cytotoxic and 
antiproliferative effects 
P38 MAPK and SFK pathways are potentially involved in 
the process of AML differentiation induced by erlotinib 

Lainey et al.[57], 2012 KG-1 AML cells 
CD34+ AML primary blasts

In vitro treatment Erlotinib/Gefitinib alone or 
combined to standard 
antileukemic drugs  

Increased chemosensitization of AML cells to standard 
antileukemic agents by limiting drug export via ATP 
binding cassette (ABC) transporters

Thepot et al.[58], 2014 30 MDS/AML patients with a median age of 77.5 (range 
53-86 years)

Phase I/II prospective  
non-randomized clinical trial

Erlotinib treatment after 
resistance to azacytidine

1 patient achieved complete remission 
4 patients had hematological improvement 
12 patients discontinued therapy due to early death (n = 
5), disease progression (n = 2), toxicity (n = 4) and 
consent withdrawal (n = 1) 
7patients had stable disease 
Median overall survival of 7 months

EGFR: Epidermal growth factor receptor; AML: acute myeloid leukemia; SCID: severe combined immunodeficiency disease; MDS: myelodysplastic syndrome; ATRA: all-trans retinoic acid; ATO: arsenic trioxide; 
RNAi: RNA interference.

In addition to the use of EGFR TKI as single agents, the combination with other drugs has shown synergistic interactions in AML [Table 1]. Erlotinib plus 
azacytidine, an inhibitor of DNA methyltransferases, increased the cell cycle arrest and apoptosis in AML cell lines[55]. In addition, gefitinib plus ATRA or 
arsenic trioxide potentiated the differentiation of APL and non-APL AML cells in vitro[13,14]. Corroborating these results, Lainey et al.[56] reported that erlotinib 
and gefitinib acted synergistically when associated with ATRA and vitamin D, increasing the expression of differentiation markers CD11b and CD14 in AML 
cells. In this context, the inhibition of drug efflux via ABC transporters by erlotinib and gefitinib is among the molecular mechanisms underlying the increase 
of AML chemosensitization[57].
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Despite the strong experimental evidence that EGFR inhibitors have an anti-leukemic activity in AML, 
erlotinib and gefitinib have shown limited clinical efficacy. Erlotinib monotherapy failed to induce 
differentiation[20] and avoid disease progression in 26/29 (90%) patients with refractory or relapsed AML[19], 
while a response rate of 20% was achieved in azacytidine-resistant patients with AML/MDS 
(myelodysplastic syndromes)[58]. Moreover, the use of gefitinib as a single agent in a phase II trial conducted 
in 18 patients with advanced AML did not promote an objective response, except for one patient who had 
stable disease for 16 months[18]. Similarly, in vitro treatment with gefitinib showed no difference in terms of 
cytotoxic activity in leukemic blasts from patients with newly diagnosed or relapsed AML[8]. Nevertheless, 
these studies have potential limitations. Some hypotheses that could explain the failure of EGFR TKI 
treatment in AML are the small number of patients, the lack of criteria for selection of patients expressing 
EGFR or other biomarkers suitable for EGFR TKI therapy, an inadequate dose, and drug administration 
only as monotherapy. Overall, the administration of gefitinib and erlotinib as single agents appears to be 
well-tolerated, without significant organ/systemic toxicity[18-20,51,58], encouraging further exploration of EGFR 
TKI in combination with other drugs already used to treat AML in larger clinical trials.

CONCLUSION
EGFR signaling appears to support leukemogenesis or hematopoietic regeneration, depending on the cell 
type and biological context in which the pathway is activated, but the complete characterization regarding 
the expression and function of EGFR and other EGFR TKI responsive targets in the different compartments 
of the leukemia microenvironment remains largely unknown. Therefore, the determination of predictive 
biomarkers in the AML setting is necessary to guide which patients could benefit from selective targeted 
TKI.
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