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Abstract
The treatment scenario of colorectal cancer (CRC) has been evolving in recent years with the introduction of 
novel targeted agents and new therapeutic strategies for the metastatic disease. An extensive effort has been 
directed to the identification of predictive biomarkers to aid patients selection and guide therapeutic choices. 
Pharmacogenomics represents an irreplaceable tool to individualize patients treatment based on germline and tumor 
acquired somatic genetic variations able to predict drugs response and risk of toxicities. The growing knowledge 
of CRC molecular characteristics and complex genomic makeup has played a crucial role in identifying predictive 
pharmacogenomic biomarkers, while supporting the rationale for the development of new drugs and treatment 
combinations. Clinical validation of promising biomarkers, however, is often an issue. More recently, a deeper 
understanding of resistance mechanisms and tumor escape dynamics under treatment pressure and the availability 
of novel technologies are opening new perspectives in this field. This review aims to present an overview of current 
pharmacogenomic biomarkers and future perspectives of pharmacogenomics in CRC, in an evolving scenario 
moving from a single drug-gene interactions approach to a more comprehensive genome-wide approach, comprising 
genomics and epigenetics.
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INTRODUCTION
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths in the western world and ranks 
third among the most frequent malignancies in both men and women[1]. Although still unsatisfactory, the 
median overall survival (OS) of patients with metastatic CRC (mCRC) has notably increased in the past 20 
years, reaching around 30 months in recent phase III clinical trials[2,3], thanks to the introduction of innovative 
medical and surgical treatment strategies. The availability of new drugs and treatment combinations, both 
in terms of cytotoxic chemotherapy regimens and new targeted therapies, has been crucial in order to reach 
this result. However, patients’ outcome and response to treatment can be highly heterogeneous, thus an 
extensive effort has been directed towards the identification of reliable predictive biomarkers to aid clinical 
management of patients and identify subgroups more likely to benefit from different treatment strategies.

Pharmacogenomics represents an irreplaceable tool in order to tailor patients treatment to an individualized 
approach based on germline and somatic acquired genetic variations able to predict drugs response and 
risk of toxicities[4]. Moving from early studies exploring the genetic bases of individual predisposition to 
severe toxicities from chemotherapy agents [i.e. 5-fluorouracil (5-FU) or irinotecan] in mCRC patients, the 
introduction of targeted agents such as anti-epidermal growth factor receptor (EGFR) drugs, has prompted 
the discovery of predictive molecular biomarkers (i.e. RAS mutational status) which are now tested as part 
of routine clinical practice[5]. Over time, additional mechanisms of primary and secondary resistance to 
targeted agents have emerged as promising novel predictive biomarkers and potentially actionable target 
of treatment, although validation is still an issue in most cases, and many steps forward have been made 
in the biological understanding and molecular characterization of CRC[6]. Finally, new perspectives have 
been recently opened following innovative results of immunotherapy treatment, and the development of 
new analytical techniques which allow dynamic tumor profiling and a sensitive detection of coexisting 
alterations underlying tumor heterogeneity, such as liquid biopsy[7].   

In this review, we present an overview of current pharmacogenomic biomarkers validated in clinical practice 
and future perspectives of pharmacogenomics in CRC [Tables 1 and 2], in an evolving scenario moving 
from a single drug-gene interactions approach to a more comprehensive genome-wide approach, comprising 
genomics and epigenetics.

CURRENT PHARMACOGENOMIC BIOMARKERS IN CLINICAL PRACTICE
RAS
EGFR signaling pathway plays a crucial role in the regulation of cellular responses to growth signals and its 
constitutive activation is one of the main actor promoting CRC growth and proliferation through the KRAS/
RAF/MAPK and the PI3K/AKT/mTOR axes[8]. EGFR inhibitors are nowadays well-established therapeutic 
agents incorporated into standard care for mCRC[9,10]. To date, two anti-EGFR monoclonal antibodies have 
been approved by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the 
treatment of mCRC: Cetuximab (Erbitux®, Merck KGaA/Lilly USA) and Panitumumab (Vectibix®, Amgen 
Inc). At the time when the efficacy of these drugs was first proven in advanced lines of treatment[11,12], no 
predictive biomarker was available, although a subgroup effect on the activity of these agents was evident. 
KRAS is a small GTPase member of the RAS protein family[13], and somatic gene mutations can lead to its 
constitutive activation resulting in independent cell proliferation and survival[14]. KRAS mutations, more 
frequently involving exon 2[15], can be found in approximately 40% to 50% of mCRCs. The identification 
of KRAS exon 2 (codons 12 and 13) mutations as a negative predictive marker of response to anti-EGFRs 
represented the turning point on biomarker selection for anti-EGFR treatment.

First evidence of the negative predictive role of KRAS exon 2 mutation came from retrospective series[16] 
and was then confirmed through post-hoc analyses of randomized phase III trials[11,17-20]. Moving from these 
data, in 2008 FDA and EMA restricted the use of anti-EGFR drugs to patients with KRAS exon 2 wild-
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type (WT) tumors. However, in the same year, the possible existence of additional predictive biomarkers 
of resistance to anti-EGFR treatment was highlighted by an independent meta-analysis[21] showing a low 
sensitivity for KRAS exon 2 mutations in predicting acquired resistance to anti-EGFRs. Shortly after, rare 
RAS activating mutations in exon 3 (codons 59 and 61) and exon 4 (codons 117 and 146) of KRAS and exons 
2, 3, and 4 of NRAS (codons 117 and 146), were reported as novel negative predictive markers[22,23]. Outcome 
data from the extended RAS analyses in the large randomized phase III PRIME trial, comparing FOLFOX 
with or without panitumumab as first-line treatment in mCRC patients, provided definitive evidence in 
this regard. In this study, patients with any RAS mutation in their tumors showed a worse outcome when 
treated with panitumumab [hazard ratio (HR) for progression free survival (PFS) = 1.31 (P = 0.008, P for 
interaction < 0.002); HR for OS = 1.21 (P = 0.04, P for interaction = 0.001)][24]. Following this evidence, 
results of all recent randomized trials with anti-EGFR-based therapies were retrospectively re-evaluated 
according to the extended RAS mutational status[25-27] and several meta-analyses were performed. Data were 
consistent across different chemotherapy backbones, anti-EGFR agents and lines of therapy, showing no 
improvement in outcome results, both in term of PFS and OS, with the addition of anti-EGFRs in tumors 
harboring any RAS mutation (P > 0.05)[28]. Notably, in the selected extended RAS WT population efficacy 
results from the addition of anti-EGFR treatment were highly improved[29]. Based on these results, the use of 
anti-EGFRs has been currently restricted to RAS WT (exons 2, 3, and 4 of each KRAS and NRAS) tumors[30], 
and regulatory authorities recommend that every patient being considered for anti-EGFR therapy must 
receive RAS mutational testing including KRAS and NRAS codons 12, 13 of exon 2; 59, 61 of exon 3; and 117 
and 146 of exon 4, performed only in highly qualified and certified laboratories[5].
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Table 1. Summary of main presented biomarkers

Biomarker            Type of alteration Frequency in CRC Approved for clinical 
           practice

      Predictive value        Ref.

KRAS Exon 2 (codons 12 and 13), exon 
3 (codons 59 and 61) and exon 4 
(codons 117 and 146) mutations

40%-50% mCRC Y Resistance to anti-EGFRs [5]

NRAS Exon 2 (codons 12 and 13), exon 
3 (codons 59 and 61) and exon 4 
(codons 117 and 146) mutations

3%-5% mCRC Y Resistance to anti-EGFRs [5]

BRAF V600E mutations 8%-10% Y
(prognostic value, 
Lynch Sdr screening 
in MSI-H)

Resistance to anti-EGFRs 
(accumulating evidence)

[5]

MSI MMR-D (MSI-H) 20% stage I-II, 12% stage 
III, 4%-5% stage IV

Y
(Lynch Sdr screening, 
prognostic value in 
early stage CRC)

Response to immune-
checkpoint inhibitors 
(mCRC)
Lack of efficacy of 5-FU 
adjuvant therapy in stage II 
(low evidence)

[5,81,100,101]

DPYD DPYD*2A (IVS14+1G>A) 1%-2% heterozygous
(caucasian population)

Y 5-FU severe toxicity [9,120]

UGT1A1 UGT1A1*28 45% heterozygous
10% homozygous
(caucasian population)

Y Irinotecan severe toxicity [9,10]

HER2 HER2 amplification 5% RAS WT mCRC N Resistance to anti-EGFRs
Response to anti-HER2 
treatment

[133-135]

PI3K Exon 9 and 20 hotspot mutations 10%-18% N Resistance to anti-EGFRs [5]

CIMP Aberrant DNA hypermethylation 
at select CpG islands

10%-15% N Response to 5-FU adjuvant 
therapy
Potential resistance to anti-
EGFRs
Potential sensitivity to 
demethylating agents

[161]

MGMT MGMT promoter 
hypermethylation

40% mCRC N Response to alkylating 
agents

[172]

Y: yes; N: no; CRC: colorectal cancer; mCRC: metastatic CRC; EGFR: epidermal growth factor receptor; 5-FU: 5-fluorouracil; MSI-H: high 
microsatellite instability



More recently, KRAS mutations have been shown to be associated with suppressed Th1/cytotoxic immunity 
in CRC, irrespective of mismatch repair (MMR) status, tumor location, neoantigen load and transcriptional 
subtype, with a differential effect modulated by the underlying tumor consensus molecular subtypes (CMS, 
discussed more extensively in section 4)[31]. These findings may have a role in explaining the heterogeneity 
of treatment response and outcomes in RAS mutated tumors and provide a rationale for novel treatment 
strategies in these patients.

BRAF
The serine/threonine protein kinase BRAF is another player in the EGFR-mediated signaling pathway which 
is well-known to be implicated as an oncogenic driver in CRC. In normal cells, MEK, ERK and RAF are 
part of a tyrosine kinase signaling cascade activated by RAS, which affects cell proliferation, growth and 
differentiation, and regulates key cellular function such as apoptosis, cell migration and survival[32]. Mutations 
in BRAF can be found in approximately 8%-10% of CRCs[33], the majority of which (about 80%) involve the 
substitution of glutamic acid for valine at residue 600 within the protein kinase domain (V600E). BRAF 
constitutive activation resulting from V600E mutation promotes signaling transduction through the MEK-
ERK-MAP kinase pathway even in absence of RAS-mediated signals. RAS and BRAF V600E mutations, as 
they work through the same pathway, are considered mutually exclusive, and their concomitant detection is 
extremely rare (< 0.001%)[34].

The negative prognostic value of BRAF V600E mutation in mCRC has been extensively described in several 
univariate and multivariate models. Life expectancy for this subgroup of patients is poor when compared to 
BRAF WT ones. When retrospectively evaluated, in fact, metastatic BRAF-mutated patients were showed to 
have a median OS ranging from 10 to 19 months across multiple series, even when treated with association 
therapies[35-38]. Additionally, BRAF V600E-mutated tumors share distinct clinicopathological features: 
they are more frequent in women, elderly, and are often right-sided; they more often present a mucinous 
histology, poor differentiation and high microsatellite instability (MSI-H); more often are diagnosed as 
advanced disease with preferential spread to lymph nodes and peritoneum[39-41]. When oligo-metastatic liver 
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Table 2. Promising future pharmacogenomics biomarkers

Biomarker                      Description Potential predictive value     Ref.
CMS1 Microsatellite instability immune (14%):

- high TML
-MSI
-CIMP+
-BRAF mutation
-strong immune activation
-right sided

Response to anti-VEGF [181-186]

CMS2 Canonical (37%):
-epithelial signature
-WNT-β-catenin and MYC activation
-CIN
-left sided

Response to anti-EGFRs
Response to anti-HER2
Chemo-sensitivity

[181-186]

CMS3 Metabolic (13%):
-metabolic dysregulation

- [181-186]

CMS4 Mesenchymal (23%):
-TGF-β activation
-stromal invasion
-angiogenesis

Resistance to anti-EGFRs
Lack of benefit from 5-FU and oxaliplatin

[181-186]

Liquid biopsy Mutational analysis of circulating tumor DNA Identification of predictive mutations for targeted treatments at 
baseline
Dynamic monitoring
Early detection of secondary resistance

[187-191]

MiRNA Micro RNA: noncoding single-stranded RNA molecules, 
< 200 nucleotides, with post-transcriptional regulatory 
functions

Response/resistance to chemotherapy and targeted agents [195]

TML: tumor mutational load; EGFR: epidermal growth factor receptor; 5-FU: 5-fluorouracil; MSI: microsatellite instability; TGF: transforming 
growth factor; VEGF: vascular endothelial growth factor



disease is radically resected, BRAF-mutated tumors tends to relapse early with extra-hepatic lesions[42,43]. 
A specific carcinogenesis pathway[44] and a distinct gene signature[45] have also been associated with BRAF 
V600E mutation. More recently, gene expression analyses allowed to identify two different BRAF V600E 
subtypes in a large cohort of BRAF V600E mutated patients unselected for tumor stage: the BM1 subtype 
characterized by KRAS/AKT activation, mTOR/4EBP deregulation and EMT, and the BM2 subtype 
characterized by cell cycle and checkpoint pathway deregulation[46]. In contrast with BRAF V600E mutation, 
metastatic tumors harboring rare mutations of BRAF codons 594 and 596 (less than 1% of CRCs) have been 
shown to have different prognosis and clinical outcome. These rare mutations are associated with a non-
mucinous histology, a rectal primary tumor location, microsatellite stability, and lack of peritoneal disease. 
Moreover, no negative prognostic impact was observed although in a small series of patients (median OS 
62.0 vs. 12.6 months; HR, 0.36; 95% CI, 0.20-0.64; P = 0.002 for BRAF 594 or 596 mutant vs. BRAF V600E)[47]. 
Similar results on the impact and characteristics of BRAF nonV600E mutations were confirmed in a recent 
retrospective evaluation of a large cohort of patients[48].

Although still debated, growing evidence is accumulating on the role of BRAF mutations as a negative 
predictive marker for anti-EGFR agents activity. Retrospective series showed that the response rate to 
anti-EGFR treatment with or without chemotherapy was significantly lower in BRAF-mutated vs. WT 
patients[22,23,49]. On the other hand, BRAF V600E mutation failed to demonstrate its predictive value in several 
sub-group analyses of phase III trials, possibly because of the small number of BRAF-mutated patients and 
lack of statistical power[24,50]. More recently, two meta-analyses showed a lack of improvement in PFS and OS 
in patients with BRAF-mutated mCRCs when treated with either cetuximab- or panitumumab-containing 
regimens compared to chemotherapy alone[51,52]. Additionally, a retrospective evaluation of the randomized 
phase III FIRE-3 trial, comparing FOLFIRI plus cetuximab or bevacizumab as first-line treatment in KRAS 
exon 2 WT mCRC patients, confirmed poorer survival outcomes for BRAF-mutated tumors irrespective 
of cetuximab and bevacizumab administration[53]. Based on these data, it appears that anti-EGFRs do not 
demonstrate a clear outcome benefit in BRAF-mutated tumors, and their use should be restricted to patients 
with no alternative therapeutic options. Notably, however, in FIRE-3 cetuximab arm a small subgroup of 
BRAF-mutated tumors achieving an early tumor shrinkage ≥ 20% (9/17) showed significantly longer median 
PFS (9.0 vs. 1.9 months, log-rank test P = 0.002; HR = 0.14) and OS (29.8 vs. 5.9 months, log-rank test P = 
0.047; HR = 0.3) than those not achieving it[53]. Despite the limitations due to the retrospective nature of this 
evaluation and the small patients numbers, these results highlight a significant heterogeneity among BRAF-
mutated mCRCs warranting further investigation.

While FOLFOXIRI plus bevacizumab represents the most promising treatment option in the first-line 
setting for clinically selected BRAF-mutated patients[2,54], outcomes are still unsatisfactory. An extensive 
effort has been made in the last few years aiming to develop possible effective anti-BRAF strategies for 
mCRC patients. In contrast to melanoma, the use of BRAF inhibitors, such as vemurafenib and dabrafenib, 
as single-agents did not show significant activity in BRAF-mutated mCRC[55]. Dual blockade of BRAF and 
alternative survival pathways, such as MEK and EGFR, have been tested as well in clinical trials without 
convincing results[56-58]. Promising results are coming instead from a triple inhibition strategy combining 
BRAF-inhibitors, MEK-inhibitors and EGFR-inhibitors[59,60]. An additional strategy under study to increase 
the activity of dual targeted BRAF inhibition is its association with standard cytotoxic chemotherapy, such 
as the combination of vemurafenib with cetuximab plus irinotecan which have been explored in the SWOG 
1406 trial with encouraging results[61]. Moreover, several other promising strategies designed to overcome 
resistance pathways to BRAF-inhibitors are currently under investigation[62,63]. Final results from ongoing 
trials are warranted to improve targeted treatment options for BRAF-mutated patients.

Microsatellite Instability
MMR is a highly conserved DNA repair mechanism that ensures genomic integrity by correcting mispaired 
or unpaired bases which have escaped the proofreading activity of DNA polymerases during DNA replication 
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and recombination, as well as repairing some forms of DNA damage. The loss of MMR proteins activity 
leads to an accumulation of DNA replication errors, a phenomenon known as MSI, characterized by high 
frequency of frameshift mutations in microsatellite DNA which translates into a high somatic mutational 
burden in MMR-deficient (MMR-D) cells (mutator phenotype)[64].

The prevalence of MSI in CRC depends on the stage of the disease. Approximately 20% of CRCs in stage I-II, 
12% in stage III and 4%-5% in stage IV, are deficient in one or more DNA MMR proteins, with one-quarter 
of these resulting from Lynch syndrome (LS), an autosomal dominant condition characterized by germline 
mutations in genes coding for MMR proteins (i.e. MLH1, MSH2, MSH6, PMS2 or EPCAM)[65]. The vast 
majority (circa 80%-90%) of sporadic MSI cases are due to hypermethylation of the MLH1 gene promoter[66,67], 
associated with a high CpG island methylation phenotype (CIMP+) and about 30% harbor a BRAF V600E 
mutation[6,68]. The remaining cases of sporadic MSI can be explained mainly by the presence of multiple somatic 
mutations in the MMR genes without an identifiable germline MMR mutation (“double somatic” MSI cases)[69], 
found to be associated with a higher frequency of somatic mutations in PIK3CA[70]. According to the recent CMS 
classification MSI is associated with CMS1[6,71]. MSI detection is currently based on two different approaches: 
immunohistochemical staining (IHC) for MLH1, MSH2, MSH6, and PMS2 on tumor samples to identify the loss 
of protein expression which characterizes MMR deficiency as a surrogate for MSI[72]; DNA MSI testing through a 
polymerase chain reaction (PCR)-based approach evaluating specific panels of microsatellite markers[73]. If either 
MSI or MMR deficiency is detected, further evaluation is recommended to rule out LS, rather than sporadic 
MSI. Of note, recently new computational approaches based on the evaluation of next generation sequencing 
(NGS) data have been proposed as a tool for MSI assessment[74-77], as well as the evaluation of mutational burden 
on circulating cell-free tumor-DNA testing as a surrogate marker of mismatch repair deficiency or microsatellite 
instability in patients with CRC[78].

MSI-H CRCs are characterized by distinct clinical and pathological features such as right-sided colon 
location, early-stage at diagnosis, prominent lymphocytic infiltrate, poor differentiation and mucinous 
histology[79]. When diagnosed in the metastatic setting, MSI-H mCRCs arise more frequently in women 
and in elderly; presenting often with synchronous metastases involving peritoneum, lymph nodes and 
lung rather than liver. Notably, distinct patterns characterize inherited and sporadic MSI-H mCRCs[80]. 
In addition to LS screening, in patients with early-stage (especially stage II) CRCs, MMR status provides 
important prognostic and predictive information, with MMR deficiency being associated with both a good 
prognosis and apparently a lack of efficacy from fluorouracil treatment, although data regarding whether or 
not MSI status predicts response to adjuvant chemotherapy in this setting has been controversial[81-85]. The 
most solid data derive from the analyses of the ACCENT database investigating the impact of MSI in stage 
II and III CRCs treated with surgery vs. surgery followed by 5-FU-based adjuvant therapy across 17 different 
trials. Stage II and III patients with MSI tumors showed better outcome with surgery alone compared to 
those with microsatellite stable (MSS) tumors. Conversely, stage III patients showed a significant survival 
benefit from the addition of 5-FU adjuvant therapy after surgery both in case of MSS and MSI tumors[84]. 
To date, adjuvant chemotherapy is not recommended for patients with low risk stage II MSI-H tumors 
due to their excellent prognosis, while stage III patients should receive adjuvant treatment irrespective of 
MSI status. Of note, MSI etiology (germline vs. sporadic) seems to affect the predicted benefit from 5-FU, 
as Sinicrope et al.[86] showed, in a retrospective evaluation of stage II and III CRC patients who received 
either adjuvant 5-FU or placebo, that individuals with MSI-H CRCs due to germline mutations (i.e. LS) had 
an improved disease free survival (DFS) with 5-FU compared to those with sporadic MSI-H tumors. The 
role of MSI as a predictive marker with modern combination regimens, such as FOLFOX and FOLFIRI, 
has less evidence[87-89], and although an MSI-H status was retrospectively shown to predict improved DFS 
with adjuvant irinotecan and 5-FU (IFL regimen) in the CALGB (Alliance) 89803 trial, these results were 
inconsistently demonstrated in other exploratory analyses[90,91]. In the metastatic setting, recent data suggest 
a greater activity of irinotecan in MSI-H mCRC and better outcomes in favor of bevacizumab treatment 
compared to anti-EGFRs[92]. Indeed, vascular endothelial growth factor (VEGF) is known to play a crucial 
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role in tumor microenvironment immuno-modulation and anti-angiogenic treatment has been proposed as 
an effective modality to potentiate immunotherapy[93]. No definitive evidence is available on the prognostic 
role of MSI-H in mCRC; recent data suggest no statistically significant difference in OS between MSI-H and 
MSS mCRCs, although a trend toward a worse OS has been reported for MSI-H[94]. Some studies suggest the 
correlation with BRAF mutational status as a potential confounding factor affecting the estimation of MSI-H 
impact on survival in mCRC[95]. However, the prognostic role of BRAF in these tumors is still object of debate 
and in a recent analysis BRAF V600E mutation was not associated with a worse survival in MSI-H CRC[80]. 
Additionally, a possible negative prognostic effect of immune checkpoint expression in MSI-H CRCs have 
been recently reported, which seems to be able to counterbalance the positive effect of tumor-infiltrating 
cytotoxic T-cell lymphocytes in these tumors[96].

MSI assessment has lately gained a prominent role in the metastatic setting due to the recent groundbreaking 
success of immunotherapy with checkpoint inhibitors in MMR-D mCRCs which has opened a new era 
in the treatment of MSI-H tumors. In the phase II KEYNOTE 016 trial, pembrolizumab demonstrate its 
activity in 28 MSI-H mCRC patients with refractory disease, significantly improving response rate (RR), 
disease control rate (DCR), median PFS and OS compared to MSS patients (RR: 50% vs. 0% and DCR 89% vs. 
16%, respectively; HR for PFS = 0.135, P < 0.001, HR for OS = 0.247, P = 0.001)[97,98]. The combination of ipilimumab 
(an anti-CTLA4) and nivolumab (an anti-PD1), under investigation in the phase II CHEKMATE142 trial, 
showed as well significant results with a recently reported RR of 31.1% (95% CI, 20.8-42.9) in patients receiving 
nivolumab (n = 74) and 55% (95% CI, 45.2-63.8) in those receiving ipilimumab plus nivolumab (n = 119), 
and remarkable 12 months PFS rate and 12 months survival rate (50% and 73% respectively, for nivolumab 
monotherapy; 71% and 85% respectively, for nivolumab plus ipilimumab)[99,100]. Responses were irrespective 
of tumor RAS and BRAF mutational status, immune cell PD-L1 expression or clinical history of LS. Notably, 
both pembrolizumab and ipilimumab/nivolumab showed a trend towards a plateau in the tail of patients’ 
survival curves, suggesting the possibility of long term responders similar to the previous experience with 
immunotherapy in melanoma. Following these striking results, FDA approval was granted for the use of 
checkpoint inhibitors pembrolizumab (Keytruda®, Merck & Co., Inc.)[101] and nivolumab (Opdivo®, Bristol-
Myers Squibb)[100] in the treatment of MSI-H or MMR-D mCRC.

Despite the clinical success of anti-CTLA4 and PD-L1/PD-1 inhibitors, however, only a subset of selected 
patients exhibits durable responses, suggesting that a broader view of cancer immunity is required. A 
complex set of dynamic tumor, host and environmental factors modulate the strength and timing of immune 
anticancer response, and several key immunoregulatory pathways have been identified and involved in the 
definition of an immune signature to predict responses to immunotherapy[102-105]. Alongside the ongoing 
extensive effort to identify additional predictive biomarkers[106,107], understanding the mechanisms limiting 
immunotherapy efficacy, both in terms of innate and acquired resistance, represents a challenge which needs 
to be addressed in order to improve treatment outcomes and develop new actionable strategies[108-110].

Dihydropyrimidine dehydrogenase
Fluoropyrimidine analog 5-FU and its pro-drug capecitabine represent the backbone of chemotherapy 
treatment for colorectal cancer[10]. The mechanism of action of these drugs is based on thymidylate 
synthase (TYMS) inhibition through the formation of a ternary complex between the active metabolite 
5-fluoro-2-deoxyuridine-5-monophosphate (5-FdUMP), TYMS and 5,10-methylentetrahydrofolate, leading 
to the suppression of DNA synthesis[111]. The rate-limiting enzyme for 5-FU catabolism is the enzyme 
dihydropyrimidine dehydrogenase (DPD), responsible for the inactivation of more than 80% of the 
administered dose of 5-FU[112].

Up to one-third of patients treated with these agents experience severe (and in 0.5%-1% of cases lethal) 
toxicities including myelosuppression, mucositis and diarrhea[113]. Functional DPD gene (DPYD) variants 
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leading to a decreased enzymatic activity have been found to correlate with the risk of 5-FU and capecitabine 
severe toxicities in several pharmacogenetic studies. Over 30 single nucleotide polymorphisms (SNPs) in 
the DPYD gene have been studied over the last 20 years, although many of these variants did not appear to 
have any functional effect. Among the most well-known, the c.2846 A>T and c.1679 T>G variants, alongside 
the G>A mutation (DPYD*2A) of the invariant splice site in exon 14 (IVS14+1G>A), coding for a truncated 
protein with no enzymatic activity, have been consistently associated with decreased DPD activity and a 
4-fold increase of risk of developing 5-FU related toxicities[114]. DPYD*2A is the most frequent SNPs in 
the Caucasian population, nevertheless its incidence is low (about 1%-2% for the heterozygote genotype) 
and shows substantial ethnic variations. Homozygous for DPYD*2A have been associated with cases of 
lethal toxicities in patients treated with fluoropyrimidine-based chemotherapy[115,116]. More recently a large 
meta-analysis from Meulendijks et al.[117] confirmed the predictive role for drug-related toxicities for four 
DPYD variants:  DPYD*2A, c.2846A>T, c.1679 T>G and c.1236G>A/haplotype B3. Data from retrospective 
pharmacogenetic analyses from the Italian adjuvant TOSCA trial confirm the role of DPDY*2A as a risk 
factor for fluoropyrimidine-related toxicities[118]. Additionally, a prospective study enrolling 2,038 patients 
candidate to receive a fluoropyrimidine-based chemotherapy demonstrated the feasibility and cost-
effectiveness of upfront DPYD*2A genotyping before treatment start. DPYD*2A variant allele carriers were 
treated with a reduced dose-intensity leading to a significant reduction of the risk of grade ≥ 3 toxicity 
(28% vs. 73% in historical controls, P < 0.001) and a reduction of drug-induced death from 10% to 0%[119]. 
The low frequencies of the aforementioned risk alleles, however, cannot fully explain the estimated risk of 
DPD-linked fluoropyrimidine-related adverse events, underlining the complex multi-level modulation of 
DPD activity, involving both transcriptional and post-transcriptional mediators, and the need to investigate 
additional DPYD risk variants. Nevertheless, available data support the role of DPYD testing as a pre-
treatment screening in patients undergoing 5-FU and capecitabine treatment in order to improve the safety 
of fluoropyrimidine-based therapies and potentially allow genotype-guided dose adaptations, as recently 
recommended by the clinical pharmacogenetics implementation consortium[120].

Evidence on the role of DPD deficiency as a toxicity biomarker led the FDA to include a warning annotation on 
the label of fluorouracil for patients with low or absent DPD activity, recommending to withheld or permanently 
discontinue fluorouracil in patients with evidence of acute early-onset or unusually severe toxicity, which may 
indicate near complete or total absence of DPD activity. On the other hand, latest published ESMO clinical 
practice guidelines on metastatic colorectal cancer management suggest for the first-time pre-treatment DPYD 
testing as an option[9]. This indication, however, is focused on those patients who experience severe 5-FU toxicity 
before 5-FU re-introduction and routine testing is not recommended, despite the authors stating that patients 
with known partial DPD deficiency benefit from dose adaptation of 5-FU/capecitabine therapy to avoid severe 
toxicity, while in patients with complete DPD deficiency fluoropyrimidines should be avoided and an alternative 
treatment offered. The lack of recommended standardized assessment techniques represents an additional issue 
to the introduction of routine DPD testing.

The predictive role of genetic variants in other key genes involved in the folate pathway, such as TYMS and 
5,10-methylenetetrahydrofolate reductase, has not been validated and their use in clinical practice is not 
recommended.

UDP-Glucuronosyltrasferase A1
Irinotecan, a topoisomerase I inhibitor, is another key drug in the chemotherapy treatment of mCRC, which 
can be used as a monotherapy or in combination with 5-FU and/or other agents in different treatment 
lines[9,10]. This agent is administered as a pro-drug which is metabolized to its active form, SN-38, via 
carboxylation. SN-38 catabolism and excretion are subsequently dependent on conversion to its inactive 
form, SN-38G, operated by hepatic UDP-Glucuronosyltrasferases (UGT) such as UGT1A1[121]. Additionally, 
the pharmacokinetics of irinotecan involves several other enzymes, such as CYP3A4, which control its 
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metabolism modulating the available dose of the active drug. A genetic variation in these enzymes can affect 
tolerability and toxicity profile in patients.

Up to 36% of patients treated with irinotecan-containing regimens experience severe and potentially life-
threatening adverse events, such as neutropenia and diarrhea[122]. Variations in the UGT1A1 activity have been 
shown to be associated with irinotecan-induced toxicities. The most common gene variants are the UGT1A1 *1 
and *28 alleles, representing 98%-99% of all variants in the Caucasian population. The *28 variant, responsible 
for Gilbert syndrome, is characterized by the presence of an extra TA repeat in the promoter of the UGT1A1 
gene which is associated with a remarkably reduced enzymatic activity and correlates with higher incidence 
of drug-related adverse events due to a slower catabolism of SN-38G[123]. In USA, about 45% of the population 
is heterozygous for the *28 allele (*1/*28) while around 10% carries a homozygous genotype for this variant. 
The frequency increases in the African population and is lower in South-East Asian and Pacific populations. 
The role of UGT1A1 genotyping has been evaluated in several clinical trials, and two large meta-analyses 
including nearly 2000 patients confirmed that carriers of the UGT1A1 *28/*28 genotype were at a higher 
risk for neutropenia compared to WT *1 patients even at a low irinotecan dosage (80-145 mg/m2)[124], while 
carriers of the *28 allele were at risk of severe diarrhea at doses above 125 mg/m2[125]. Consistently, genotyping 
analyses of patients treated with 5-FU and irinotecan within the randomized phase III Nordic IV trial[126] and 
the randomized phase III TRIBE trial[127], confirmed the association between the UGT1A1*28/*28 genotype 
and higher risk of neutropenia. Subsequent meta-analyses most recently supported once again the role of 
UGT1A1*28 as predictive of irinotecan-related severe toxicities, as well as the role of additional variants such 
as UGT1A1*6, a missense variant frequent in the Asian population[128,129]. Finally, a recent dose-finding and 
pharmacokinetic study suggests that irinotecan treatment dose should be individualized based on UGT1A1 
genotype. Results from this study, in fact, show that the maximum tolerated dose of irinotecan, administered 
as an intravenous infusion every 3 weeks, was 850, 700, and 400 mg in patients bearing the *1/*1, *1/*/28, and 
*28/*28 genotypes, respectively[130].

Based on available data the latest ESMO guidelines suggest UGT genotyping as an option in patients with a 
suspicion of UGT1A1 deficiency and when the administration of a dose of irinotecan >180 mg/m2 is planned[9]. 
On the other hand, the National Comprehensive Cancer Network guidelines version 2.2017 states that 
irinotecan should be used with caution and at a decreased dose in patients with Gilbert syndrome or elevated 
serum bilirubin, but routine genotyping of UGT SNPs is not recommended[10]. It has to be noted, however, 
that FDA has modified irinotecan label to include a toxicity warning for the UGT1A1*28 polymorphism, 
suggesting an initial dose reduction when treating patients carrying the UGT1A1*28 homozygous allele.

EMERGING BIOMARKERS OF SPECIAL INTEREST
HER2
Although tumor RAS WT status is, as previously described, a crucial prerequisite for anti-EGFRs activity 
in mCRC, several patients with RAS and BRAF WT tumors still do not benefit from anti-EGFR treatment. 
Based on preclinical data and retrospective evaluations, additional mechanisms of primary resistance to 
anti-EGFR agents have been identified over time in RAS WT mCRC, including human epidermal growth 
factor receptor 2 (HER2/neu) amplification. HER2 is a member of the EGRF family which regulates key 
cellular processes such as proliferation and apoptosis through the activation of the RAS/RAF/ERK and the 
PI3K/PTEN/AKT signalling pathways. HER2 role as a driver oncogene in CRC and as potential biomarker 
for targeted treatment in the metastatic setting has recently been the object of great interest.

First data were reported in 2011 when HER2 amplification (which can be found in approximatively 5% of 
RAS WT mCRCs), was detected in a subset of KRAS/NRAS/BRAF/PIK3CA WT cetuximab-resistant patient-
derived xenografts. Following this first evidence, a proof-of-concept study in the subgroup of HER2-amplified 
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xeno-patients demonstrated a significant tumor regression after combined treatment with HER2 and EGFR 
blockade[131]. These results were subsequently challenged in an Italian phase II clinical trial, the HERACLES 
study. More than 1000 mCRC cases were analysed in order to identify strict criteria for the definition of 
HER2 amplification[132] in the dedicated HERACLES diagnostic. Afterwards, the activity of an HER2 double 
blockade with trastuzumab and lapatinib was evaluated in chemorefractory mCRC patients with HER2-
positive tumors. Initial results of the study have been published, showing a 30% objective response rate (95% 
CI, 14-50), with one patient achieving a complete response, and a 44% stable disease rate (95% CI, 25-63)[133]. 
Of note, none of the 15 patients (56%) evaluable for response to anti-EGFRs achieved an objective response 
to previous treatment with either cetuximab or panitumumab, supporting the role of HER2 amplification 
as a mechanism of primary resistance to anti-EGFR targeted agents. Moving from such promising results, a 
second cohort of the study has enrolled patients to treatment with a combination of trastuzumab-emtansine 
(TDM1) and pertuzumab, and patients experiencing disease progression after treatment with trastuzumab 
and lapatinib are receiving TDM1 monotherapy within the HERACLES Rescue trial. New results from these 
studies are highly anticipated.

Confirmatory results on HER2 as a possible target in mCRC came also from the phase II MyPathway trial, 
and retrospective series confirmed data on HER2 as a possible predictive biomarker of resistance to anti-
EGFRs[134]. Additionally, HER2 amplification detected on tissue or on circulating tumor DNA (ctDNA) 
was identified as a possible mechanism of acquired resistance in HER2 negative, RAS/BRAF WT, patients 
progressed during anti-EGFR treatment[135]. Of note, a randomized phase II trial, the S1613 study, has 
been recently opened to explore the efficacy of trastuzumab and pertuzumab compared to cetuximab and 
irinotecan in pre-treated anti-EGFR naïve mCRC patients carrying a tumor with HER2/neu amplification[136].

Supported by a strong preclinical rationale and confirmatory clinical data HER2 testing might be soon 
implemented in clinical practice for patients with mCRC candidate to receive anti-EGFR and/or anti-HER2 
treatments.

Anti-EGFR agents: other biomarkers of primary and acquired resistance
Alongside HER2 amplification, several other mechanisms of primary resistance to anti-EGFR targeted 
treatment have been identified so far, including phosphatidylinositol-3-kinasecatalytic subunit alpha 
(PIK3CA) mutations (exon 9 and 20 hotspot mutations), MET amplification, FGFR1 and PDGFRA mutations, 
loss of PTEN function and low EGFR copy number[137]. However, the routine use of these biomarkers in 
clinical practice cannot be recommended at present, and further prospective validation of their predictive 
role is warranted. Nevertheless, different combined strategies and novel targeted agents aimed to overcome 
primary resistance to anti-EGFRs are currently under investigation, such as the combination of anti-
EGFR agents with mammalian target of rapamycin (mTOR) inhibitors[138]. Recently, a panel of genomic 
alterations (the PRESSING panel) comprising activating mutations of the MAPKs or PI3K/AKT axis, HER-
2 amplification or mutations, MET amplification and NTRK/ROS1/ALK/RET rearrangements, have been 
tested in an interesting retrospective case-control study aiming to dissect primary resistance to anti-EGFR 
treatment, demonstrating the negative predictive impact of these mutations in RAS/BRAF WT mCRCs 
treated with anti-EGFRs[139]. The study included 47 cases (patients resistant to anti-EGFR-containing 
regimens) and 47 controls (patients who responded to single agent anti-EGFRs or to a combination of 
irinotecan with anti-EGFRs if previously clearly irinotecan refractory). Aforementioned genomic 
alterations were reported in 20 (42.6%) cases and 1 (2.1%) control (P < 0.001), meeting the primary endpoint 
of the study. Additionally, primary tumor right-sidedness was found to be associated with resistance to 
anti-EGFRs, confirming recent literature evidence, and the combined evaluation of PRESSING panel 
and primary tumor location demonstrated the best predictive accuracy. These results open promising 
perspectives on the clinical application of a more comprehensive molecular characterization of RAS/BRAF 
WT mCRCs to further improve and refine patients selection.
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Secondary resistance to anti-EGFRs is often dependent on clonal selection induced by targeted treatment 
pressure. Emerging mutations in the RAS/RAF/MAPK signaling pathway can be detected after disease 
progression in tumor biopsies from previously KRAS wild-type tumors and multiple mutations can coexist 
at the same time in the same sample[140]. This seems to be the result of the amplification of pre-existing 
minor sub-clones, suggested by a significant overlap in the genetic events associated with primary and 
acquired resistance[141]. Moving from these data, several trials are currently exploring different approaches to 
multiple targeted inhibition based on the emergence of selected resistance drivers, such as the combination 
of anti-EGFRs with MEK or MET inhibitors. Mutations in the ectodomain of EGFR represent an additional 
mechanism of resistance limited to the acquired setting[142,143]. Notably, a subset of mutations including EGFR 
S492R as well as other acquired mutations recently identified (S464L, G465R and I491M) appears to confer 
resistance to cetuximab but not panitumumab. The binding epitopes of cetuximab and panitumumab on 
EGFR, in fact, overlap but are not identical[144,145]. Retrospective analyses from the ASPECCT trial, comparing 
panitumumab to cetuximab in chemorefractory mCRC patients, revealed that EGFR S492R mutations 
occurred in 1% vs. 16% of patients treated with panitumumab and cetuximab, respectively[146]. The possible 
rationale for using panitumumab after the detection of these mutations as a mechanism of resistance to 
cetuximab still need further validation. Other strategies to overcome acquired resistance to anti-EGFRs 
include treatment with novel antibodies targeting different epitopes of the EGFR ectodomain, which can 
increase receptor internalization and degradation such as MM-151[147] and Sym004[148].

VEGF pathway
Angiogenesis plays a key role in CRC development and progression, and VEGF is a key regulator in both 
physiological and pathological angiogenesis. Therapeutic agents targeting VEGF/VEGFR signaling (i.e. 
bevacizumab, aflibercept, ramucirumab and regorafenib) proved to be effective across different treatment 
lines in mCRC and contributed greatly to improve patients’ survival in recent years[9,10]. However, despite 
extensive efforts to identify predictive biomarkers for antiangiogenic therapies in the last decade, no predictive 
marker is available in clinical practice yet[149]. The complexity of the angiogenesis signaling network and the 
overlap between various angiogenic factors, in fact, represent a challenge to pharmacogenomic biomarkers 
discovery.

In 2012, Bates et al.[150] retrospectively analyzed CRC tumor samples from the phase III bevacizumab E3200 
trial to explore the predictive value on treatment outcomes of VEGF165b, a VEGF splice isoform. Despite 
not reaching a statistical significance, patients with a lower level of VEGF165b appeared to benefit more from 
bevacizumab treatment. Focusing on a different candidate marker, recently published data demonstrated 
that patients treated with first-line bevacizumab-containing regimens had a significantly longer PFS when 
affected by Homeobox B9 (HOXB9)-negative tumors compared with those with HOXB9-positive tumors (18.0 
vs. 10.4 months, P = 0.048). HOXB9 is known as a highly conserved homeobox transcription factor gene which 
drives neoplastic transformation and tumor progression exerting an anti-apoptotic effect and promoting 
tumor cell invasion. The authors demonstrated, both with preclinical and clinical data, that transcription 
factor HOXB9 mediates resistance of CRC to bevacizumab modulating a complex network of alternative 
pro-angiogenic and pro-inflammatory secreted factors[151]. A prospective validation of these promising 
results is highly anticipated. In another interesting analysis, NOTCH1 expression has been proposed as a 
detrimental prognostic factor in mCRC patients treated with chemotherapy plus bevacizumab[152]. Of note, 
a phase Ib trial is ongoing exploring safety and preliminary efficacy of a bispecific antibody targeting VEGF 
and the NOTCH ligand DLL4 (OMP-305B83) in combination with FOLFIRI as second-line treatment in 
mCRC[153]. Finally, a novel emerging player in the angiogenesis regulatory pathways is the protein apelin 
(APLN). APLN signaling takes part in multiple physiological functions including angiogenesis, and interacts 
at different levels with key mechanisms regulating cell growth, survival and apoptosis. Recent preclinical 
data based on the analysis of tumor-derived endothelial cells from patients receiving bevacizumab showed 
that APLN mRNA levels are significantly associated with treatment response. In fact, APLN levels were high 
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in non-responders and low in patients who benefitted from bevacizumab (P = 0.0001)[154]. All these potential 
biomarkers, however, still need validation.

As novel anti-angiogenic agents have entered clinical practice in recent years, the interest was directed to 
identify specific biomarkers for each compound. A retrospective analysis of ctDNA from liquid biopsies 
collected from about 350 patients treated with regorafenib in the CORRECT trial was performed to investigate 
the impact of KRAS, PIK3CA and BRAF mutations on regorafenib efficacy. Results were consistent with 
previous data and confirmed that the benefit from regorafenib on survival and treatment outcomes was 
irrespective of KRAS and PIK3CA mutational status[155]. The analysis according to BRAF mutational status, 
on the other hand, was not feasible due to the small number of BRAF-mutated patients. Data on RAS, BRAF 
and sidedness as biomarkers in patients treated with aflibercept in the VELOUR trial have been recently 
presented as well. No significant interactions according to RAS and BRAF status were found in this analysis, 
although a trend for better outcomes was observed for BRAF-mutated tumors treated with aflibercept in 
comparison with the control arm (mOS 10.3 vs. 5.5 months, respectively, HR 0.42; 95% CI, 0.16-1.09; P = 
0.08)[156]. Similar results were observed in patients treated with ramucirumab within the RAISE trial. In 
fact, the ramucirumab favorable treatment effect was similar between RAS-mutated and all RAS/RAF WT 
tumors; however, the benefit was more notable in BRAF-mutated tumors both for OS (HR 0.54; 95% CI 
0.25-1.13) and PFS (HR 0.55; 95% CI 0.28-1.08)[157]. Additionally, Tabernero et al.[158] assessed the correlations 
of a series of baseline marker levels (including VEGFR-2 immunohistochemistry in tumor tissue) with 
clinical outcomes in the RAISE patients population. Only VEGF-D circulating serum levels were found to 
be statistically significant with higher levels of this soluble factor (≥ 115 pg/mL) associated with improved 
ramucirumab efficacy in comparison with placebo[158].

Several SNPs in different genes involved in VEGF signaling pathway have been investigated over time. Results 
from a large meta-analysis including 158 SNPs and 1348 patients enrolled in five phase III randomized trials 
suggested an association between VEGFA rs699946 and VEGFR-2 rs11133360 polymorphisms and improved 
PFS in bevacizumab-treated patients[159]. Unfortunately, additional promising retrospective findings on 
different candidate SNPs of VEGF/VEGFR pathway genes were not prospectively validated in a dedicated 
study[160].

DNA methylation
Over the last decade, evidence on the role of the epigenome in CRC has been largely explored and it is 
now recognized that among thousands of epigenetic alterations which can be present in each tumor, a 
small subgroup may be considered a driver event in CRC development[161]. Different epigenetic mechanisms, 
in fact, can play a key role in carcinogenesis, such as DNA methylation, nucleosome positioning, histone 
modifications and non-coding RNAs expression[162]. Technological advances have considerably increased 
our ability to detect a wide number of epigenetic alterations which can eventually have a role as clinical 
biomarkers for early detection, prognostic stratification and treatment efficacy prediction in CRC patients. 
Of note, recently the availability of more refined genome-wide mapping technologies, highlighted that 
the function of DNA methylation can vary depending on its context, underlining a deep complexity that 
warrants further evaluations[163].

Aberrant DNA methylation is the most extensively studied epigenetic mechanism in CRC. Global DNA 
hypomethylation is currently considered a common feature of CRC; on the other hand, however, evidence 
on the role of CpG islands DNA hypermethylation in promoting CRC by silencing the expression of tumor 
suppressor genes led to the identification of the CpG Island Methylator Phenotype (CIMP), consisting 
in a subset of CRCs characterized by distinct epidemiological, histological and molecular features and 
prognosis[164]. CIMP+ tumors are associated with female gender and older age, show more frequently a right-
sided colon location, a high incidence of BRAF V600E mutation and MSI-H status as a consequence of MLH1 
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epigenetic silencing through promoter DNA hypermethylation, diploid copy number and absence of TP53[165]. 
CIMP status has been proposed as a promising prognostic marker for CRCs, however, several studies reported 
contradictory results, possibly due to the overlap between the CIMP+ phenotype and the MSI-H phenotype, 
associated in 30%-50% of cases with BRAF mutation[166]. The lack of global consensus in defining CIMP+ 
tumors, together with these controversial results, has hindered the uptake of CIMP as a relevant biomarker in 
clinical practice and further studies are warranted to explore its predictive and prognostic value[167].

Long interspersed nucleotide element-1 (LINE-1) methylation measured by pyrosequencing has been shown 
to correlate with global DNA methylation levels[168]. LINE-1 is a retrotransposon related to key CRC features 
involved in the carcinogenesis process: LINE1 hypomethylation is associated with 18q loss of heterozygosity 
(LOH); whereas an inverse correlation has been demonstrated between LINE-1 hypomethylation, 
CIMP-H and MSI-H status. LINE-1 methylation levels have been reported to impact CRC prognosis with 
hypomethylation conferring poor prognosis in terms of overall mortality (OM) and colorectal cancer-
specific mortality[169]. Additionally, LINE-1 hypomethylation in MSS/CIMP+ stage II and III CRC has been 
showed to predict benefit from adjuvant chemotherapy with oral fluoropyrimidines[170]. These data suggest 
that DNA demethylation may play, as well, a crucial role in CRC development, prognosis and response to 
treatment. Although promising, however, these findings need further validation. 

The DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) has recently gained attention and 
has been object of several studies. This gene encodes a DNA repair protein which removes alkylating groups 
from O6-guanine and is involved in protecting cells against damages from alkylating agents. MGMT has 
been shown to undergo epigenetic silencing by promoter hypermethylation in more than 40% of mCRCs[171]. 
The loss of MGMT gene expression impairs the ability of DNA repair mechanisms to remove alkyl groups, 
potentially enhancing the cytotoxic effects of alkylating drugs, such as dacarbazine and temozolomide. 
On these bases, several phase II clinical trials[172] evaluating the efficacy of alkylating agents in mCRC have 
been conducted with promising results. In these studies, MGMT methylation has been used as a predictive 
biomarker for patients’ selection, supporting a possible role for this novel marker in clinical practice.

In an era in which immuno-oncology is revolutionizing cancer treatment strategies, novel possible relevant 
implications of aberrant DNA methylation come from its tight connection with the immune cells system. 
To date, immune-checkpoint inhibitors (ICI) have shown striking results in selected cancer types, although 
only a minority of patients are sensitive to these drugs. De novo DNA methylation has been recently 
reported to have a central role in maintaining a T cell exhaustion status that contributes to resistance to 
ICI treatment[173]. On the other hand, previous studies demonstrated that DNA demethylating drugs can 
enhance CTLA-4 blockade-mediated T cell responses[174]. Moreover, treatment of epithelial cancer cell lines 
(including CRC cell lines) with demethylating agents, i.e. 5-azacitidine, has been reported to promote a 
significant enrichment of immunomodulatory pathways[175]. As a possible explanation, cryptic transcription 
of thousands of treatment-induced non-annotated transcriptional start sites (TINATs) may contribute to 
cancer immunogenicity through the translation of novel potential antigenic proteins, as recently shown 
by Brocks and colleagues in their work exploring DNA methyltransferases inhibitors (DNMTi) treatment 
consequences on epigenetic and genome-wide transcription[176]. Overall, this growing evidence supports a 
strong immunomodulatory effect of DNA demethylating agents in cancer cells, and the rationale to combine 
these drugs with immunotherapy in cancer patients. Based on these premises, a deeper understanding of 
the interplay between epigenetic modifications, cancer cells and immune cells could reveal novel potential 
strategies to enhance ICI treatment efficacy and overcome primary and acquired resistance mechanisms to 
immunotherapy. 

Finally, aberrant DNA methylation may exert a direct effect modulating well-established molecular pathways 
in CRC. Notably, EGFR promoter DNA methylation has been reported to occur in 58% of primary colon 
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tumors and to be strongly correlated with shorter patients’ PFS and OS (PFS 2.4 vs. 7.4 months, P < 0.0001; 
OS 6.1 vs. 17.8 months, P < 0.0001)[177]. On the other hand, Khambata-Ford et al.[178] discovered that patients 
with overexpression of epiregulin (EREG) and amphiregulin (AREG), two EGFR ligands, are more likely 
to achieve disease control when treated with cetuximab and show a significantly longer PFS. These data 
have been confirmed by Jacobs et al.[179] showing a significant association between cetuximab response and 
AREG/EREG expression. In a recent work, EREG and AREG expression has been found to have a strong inverse 
correlation with methylation and to be inversely associated with right-sided tumor location, CIMP-H status 
and BRAF mutation[180]. Additionally, the authors reported that treatment with hypomethylating agents (i.e. 
azacitidine) increased EREG expression, and that a CIMP-H status was associated with shorter PFS outcomes, 
also in BRAF/NRAS WT patients. Based on these data, promoter DNA methylation may be the main regulatory 
mechanism of AREG/EREG expression, which may explain, at least in part, the association between right-
sided tumor location, CIMP-status and anti-EGFR treatment response in mCRC. DNA methylation may, then, 
partially account for primary anti-EGFRs resistance, supporting the rationale to explore the possible synergistic 
treatment effect of demethylating agents in combination with anti-EGFR drugs. 

Despite promising evidence, the complexity and heterogeneity of epigenetic alterations in CRC still represent 
a considerable challenge, which needs to be further addressed in order to identify reliable biomarkers and 
translate current knowledge into actionable therapeutic strategies.

FUTURE PERSPECTIVES
CRC consensus molecular subtypes
In recent years, great advances have been made in understanding the complexity of tumor biology and genetic 
landscape underlying tumor development and response to treatment. In 2015 an international consortium 
developed the Consensus Molecular Subtypes, which classifies CRC into four distinct biological groups, 
based on gene expression signatures and correlated with distinct genetic, epigenomic, transcriptomic, 
microenvironmental, prognostic and clinical features[181]. CMS1 (microsatellite instability immune, 14%) 
tumors are associated with high tumor mutational load (TML), microsatellite instability, hypermethylation 
status (CIMP+), BRAF mutation, and strong immune activation. The CMS2 (canonical, 37%) subtype is 
characterized by an epithelial signature, marked WNT-β-catenin pathway and MYC signaling activation. 
CMS3 (metabolic, 13%) tumors feature metabolic dysregulation; and CMS4 (mesenchymal, 23%) a prominent 
transforming growth factor (TGF)-β activation, stromal invasion and angiogenesis. Samples with mixed 
features (13%) are considered to represent a transition phenotype or intratumoral heterogeneity. CMS 
subgroups show a strong prognostic value independent of tumor stage, with CMS4 associated with worse 
survival. Moreover, retrospective analyses of clinical trials have suggested a potential predictive value for 
CMS subtypes, including a better outcome following bevacizumab treatment for CMS1[182], and a lack of 
benefit from oxaliplatin[183] and anti-EGFRs (irrespective of RAS mutational status)[184] for the mesenchymal-
like phenotype. Although not yet implemented in clinical practice, this classification system has the 
potential to better inform clinicians of prognosis and therapeutic response, and to guide novel therapeutic 
strategies with subtype-based targeted interventions[6]. In fact, data have been published from very recent 
preclinical studies exploring models of CMS in large panels of CRC cell lines, primary cultures and patient-
derived xenografts (PDX), with the aim of developing “adapted” classifiers optimized for pre-clinical 
research and investigate specific drug sensitivity of individual CMS[185,186]. Results from these studies show 
interesting initial findings highlighting subtype-dependent response profiles, with a different sensitivity to 
chemotherapy (either 5-FU or oxaliplatin)-induced apoptosis between CMS2 and CMS4, which relates to 
the in vivo efficacy of chemotherapy in PDX models where a delay in outgrowth of CMS2, but not CMS4 
xenografts, was observed. Additionally, a strong response to anti-EGFRs and HER2 inhibitors was observed 
in the CMS2 subtype. Indeed, a deeper understanding of the unique drug-sensitivity profile of each CMS 
subtype and the possibility of performing high-throughput in vitro and in vivo drug screening using PDX 
technology have the potential to greatly advance precision medicine in CRC.
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Liquid biopsy
Another field of major interest is the rapid development of liquid biopsies technology and the analysis of ctDNA 
as a more comprehensive and less invasive approach to pharmacogenomic profiling in CRC patients[187,188]. 
Allowing large-scale genomic profiling and being able to capture the molecular heterogeneity of different 
tumor sub-clones coexisting in the same patients, these techniques are expected to play a pivotal role in 
improving patients stratification and selection for targeted treatments. Moreover, the possibility to perform 
seriated testing over time represents a valid opportunity to guide treatment strategies through an early 
detection of the emergence of treatment resistance and a dynamic tumor molecular profiling[189]. Indeed, data 
from repeated ctDNA analyses have been able to show the emergence of RAS and/or BRAF mutations during 
treatment with anti-EGFRs in KRAS WT patients, closely dependent on treatment exposure, with a dynamic 
increase during EGFR blockade followed by a rapid decline after treatment withdrawal[190]. Recently, a large 
study on genomic profiling through liquid biopsy analyzing next generation sequencing data from cell-free 
DNA of 1397 CRC patients, confirmed the reliability of this methodology in detecting genomic alterations 
when compared with corresponding tissue-based sequencing. Additionally, results of this study highlighted 
the possibility of detecting the development of multiple distinct concomitant mechanisms of resistance after 
targeted treatment with anti-EGFRs in the same subject, proving that ctDNA sequencing can generate a 
valuable insight into tumor heterogeneity and therapeutic resistance[191]. Although still needing extensive 
investigations and prospective validation, liquid biopsy approaches to profile tumor dynamics and response 
to treatment and to guide rechallenge strategies based on detection of circulating genomic alterations are 
currently under investigation in several clinical trials.

MiRNAs
Finally, noncoding RNAs represent an evolving field in cancer diagnosis and prognosis, and several studies 
have suggested their possible role as treatment target in different diseases[192,193]. miRNAs are noncoding 
single-stranded RNA molecules, less than 200 nucleotides in length, with a post-transcriptional regulatory 
function involved in the modulation of a broad range of biological processes comprising cellular signaling, 
metabolism, proliferation and differentiation[194]. The role of several miRNAs has been implied in CRC 
evolution and progression, moreover different miRNAs have been identified as predictive of treatment 
response to standard chemotherapy (i.e. miR-429 and miR-148a with 5-FU) and targeted agents (i.e. miR-7 
and miR-375 with anti-EGFRs)[195]. Although promising these findings still need validation; nevertheless, the 
possible clinical application of miRNAs as biomarkers or as a potential target of treatment in CRC deserves 
further investigation. Of note, new strategies are currently under study to develop miRNA based inference 
methods to extensively infer drug-disease causal relationship (miRDDCR) to assist in experimental design 
for drug discovery and disease treatment[196].

CONCLUSION
In the era of precision medicine, optimizing therapeutics and drugs combination for a narrow subset of patients 
based on patients’ and tumors genetic makeup is of paramount importance in order to improve outcomes and 
minimize unrequired toxicities. The field of pharmacogenomics is constantly growing, and with the availability 
of new technologies it has been moving beyond candidate gene approaches and genome-wide association 
studies towards a comprehensive evaluation of genomic and epigenomic markers to drive treatment choices 
and optimize targeted therapies. Several biomarkers have entered clinical practice so far, and many more are 
currently being tested in clinical trials. Biomarker discovery and validation however still encounter many issues, 
due often to the small subsets of patients bearing selected alterations, the retrospective nature of most studies 
and the difficulty in proving the cost-effectiveness of a specific novel marker. Implementing biomarker-driven 
clinical trials and prospective pharmacogenomic profiling in clinical research, possibly integrating companion 
diagnostic tests since the early stages of novel drug development, is thus a priority for future research. Finally, 
dynamic profiling of tumor genomics under treatment pressure will play a critical role in uncovering acquired 
mechanism of resistance and directing personalized treatment strategies.
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