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Abstract
Steatotic liver disease (SLD) is the most common cause of liver disease globally, with an ever-increasing burden. 
The two primary components of SLD are metabolic dysfunction-associated steatotic liver disease (MASLD) and 
Alcohol-Associated Liver Disease (ALD). Both entities have important knowledge gaps in differentiation, diagnosis, 
risk stratification, and prognosis. Given the enormous burden of both MASLD and ALD and their diverse 
presentation, they form an ideal ground for the application of artificial intelligence (AI) and machine learning (ML) 
techniques and algorithms. ML models can aid in disease prediction among large populations and estimate those at 
the highest risk of disease progression or mortality, while applications with AI technology can aid in better 
detection and monitored treatment approaches. The use of AI in digital pathology and digital therapeutics are 
attractive options in moving toward personalized medicine. This review briefly summarizes the knowledge gaps in 
SLD with emerging literature on the use of ML and AI technologies across domains of disease detection, diagnosis, 
and prognosis.
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INTRODUCTION
Steatotic liver disease (SLD) is the most common cause of liver disease globally, accounting for the majority 
of patients with cirrhosis and liver-related mortality[1]. The two broad overarching categories in SLD are 
metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease 
(ALD), which, taken together, are the future drivers of liver disease[2]. While initially thought of as 
dichotomous entities, given the global increase in alcohol consumption, it is no longer prudent to consider 
them as binaries[2,3]. Instead, they should be looked at as a spectrum with metabolic dysfunction being the 
predominant driver on one end and significant alcohol on the other, with interim grey zones depending 
upon the increasing severity of alcohol intake [Figure 1][3,4]. While different based on nomenclature, ALD 
and MASLD share stark similarities. The basic pathology starts with increased intrahepatic lipid 
accumulation, which leads to downstream effects of inflammation and fibrosis[5]. There is growing evidence 
showing a complex interaction of independent, combined, and modifying effects of alcohol and metabolic 
factors on the onset and progression of SLD, highlighting the multifactorial background of liver disease. 
Given the emerging complexity, more holistic approaches could be useful for risk prediction, diagnosis 
treatment planning, and prognosis[2].

NEED FOR MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE MODELS IN 
MASLD/ALD
Clinical decision making in hepatology relies on establishing an accurate diagnosis, understanding the 
dynamics of progression, ascertaining intrinsic prognostic risks, determining the population to benefit most 
from therapy, and identifying the most appropriate therapy. SLD is a slowly progressive disease, and both 
for MASLD and ALD, a majority do not go on to have progressive liver disease. Instead, non-liver-related 
events (cardiovascular, renal, and extrahepatic malignancies) frequently determine ultimate patient 
outcomes[6]. Large data across fourteen studies encompassing more than 17,000 individuals have shown that 
liver-related and all-cause mortality is increased, with those at the highest risk defined as having greater 
than stage 2 fibrosis[7]. Hence, it becomes imperative to diagnose, identify this group at the highest risk, and 
devise appropriate risk-based therapeutic strategies that translate to tangible benefits. Clinical risk 
prediction models, hence, find their application in both MASLD and ALD. Such models help clinicians 
make better decisions in both diagnostic and prognostic domains, including the development of cirrhosis, 
first decompensation, and incident organ failures[8]. While conventional modeling techniques have long 
been in vogue, clinical data’s emerging complexity and magnitude have paved the scope for machine 
learning (ML) and artificial intelligence (AI)-based modeling in SLD, specifically for MASLD/ALD 
phenotypes.

BASICS OF ML AND AI
AI is the fastest-growing domain of computer science, with broad scopes and acceptance across disciplines 
ranging from education to finance, e-commerce, human resources, and rapid healthcare evolution[9]. In 
simplistic terms, AI enables computers and machines to simulate human intelligence and problem-solving 
capabilities. Amidst the broad domain of AI, ML is a specific subdomain that focuses on using data and 
algorithms to enable AI to imitate how humans learn, gradually improving its accuracy with the ultimate 
aim of performing complex tasks. ML itself can be “supervised ML” when priorly labeled datasets are used 
to train algorithms, classify data, or predict outcomes, or it can be “unsupervised ML” where algorithms are 
aimed to analyze unlabeled datasets (subsets called clusters)[10].

The AI/ML development lifecycle [Figure 2A] begins with the collection of reliable and valid data, followed 
by crucial steps including data cleaning, exploratory analyses, data partitioning, model training, validation, 
generalization, and ultimately, impact assessments. From the outset, clear expectations and deliverables 
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Figure 1. Depicting the current classification of steatotic liver disease into common phenotypes. FBS: Fasting blood sugar; HBA1C: 
glycosylated hemoglobin; MASLD: metabolic dysfunction-associated steatotic liver disease; ALD: alcohol-associated liver disease; WC: 
waist circumference; HDL: high-density lipoprotein; TG: triglyceride; BP: blood pressure.

Figure 2. Basics of machine learning. (A) life cycle of ML models; (B) Key ingredients of ML models, i.e., data, algorithm, and output. ML: 
Machine learning; XGB: extreme gradient boost; RF: random forest; DL: deep learning; ANN: artificial neural network; RNN: recurrent 
neural networks; RL: reinforcement learning.

must be established. This involves defining the research question that the AI/ML process seeks to answer 
and highlighting its public health or scientific relevance[11].

The data collection phase is next, which may encompass both structured data (e.g., spreadsheets) and 
unstructured data such as text, voice, images, and sensor outputs. Data cleaning follows, where duplicate 
entries, errors, outliers, and missing data are addressed, and validation steps and annotations are applied. 
Exploratory analysis helps identify the distribution of key features across categories of interest[12]. 
Subsequently, the dataset is split into training and validation cohorts. The models are trained, validated, and 
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generalized across diverse populations and geographical regions. Explainability becomes a critical aspect, 
allowing for the interpretation of the most influential variables and insights into how predictions are made 
for individual cases[12,13]. Finally, real-world deployment enables the evaluation of models’ impacts on 
clinical and socio-economic outcomes relevant to the disease under study.

In essence, three core components underpin any AI/ML model: data, algorithm, and the desired output 
[Figure 2B]. The interplay of these components leads to three primary AI/ML paradigms: supervised, 
unsupervised, and reinforcement learning. Evaluating the effectiveness of ML and deep deep learning (DL) 
models in medical imaging involves assessing their performance using appropriate metrics and ensuring 
their clinical utility through rigorous validation. Common evaluation metrics include accuracy, sensitivity, 
specificity, Dice similarity coefficient, Jaccard index, and area under the receiver operating characteristic 
curve (AUC-ROC). These metrics provide insights into a model’s ability to identify and classify medical 
images correctly. However, selecting the appropriate reference standard, such as expert annotations or 
histopathological findings, is crucial for meaningful evaluation. Inadequate or biased reference standards 
can lead to misleading performance assessments[14].

Determining the clinical utility of ML or DL models extends beyond statistical performance; it requires 
evaluating their impact on clinical decision making and patient outcomes. Key considerations include the 
model’s integration into clinical workflows, its interpretability by healthcare professionals, and its 
generalizability across diverse patient populations. Prospective clinical trials and real-world studies are 
essential to assess these aspects, ensuring that the deployment of such models leads to tangible 
improvements in healthcare delivery[15].

In supervised learning (e.g., linear or logistic regression, decision trees, Bayesian networks, support vector 
machines), the model is trained on labeled data. Here, the algorithm learns the relationship between input 
features - such as patient demographics or medical imaging - and labeled outcomes. In unsupervised 
learning techniques (e.g., principal component analysis, clustering methods), the data are not labeled, and 
the algorithm identifies hidden structures or patterns within the dataset. In reinforcement learning, models 
iteratively learn from the consequences of their actions to determine optimal behavior in a given context[16]. 
Supervised learning is one of the most widely used approaches in healthcare. For instance, consider a 
structured dataset containing patient histories, clinical findings, laboratory results, and a diagnosis label. 
The first step involves training an ML model using this dataset. Once trained, the model is tested on a 
separate dataset to evaluate its ability to correctly identify diagnoses. When presented with a new case, the 
trained model uses key features to classify and predict the diagnosis[17].

In contrast, unsupervised learning might involve an algorithm tasked with analyzing liver tumor images. In 
this case, the algorithm is not pre-trained on the dataset and has no prior knowledge of the features it will 
encounter. The algorithm’s task is to identify image features on its own by clustering the dataset based on 
image similarities[18].

DL has garnered significant attention in recent years. These models are inspired by neural networks in the 
human brain, where dendrites receive, soma processes, and axons transmit information. Similarly, DL 
models consist of multiple layers of neurons connected by mathematical functions. The input layer gathers 
the data, the hidden layers process it, and the output layer provides predictions, classifications, or insights, 
depending on the task at hand. Unlike traditional ML models, neural networks can automatically extract 
features from data and learn independently[19]. DL models are especially effective in handling large, complex, 
and high-dimensional datasets. The rise in the volume and complexity of healthcare data, along with 
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advancements in computational power, has led to increased DL adoption. Modern AI/ML advancements 
often leverage DL techniques such as convolutional neural networks (CNNs) for image recognition and 
recurrent neural networks (RNNs) for predictive modeling[20]. Figure 3 showcases various AI-based models 
and their applications in hepatology.

ROLE OF ML MODELS AND AI IN PREDICTING DIAGNOSIS AND PROGNOSIS IN ALD
Knowledge gaps
The field of AI and ML, in particular, has rapidly expanded. However, the use of such models must be 
directed toward specific knowledge gaps. In ALD, specific knowledge gaps exist in predicting and 
identifying excessive alcohol use and making decisions in linkage to care, deciphering the ever-expanding 
field of metabolomics to identify clinically important pathways, distinguishing ALD from MASLD, and 
identifying the most at-risk group for short-term mortality among alcoholic hepatitis, thus mandating 
urgent and novel treatments. In the following sections, we review the literature on these specific gaps in 
knowledge and the application of ML-based models in such domains.

Role in alcohol use disorder
Identifying excessive alcohol usage is one key to addressing the issue at its root cause and developing 
preventive strategies. Preliminary studies from a two-center cohort study comparing multiple ML 
algorithms showed the highest predictive performance of the elastic-net machine-learning algorithm, with 
AUCs of 0.86 and 0.85 in Canadian and Australian cohorts, respectively, using the validated “Detection of 
alcohol and drug problems in adolescents (DEP-ADO)” questionnaire as a reference[21]. Those with alcohol 
use disorder need to be identified for appropriate treatment. Lee et al. demonstrated a 10-measure 
alternating decision tree (ADT) derived from a more extensive set of 178 clinical measures that best 
classified individuals as treatment-seeking or non-treatment-seeking for AUD. All alternative methods were 
inferior to the ADT method for accuracy and kappa statistic as a classifier, except for the simple logistic 
model. In addition, the comparison decision tree approaches produced either a single large, complex 
decision tree with 576 nodes or many small decision trees. Accordingly, neither random tree, random forest 
(RF), nor logistic regression was clinically useful. In contrast, the ADT approach did aim to reduce a large 
number of measures from the dataset into a streamlined battery composed of a subset of measures[22]. To 
further evidence in the field, Roberts et al. have demonstrated the use of ML models for predicting heavy 
alcohol use in those undergoing treatment for alcohol use disorder. The authors used RF algorithms and 
“leave sites out” partitioning to validate the models externally. ML-based models had the best classification 
accuracy compared to logistic regression in both the internal cross-validation and external data set for the 
tendency to engage in heavy drinking in between therapy sessions[23]. Lastly, ML-based models have also 
been used to predict alcohol use disorder remission, using multiple input sources such as 
electroencephalogram (EEG) source-level functional brain connectivity, polygenic risk scores (PRS), 
medications, and demographic information. In the male model with PRS, EEG functional connectivity and 
marital and employment status features demonstrated the highest accuracy of 86.04% compared to single 
domain-based models. Additionally, the authors identified several discriminatory factors related to 
neuroticism, depression, aggression, years of education, and alcohol consumption phenotypes[24].

ROLE IN ALD
Pathophysiological and diagnostic approaches
Gut microbiota alterations are pivotal in the development and downstream complications of ALD. 
Park et al. demonstrated the use of gut microbiota-based (Fecal 16S rRNA sequencing data ) ML algorithms. 
Authors used both supervised (support vector machine, RF, multilevel perceptron, and convolutional neural 
network) and unsupervised (independent component analysis, principal component analysis, linear 
discriminant analysis, and random projection)  models, with the neural network combined with principal 
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Figure 3. Types of machine learning, their objectives, name of algorithms, and key examples in medicine. CNN: Convolutional neural 
networking; PCA: principal component analysis; KNN: K nearest neighbor; SVM: support vector machine algorithm; RNN: recurrent 
neural networks; NMF: non-negative matrix factorization.

component analysis achieving the best AUCs of  >  0.90 as compared to independent component analysis, 
random projection, and support vector machine algorithm (SVM)[25]. Similarly, magnetic resonance 
imaging-based DL models have been shown in a proof-of-principle study to aid in discriminating liver 
cirrhosis etiology based on alcohol as an etiology[26]. Multi-omic approaches for developing diagnostic and 
prognostic liquid biopsy strategies are promising, specifically in ALD. Listopad et al. used transcriptomics 
and proteomics in liver tissue and peripheral blood mononuclear cells to develop highly accurate ML-based 
multi-omic models. Such computational approaches to identify blood-based diagnostic biomarkers can, in 
the future, contribute to developing highly precise blood tests, mitigating the need for liver biopsy[27].
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Distinguishing ALD from other aetiologies
MASLD is the fastest-growing liver disease globally. Paradoxically, alcohol consumption also shows global 
upward trends. Based on this, distinguishing alcohol and non-alcohol aetiologies becomes essential. 
Markers like aspartate transaminase/alanine transaminase ratio, gamma-glutamyl transpeptidase, mean 
corpuscular volume, and composite scores like alcohol-non alcohol index are modestly helpful[28]. A recent 
study explored such markers in the setting of MASLD and ALD and found that although good at extremes, 
such scores perform only modestly in the intermediate cohort of Met-ALD[29]. Hence, a knowledge gap 
remains in differentiating such grey zones where ML models may have a role. In this context, Sowa et al. 
used ML techniques relying on the ALT/AST ratio, adipokines, and cytokines to distinguish MASLD from 
ALD (AUC = 0.91). In addition, using cytokine-based ML, the severity of ALD was also predicted (AUC = 
0.98)[30]. However, further application to the cohort of Met-ALD is required. A similar challenge often exists 
in differentiating acute alcoholic hepatitis from acute cholangitis in those consuming alcohol, as both 
present as jaundice with elevated aminotransferase. Ahn et al. used ten readily available laboratory 
parameters and compared eight supervised ML techniques (decision tree, naive Bayes, logistic regression, k-
nearest neighbor, support vector machine, artificial neural networks, RF, and gradient boosting) to 
differentiate the entities. Using a feature selection strategy to choose the best five variables, ML models 
showed excellent performances with AUCs of 0.98 and 0.97 in derivation and validation sets, respectively[31].

Role in mortality prediction
Accurate prediction of patients at greatest risk of adverse outcomes and the need for definitive therapy 
remains a significant challenge in patients with alcoholic hepatitis. Non-invasive traditional scores like 
Maddrey’s discriminant function (mDF), model for end-stage live disease (MELD), and Glasgow alcoholic 
hepatitis score (GAHS) have been used but have their limitations. Gao et al. used ML approaches using the 
gradient boosting analysis of bacterial and metabolic pathways datasets to achieve excellent 30-day mortality 
prediction (AUC = 0.87). Notably, multiple pathways were related to purine nucleoside biosynthesis, which 
plays an essential role in in vivo bacterial growth in humans[32]. In a large multicentric study across 23 
centers and 12 countries, Dunn et al. proposed the Alcoholic Hepatitis Artificial Intelligence Ensemble 
score, integrating age, gender, cirrhosis, and nine laboratory values with center-specific mortality rates. The 
score outperformed conventional scores like mDF, MELD, and GAHS, with an AUC of 0.81 and 0.79 in the 
derivation and validation cohorts[33].

Role in predicting post-transplant alcohol relapse
Relapse to alcohol use after liver transplantation is one of the key deterrents to the applicability of liver 
transplant in alcoholic hepatitis and alcohol-related cirrhosis.  Multiple scores have been used to predict 
alcohol relapse after transplantation[34]. Lee et al. used an XGBoost-based ML model to predict post‐LT 
harmful alcohol use. With a median follow‐up of 4.4 (IQR 3.0-6.0) years post‐LT, the model showed an 
AUC of 0.930 (95%CI: 0.862-0.998) in the training cohort and 0.692 (95%CI: 0.666-0.718) in the validation 
cohort[35]. However, it must be pointed out that although having a robust AUC, the overall poor positive 
predictive value even in the highest susceptible group (maximum score of 11) is poor.

Applications and translation with AI-based devices and approaches
Wearable devices using AI-based algorithms are important translational outcomes in ALD. In a pilot study, 
Jalal et al. demonstrated a wearable blood alcohol concentration monitoring device to reflect the volatility 
and variation of alcohol concentration on the skin according to blood alcohol concentration changes[36]. In a 
small pilot study, the use of digital phenotyping for alcohol use disorder (AWARE application), with 
features like accelerometer magnitude, number of calls, and location entropy, showed a significant 
association with alcohol craving[37]. Such data provide new insights into the use of smartphone sensors as 
markers for alcohol craving and mood in ALD and alcohol use disorder. Table 1 summarizes some key 
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Table 1. Selected studies showing the application of machine learning and artificial intelligence in alcohol-related liver disease

Authors Study domain and goals Number of subjects Performance

Roberts et al.[23] Predicting heavy alcohol use during 
outpatient treatment

1,383 Training cohort: AUC = 0.89
Validation cohorts: AUC range = 0.80 to 0.87

Kinreich et al.[24] Predicting alcohol use disorder remission 
using EEG, polygenic risk scores and 
demographic variables

1,376 AUC of 0.86 in the training cohort

Park et al.[25] Gut microbial analysis to distinguish ALD 
from MASLD

Derivation: 263 ALD 201 MASLD 
(For validation: 126 ALD and 84 
MASLD)

Derivation cohort: AUC of CNN combined 
with PCA (AUCs) > 0.93 
Validation AUC 0.90

Dunn et al.[33] Predicting 90-day mortality in alcoholic 
hepatitis

Derivation: 860 patients 
Validation: 859 patients

Validation cohort 30- and 90-day AUCs were 
0.811 (0.779-0.844) and 0.799 (0.769-
0.830), respectively

Ahn et al.[31] Differentiating acute alcoholic hepatitis 
from acute cholangitis

Derivation: 459 patients 
Validation: 205 
143 physicians used as 
comparators

Derivation AUC 0.98 
Validation AUC 0.97 
Physician accuracy 0.79

Lee et al.[35] Predicting post liver transplant alcohol 
relapse

91 in the training cohort and 25 in 
the validation cohort

Training cohort: AUC 0.930, PPV: 0.891 
Validation cohort: AUC 0.692, PPV 0.82

ALD: Alcohol-associated liver disease; MASLD: metabolic dysfunction-associated steatotic liver disease; CNN: convolutional neural network; 
PCA: principal component analysis; PPV: positive predictive value; AUC: area under curve; EEG: electroencephalogram.

studies in ALD[23,24,25,33,31,35].

ROLE OF ML MODELS AND AI IN PREDICTING DIAGNOSIS AND PROGNOSIS IN MASLD
Knowledge gaps
Similar to ALD, AI and ML have seen a rapid increase in MASLD. However, some of the key areas that 
remain as definitive knowledge gaps revolve around variability in histopathology reporting, predicting the 
presence of steatosis, identifying at-risk metabolic dysfunction-associated steatohepatitis (MASH), 
identifying significant and advanced fibrosis, and ultimately predicting clinically significant portal 
hypertension (CSPH) and major adverse liver events.

Role in MASLD histology
Manual histological assessment is the gold standard for diagnosing and monitoring disease progression in 
MASH, but it has high interobserver variability. ML-based approaches using histological samples have been 
shown to accurately characterize disease severity and heterogeneity[38]. AI-based analysis has also been 
shown to be extremely sensitive in demonstrating treatment-induced reversal of fibrosis compared to 
conventional scoring[39]. Lastly, using AI-assisted tools (fibrosis) has been shown to improve inter-
pathologist agreement among pathologists with varying experience[40]. Other studies have looked at the 
development and validation of AI  models, leveraging microscopy along with insights from an expert 
hepatopathologist. A total of 25 liver biopsies from the trial on drug Belapectin were randomly selected for 
training, and an additional 10 for validation. The outcomes emphasized the crucial role of disease-specific 
customization of AI models, based on expert pathologist training, in improving accuracy and applicability 
in clinical trials[41]. Ballooned hepatocytes represent a specific histopathological problem, where even among 
expert hepatopathologists, there is poor agreement regarding the number of ballooned hepatocytes seen on 
the same digitized histology images.  AI has been shown to provide a more reliable way to assess the range 
of injury recorded as “hepatocyte ballooning”[42]. Figure 4 shows a schematic for understanding concepts of 
applying AI-based models in digital pathology in MASH.

Predicting the onset of MASLD
While MASLD is one of the most common causes of liver disease globally, it is also of interest to predict 
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Figure 4. Schematic representation of AI applications in digital pathology. ML: Machine learning.

who will develop incident MASLD. Such premises make an ideal case scenario for the application of ML 
algorithms driven by large datasets. Lim et al. worked to answer such a question using a development 
dataset comprised of 25,599 individuals from a South Korean non-alcoholic fatty liver disease (NAFLD) 
registry using Random Survival Forest and Extra Survival Trees. In derivation and validation sets of 331,107 
and 543,874 person-months of follow-up, MASLD incidence was 25.7% and 14.4%, with a median time to 
MASLD onset of being 60 (IQR 38-75) and 24 (IQR 13-37) months, respectively. Both the ML models 
achieved a C-index of > 0.7 in the validation cohort[43]. While Lim et al.[43] used single-point variables, Deng 
et al. used a dynamic model using five constantly updated checkup data to predict the risk of NAFLD at and 
after their sixth health checkup. Intriguingly, the authors showed that the DL model’s predictive 
performance improved over time, with AUC increasing from 0.72 at baseline to 0.818 when five consecutive 
checkups were included[44].

Predicting MASLD progression and identifying MASH
Using electronic health records of patients who received an index diagnosis of MASLD, Ghandian et al. 
used a gradient-boosted ML algorithm (XGBoost) and multi‐layer perceptron models to predict the 
development of non-alcoholic steatohepatitis (NASH) or fibrosis within four years using demographic 
features, vital signs, and laboratory measurements. The XGBoost algorithm achieved an AUC of 0.79 for 
predicting progression to NASH and 0.87 for fibrosis based on International Classification of Diseases, 
Tenth Revision (ICD‐10) codes[45]. Identifying at-risk MASH using conventional regression models is an 
important knowledge gap. Njei et al. used five simple indices: ALT, GGT, platelet count, waist 
circumference, and age to predict high-risk MASH, defined as a FAST score of ≥ 0.35 and ≥ 0.67. An 
XGBoost model achieved high diagnostic accuracy with an AUC of 0.95 compared to 0.5 for FIB-4, APRI, 
and NAFLD Fibrosis score[46]. Similarly, Naderi Yaghouti et al. used RF with sequential forward selection to 
obtain an accuracy of 81.2%  ±  6.4% in predicting NASH as per the NAFLD activity score[47]. Along similar 
lines, Lee et al. showed better performance with independent ML models using only clinical predictors for 



Page 10 of Roy et al. Metab Target Organ Damage. 2025;5:8 https://dx.doi.org/10.20517/mtod.2024.8417

MASH and at-risk MASH[48].

Role in predicting significant and advanced fibrosis
Predicting significant and advanced fibrosis is one of the cornerstones of MASLD risk stratification. Most 
conventional risk prediction models are based on regression techniques. Charu et al., in an elegant study, 
used an ensemble machine-learning algorithm, the “super learner”, to benchmark the performance of 
clinical risk prediction algorithms, especially those based on simple regression techniques. The 
“superlearner” exhibited excellent discriminative abilities for fibrotic MASH as compared to existing models 
[Fibrosis-4 (FIB-4), NAFLD fibrosis score, Forns, AST to Platelet Ratio Index (APRI), BARD, and Steatosis-
associated fibrosis estimator (SAFE)], with AUCs of 0.79 (95%CI: 0.73-0.84) and 0.74 (95%CI: 0.68-0.79) in 
the derivation and validation sets, respectively, thus suggesting a role to benchmark the performance of 
conventional clinical risk prediction models[49]. In an extensive study in patients with biopsy-proven 
MASLD, Verma et al. tested twenty-one ML models (training cohort, N = 1,153, testing cohort, N = 283, 
validation cohort, N = 220) using clinical and biochemical parameters. The ML models showed 7%-12% 
better discrimination than FIB-4 for significant fibrosis. Optimized RF yielded the best negative predictive 
value. Compared to FIB-4, RF could pick ten times more patients with significant fibrosis (SF), reduce 
unnecessary referrals by 28%, and prevent missed referrals by 78%[50].

Predicting CSPH and clinical complications
The development of CSPH marks an epoch in the natural history of compensated advanced chronic liver 
disease. The current BAVENO recommendations define CSPH on varying probabilities based on non-
invasive tests like LSM as CSPH present at LSM ≥ 25 kPa and absent at  CSPH: LSM < 15 kPa and PLT ≥ 150 
× 109/L with a grey zone for those with LSM between 20-25 kPa and PLT < 150 × 109/L, or LSM between 15-
20 kPa and PLT < 110 × 109/L[51]. Looking at histological features to predict CSPH is a novel approach that 
was demonstrated by Noureddin et al. to construct a score called SNOF (septa, nodules, and fibrosis) using 
448 histological variables. A SNOF score of ≥ 11.78 reliably distinguished CSPH (AUC = 0.85), opening 
insights into using histology to estimate CSPH[52]. Hepatic decompensation and all mortality form the hard 
endpoints in MASLD research. The use of digital pathology to predict such endpoints is feasible. Using an 
artificial intelligence-based image processing algorithm of > 150 image outputs, Kendall et al. developed 
models for hepatic decompensation [Clinical Outcome Decompensation Index-Fibrosis (“CODI-F”)] and 
mortality [Clinical Outcome Mortality Index-Fibrosis (“COMI-F”)]. Both tools could directly predict hard 
endpoints and demonstrated predictive value at least equivalent to traditional or computational ordinal 
fibrosis scores[53].

Applications and translation with AI-based devices and approaches
An electrocardiogram (ECG) is one of the simplest and most readily available tests in medical practice. ECG 
has been shown to predict the presence of cirrhosis. Data from 5,212 patients with cirrhosis who underwent 
liver transplantation were used to construct an AI-Cirrhosis-ECG (ACE) score, which showed excellent 
accuracy (AUC = 0.908, 84.9% sensitivity, 83.2% specificity)[54]. The score has also been used to detect 
MASLD, using 3,468 MASLD cases and 25,407 controls with an AUC of 0.69 (original cohort) and 0.62 
(validation cohort). The AI model performance was similar or superior to age- and sex-adjusted models 
using body mass index (BMI) (AUC = 0.71), presence of diabetes, hypertension or hyperlipidemia (AUC = 
0.68), or diabetes alone (AUC = 0.66)[55]. Digital therapeutics has seen a rapid evolution and application to 
provide evidence-based interventions to prevent, manage, and treat diseases. Sato et al. used a computer-
generated smartphone to demonstrate histological improvement in patients with NASH, supported by 
weight loss with a > 50% reduction in fibrosis stage in those with significant fibrosis[56]. Animal model 
studies have shown that an on-skin impedance sensor and an attention-based deep-learning technique can 
detect MASLD early, although such techniques await clinical translation[57]. Table 2 summarizes some of the 
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Table 2. Selected studies showing the application of machine learning and artificial intelligence in MASLD

Authors Study domain and goals Number of subjects Performance and comments

Taylor-Weiner et 
al.[38]

Characterizing histological 
disease severity and 
heterogeneity

166 slides Cohen’s kappa 0.81 (model agreement) with 
pathologist consensus 
Superior prognostic utility compared with 
manual pathological features

Lim et al.[43] Predicting the onset of MASLD Derivation: 1,331, 107 
Validation: 543, 874

C-index of > 0.7 in the validation cohort 
Random survival forest 0.751 (95%CI: 0.742-
0.759), extra survival trees 0.752 (95%CI: 
0.744-0.762)

Ghandian et al.[45] Predicting progression to 
MASH or Fibrosis from MASLD

141,293 patients, 4,384 and 4,472 of 
whom were eventually diagnosed with 
NASH or fibrosis, respectively

AUROC of 0.79 and 0.87 for prediction of 
progression to NASH and fibrosis, 
respectively

Verma et al.[50] Prediction of significant fibrosis 
in MASLD

Training cohort: 1,153
Testing cohort: 283
Validation cohort: 220

NPV in overall set 0.94/0.75 
Testing cohort 0.79/0.58) 
Validation cohort 0.85/0.55 
RF could pick > 10 times more patients with 
significant fibrosis and reduce unnecessary 
referrals by 28% 

Kendall et al.[53] Histological features to predict 
decompensation in MASLD

452 liver biopsy sections Decompensation index (> .31), HR 5.96, 
                                                                                  P < .001

Udompap et al.[55] Prediction of MASLD using 
ECG

3,468 MASLD cases and 25,407 controls Derivation 0.69 
Validation 0.62

Wang et al.[57] Predicting MASLD using skin 
sensors 

Animal model Derivation 1.0

MASLD: Metabolic dysfunction-associated steatotic liver disease; AUORC: area under receiver operative curve; NPV: negative predictive value; 
RF: random forest; ECG: electrocardiogram; MASH: metabolic dysfunction associated steatohepatitis; NASH: non-alcoholic steatohepatitis.

key studies on MASLD[38,43,45,50,53,55,57].

SUMMARY OF STUDIES ON APPLICATIONS OF IMAGING DATA IN ALD AND MASLD
DL and ML have significantly advanced the use of medical imaging in diagnosing, treating, and predicting 
outcomes for ALD and MASLD. These technologies enhance the analysis of imaging modalities, enabling 
more accurate detection and characterization of liver abnormalities. For instance, DL algorithms have been 
developed to automatically detect hepatic steatosis on CT images, achieving high diagnostic accuracy and 
facilitating early intervention strategies.  In prognostic realms, AI models have been employed to predict 
disease progression and patient outcomes in SLD. By analyzing imaging data alongside clinical parameters, 
these models can stratify patients based on risk, aiding in personalized treatment planning. We summarize 
few key studies in Table 3[58,59,60,61].

LARGE LANGUAGE MODELS
Large language models (LLMs) have emerged as transformative tools in healthcare, offering the potential to 
analyze vast and complex datasets, generate clinical predictions, and enhance personalized medicine[62]. 
These models, based on DL architectures, are capable of processing large amounts of unstructured data such 
as electronic health records, medical literature, and multi-omic datasets, providing clinicians with valuable 
insights for patient management. These models have shown remarkable potential in handling clinical tasks, 
including data extraction, literature summarization, content generation, predictive modeling, clinical 
decision support, and patient-provider chatbots[63]. However, general-purpose LLMs like OpenAI’s 
ChatGPT are trained on publicly available datasets and are not specifically optimized for clinical 
applications. As a result, when tasked with clinical queries, these models may produce outputs that contain 
inaccuracies, incomplete data, or “hallucinations” - fabricated information that lacks a factual basis[64]. 
Despite these shortcomings, LLMs are believed to hold immense promise for biomedical and clinical 
purposes due to the complexity and growing volume of medical knowledge. For instance, it was estimated 
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Table 3. AI applications in using imaging data

Authors23456 Domain Principle ML models Number of 
subjects Performance metrics

Ghosh et al.[58] Prognosis Reviewed AI methods applied to 
omics data and imaging in liver 
diseases to predict disease 
progression

Various AI 
methodologies

Not specified AI models showed promise in prognosticating liver disease outcomes, including those related to ALD

Fujii et al.[59] Diagnosis Image analysis and quantitative 
assessment of the contour of the 
sagittal section of the left lobe of the 
liver

Deep learning 486 Liver surface roughness was correctly judged by AI. Image analysis showed the thickness of the left lobe was 
inversely correlated with the liver fibrosis stage

Santoro et al.[60] Diagnosis AI to non-invasively assist US-
Mediated diagnosis of early-stage 
steatotic liver

Deep learning 134 Discrimination capacity by AUC between patient with steatosis and patient without steatosis was better for 
AI-based hepatorenal index than manual than HRIM (AUC: 0.87 vs. 0.82, respectively). ROC analysis showed 
an AUC = 0.98 for HRIA with a 1.64 cut-off in distinguishing between mild and moderate/severe groups

Li et al.[61] Staging AI-powered models utilizing non-
contrast MRI, including T1WI and 
T2FS, can accurately stage LF

Two CM 1,726 Fusion models yielded the highest AUC among the CMs, achieving AUCs of 0.8-0.9 for significant to advanced 
fibrosis and cirrhosis and significantly surpassed transient elastography (only for staging ≥ F2 and ≥ F3 grades), 
serum biomarkers, and three junior radiologists for staging LF. Radiologists, with the aid of the OMs, could 
achieve a more accurate LF assessment

AI: Artificial intelligence; ML: machine learning; US: ultrasound; LF: liver fibrosis; AUC: area under curve; ROC: receiver operative curve; CMs: classification models; MRI: magnetic resolution imaging; HRIM: 
hepatorenal index manual; HRIA: hepatorenal index automatic; CM: classification models; OM: optimal model.

that two research papers were added to PubMed every minute, a number that has likely increased in recent years[65]. Thus, efforts to integrate clinical practice 
guidelines and medical literature into LLMs are gaining traction as a way to adapt general-purpose models for specialized clinical applications.

The strategies to make LLMs more clinically focused involve several steps. The first involves fine-tuning the original model, although this approach is 
computationally intensive. The second strategy is prompt engineering, where users provide specific prompts to guide the model’s responses, although this 
method can only accommodate small datasets and may require multiple iterations. The third, more promising approach is retrieval-augmented generation 
(RAG). In this framework, an LLM is enhanced by coupling it with an information retrieval system that provides relevant external data, such as clinical 
guidelines. The external dataset is vectorized and encoded using embedding models, and this structured information is integrated into the LLM to guide its 
outputs. RAG offers two significant benefits: it allows the LLM to handle large volumes of documents, providing a solid knowledge base, and it reduces the risk 
of generating incorrect or fabricated information by narrowing the solution space for the model’s outputs. This method has been explored in the treatment of 
patients with hepatitis C, and the LLM-generated responses showed 99% accuracy compared to expert-provided answers, as measured by text similarity 
scores[66]. Other LLMs like “LiVersa” trained on 30 AASLD guidance documents could enhance the accuracy of responses[63].
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Figure 5. Various applications of FM and VLM in imaging (pathology or radiology) for ALD and MASLD. FM: Foundation models; VLM: 
vision language models; ALD: alcohol-associated liver disease; MASLD: metabolic dysfunction-associated liver disease; LLMs: large 
language models.

Computational pathology, utilizing advanced AI models like foundation models (FMs) and vision-language 
models (VLMs), offers transformative potential in the management of ALD and MASLD[67]. FMs, trained on 
vast amounts of pathology data through self-supervised learning, can adapt to various downstream tasks 
without requiring large-scale annotated datasets, which are often challenging to collect. FMs can be 
deployed to analyze liver tissue samples, identify disease patterns, grade severity, and even predict disease 
progression by integrating histological images with clinical data[68]. This can help clinicians make timely 
decisions regarding treatment strategies and prognosis. VLMs add another layer of capability by combining 
image analysis with natural language processing, enabling the integration of pathology reports and other 
clinical narratives into predictive models[69]. For instance, in MASLD, VLMs can analyze liver biopsy images 
alongside pathology reports to provide a comprehensive assessment of disease severity or predict which 
patients may progress to advanced fibrosis. In ALD, VLMs can similarly assist in diagnosing complications 
like cirrhosis by interpreting both imaging data and associated clinical descriptors. These models, which can 
generate natural language predictions, offer explainability and interpretability, critical for assessing varied 
presentations in ALD and MASLD. Overall, the combination of FMs and VLMs represents a new era in 
computational pathology, offering more personalized and accurate management strategies for liver diseases 
like ALD and MASLD [Figure 5].

LIMITATIONS
While the universe of AI and ML witnesses rapid expanses, understanding intrinsic limitations is essential. 
A simple glance at ML-based models shows them to have excellent “diagnostic accuracy numbers”. 
However, they often suffer from clinical explainability and applicability[70]. The settings where such models 
are designed to be applied are of paramount importance, as complex models with large laboratory variables 
will not be applicable when devising screening and risk-stratifying strategies. Secondly, such models are at 
risk of replicating and amplifying intrinsic biases in data, potentially leading to misdiagnosis and 
misclassification, and this mandates the use of diverse training sets and regular audits. Lastly, there remains 
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a lack of standardization of ML-based modeling, posing challenges for comparison and reproducibility 
across studies[71].

CONCLUSION
In conclusion, AI and ML-based modeling have emerged as exciting frontiers in both ALD and MASLD. 
Substantial knowledge gaps remain, which conventional modeling systems have failed to address. The use of 
ML-based approaches should address such specific lacunas, translating to clinically meaningful objectives 
and aiding in decision making.
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