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Abstract
The field of spine surgery has long been characterized by innovations and technological advancements. The 
integration of artificial intelligence (AI) into spine surgery represents one of the latest technical developments in 
the field. The ability of AI to rapidly analyze datasets improves decision making, risk assessment, intraoperative 
precision, and postoperative management, all of which contribute to increasing personalized spine care and 
improving outcomes. However, the successful implementation of AI faces regulatory and privacy challenges that 
must be addressed before its full potential can be realized. Here, we provide a detailed analysis of the current 
applications and future prospects of AI in spine surgery, highlighting both the opportunities and challenges in this 
evolving field.
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INTRODUCTION
Artificial intelligence (AI) is increasingly being adapted for healthcare purposes, including analyzing 
complex data, identifying patterns, and making predictions and decisions [Supplementary Table 1][1,2]. A 
new frontier in AI has emerged with the genesis of generative AI models, which can create new content, 
including text and images, based on input data. These models could be leveraged to generate tailored 
surgical plans, create patient education packets, and assist in clinical documentation. Estimates project that 
AI solutions could potentially save up to $360 billion dollars of US healthcare expenditure (5%-10%) 
annually[3]. Here, we provide a comprehensive perspective on the existing applications as well as the 
frontiers and challenges for AI integration in spine surgery, including preoperative planning, intraoperative 
care, and postoperative management.

PREOPERATIVE PLANNING AND PATIENT SELECTION
Imaging analysis
AI algorithms excel at accurately analyzing spine imaging data, enabling the detection and characterization 
of pathologies with remarkable precision. For example, deep learning models have been developed for the 
automated detection of vertebral compression fractures on computed tomography (CT) or magnetic 
resonance imaging (MRI) scans[4]. Al Arif et al. used a training set of 138 X-rays and a test set of 172 images 
to identify vertebral centers and outlines with an average error of only 1.81 and 1.69 mm, respectively[5]. 
Doerr et al. used a region-based convolutional neural network to train and validate a deep learning model 
that can predict and classify a patient’s thoracolumbar trauma based on CT imaging alone, reducing the 
need to pursue additional costly and time-consuming MRI imaging for assessment[6]. AI can thereby help 
rapidly identify and triage patients in emergent settings and expedite the time to surgical intervention[7].

Risk stratification and surgical planning
Machine learning algorithms can predict the risk of complications, such as surgical site infections, venous 
thromboembolism, and reoperation, during and after spinal procedures[8-13]. Pellisé et al. utilized data from 
1,612 patients across two independent prospective databases on adult spinal deformity to develop 
prognostic models for major complications, readmissions, and reoperations. The models can be used 
preoperatively to identify patients at greatest risk of postoperative complications and improve the patient 
counseling process[14].

While AI is still in its early stages, it has shown significant potential when trained on robust and extensive 
retrospective data. For example, machine learning algorithms have shown that they can outperform 
surgeons’ gestalt in predicting the risk of complications after emergency general surgery, including 
mortality, bleeding, and pneumonia[15]. AI-driven predictive risk models can also incorporate 
biopsychosocial patient factors including demographics, comorbidities, frailty, laboratory values, and 
imaging data, as well as surgical details including approach, spinal levels, and instrumentation - all of which 
are critical cues in spine surgery[16-18]. For instance,  Goedmakers et al. developed a deep learning algorithm 
to predict adjacent segment disease following anterior cervical discectomy and fusion surgery, using only 
preoperative cervical MRI scans. The algorithm achieved a 95% accuracy rate, significantly outperforming 
expert neurosurgeons and neuroradiologists, who achieved only 58% accuracy[19].

Patient engagement and education
Large language models can simplify the reading levels of consent forms from a collegiate level to a seventh-
grade level, allowing for more patient accessibility and understanding[20,21]. Moreover, AI-powered virtual 
assistants and chatbots can be harnessed as valuable care companions capable of providing knowledge to 
patients on demand[22,23]. Boczar et al. created an AI-powered virtual assistant that correctly answered 92% of 
patient questions regarding plastic surgery in a sample of 30 participants and 294 questions[24]. AI systems 
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can also provide personalized education materials, track patient-reported outcomes, and monitor adherence 
to preoperative instructions, without requiring additional appointments or an advanced understanding of 
medical terminology[22,23]. However, caution must be taken to ensure that patients are not being 
misinformed by these systems.

Furthermore, AI systems, leveraging tools such as natural language processing, could also be integrated into 
clinic settings to automate patient intake[25]. Such “virtual scribes” can automatically generate 
comprehensive clinical notes and summarize patient-provider interactions, reducing administrative burden. 
Such safeguards include regularly updating the AI’s knowledge base to ensure it reflects the latest clinical 
guidelines, implementing clear disclaimers that patients are interacting with a virtual assistant rather than a 
clinician, and ensuring the AI defers to human oversight in complex or ambiguous cases.

Expanding the diagnostic armamentarium
Beyond the analysis of static imaging data, AI holds significant potential to enhance spinal diagnostics by 
incorporating dynamic and longitudinal patient characteristics. Machine learning models and video capture 
tools have been used to identify abnormal gait and compensation patterns and estimate biomechanical 
variables, such as joint loading and range of motion, that are not easily discernible through traditional 
clinical evaluation[26,27]. By integrating this dynamic data, clinicians can gain deeper insights into the 
underlying causes of spinal disorders and tailor interventions accordingly.

INTRAOPERATIVE SPINE CARE
Navigation and surgical accuracy
AI technologies can significantly enhance the spine operative experience. For example, surgical navigation 
systems powered by AI can seamlessly integrate with robotics to offer real-time guidance during complex 
spinal procedures[28]. While the regulatory burden remains high, this is due to the need for rigorous 
validation to ensure patient safety and efficacy in high-stakes environments. The justification for adopting 
these technologies lies in their potential to greatly improve surgical precision, reduce complications, and 
enhance patient outcomes, which outweighs the hurdles posed by regulatory requirements. Future 
applications of AI can enhance existing navigation systems, allowing for minimized intraoperative errors 
and surgical risk via real-time corrections to unexpected changes[29].

AI can also simulate procedures for educational training and create individualized models based on patient 
imaging. These models allow trainees to practice surgery on complex anatomical variations, serving as a 
powerful training tool[30-33]. In addition to benefitting trainees and health professionals, these models help 
patients better understand their conditions, facilitating more informed discussions about treatment options 
and fostering engagement in the decision-making process.

Intraoperative documentation
In the operating room, AI techniques can streamline documentation. In plastic surgery, ChatGPT templates 
have been shown to generate operative notes over 42 times faster than traditional methods[34]. Furthermore, 
with integration into billing and insurance information, AI can streamline the prior authorization process 
by extracting and organizing patient information, reducing delays in patient care. Zaidat et al. demonstrated 
a class-by-class accuracy between 77%-87% using a dataset of 902 operative notes of spine patients to 
generate billing codes[35]. While AI has made tremendous progress in improving administrative efficiency, it 
still faces challenges with redundancy, inaccuracy, and hallucinations. Regular audits and human oversight 
are essential to prevent these errors.
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POSTOPERATIVE MONITORING AND REHABILITATION
AI continues to play a vital role in the postoperative phase, facilitating efficient recovery and optimizing 
patient outcomes through solutions such as personalized rehabilitation plans[36]. Lee et al. showed that an 
AI-based real-time motion feedback system improved strength and engagement during rehabilitation in 
spinal cord injury patients[37]. Similarly, models have been applied to identify patients who may need 
prolonged postoperative opioid prescriptions. Karhade et al. trained numerous models on a database of 
5,413 patients and accurately predicted sustained postoperative opioid dependence between 90 and 180 
days[38].

Leveraging longitudinal patient data, including clinical outcomes, activity levels, and patient-reported 
measures, AI can predict the trajectory of spinal conditions as well as the risk of complications or disease 
progression[39,40]. These predictive models can help identify high-risk patients, optimize surgical indications, 
and guide proactive management strategies[41].

FUTURE FRONTIERS IN SPINE CARE DATA OPTIMIZATION AND ANNOTATION
With patients generating gigabytes of data, the sheer volume presents challenges to clinicians. AI 
technologies can facilitate the interpretation of high-quality, structured data from diverse sources within the 
clinical environment, making them readily available for further analysis[42]. AI tools are also particularly 
adept at extracting relevant data from large, unstructured datasets, a common challenge in medical settings. 
When discussing the performance of AI models, metrics such as precision, recall, and specificity are vital for 
evaluating their effectiveness in various tasks. These metrics help quantify how well an AI model identifies 
relevant data and minimizes errors.

Additionally, AI significantly enhances dataset annotation by automatically labeling imaging datasets, 
surgical videos, and other medical data with high accuracy[43]. This capability accelerates the training process 
for retrospective analyses, thereby increasing research efficiency and identifying areas for improvement in 
the field.

Looking forward, the development of virtual scribes or “co-pilots” opens exciting possibilities. For patients, 
AI-powered co-pilots can serve as personalized guides through the care continuum, providing education 
and answering questions in real time.  For surgeons, AI co-pilots can augment the surgical process by 
providing robust decision support, analyzing intraoperative metrics, and suggesting surgical approaches[44]. 
We foresee a future where AI co-pilots integrate into the existing architecture of the spine surgery 
ecosystem [Figure 1]. In addition to offering real-time information to surgeons, co-pilots could assist with 
elevating critical non-technical roles, including improving communication, aiding with surgical team 
efficiency, and maintaining situational awareness[45,46].

CHALLENGES
While the implementation of AI in spine surgery holds immense promise, several challenges must be 
addressed to fully realize its potential. A primary concern is the reliance on high-quality, standardized data. 
High-quality data are essential for training accurate AI models, and standardization ensures that these 
models can be applied broadly and effectively across different clinical settings[2,47]. With the paramount 
importance of privacy and data security, compliance with regulations such as the Health Insurance 
Portability and Accountability Act (HIPAA) of 1996 is necessary to safeguard patient information.
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Figure 1. Data integration in AI-driven spine surgery. This figure illustrates the flow of multiple data collection points into advanced AI 
systems. The integrated AI processes these diverse inputs to generate valuable clinical outputs that inform patient care. Figure created 
with BioRender.com. AI: Artificial intelligence.

Furthermore, maintaining trust in AI technology requires transparency and accountability. Skepticism of AI 
is often centered around the “black box” nature of its operations, where users cannot see how decisions are 
made. The decision-making process of AI systems should be clear and understandable to clinicians and 
patients alike. By familiarizing themselves with how these technologies function, they can better grasp the 
decision-making processes of AI systems. For example, machine learning allows computers to learn from 
data and improve over time, while deep learning, a subset of machine learning, mimics how the human 
brain processes information using layers of algorithms to analyze complex data.

A critical issue in the development of AI algorithms is addressing and mitigating biases that could lead to 
disparities in care. AI models should be trained on diverse and representative datasets to ensure they are 
applicable to a wide range of clinical and patient populations. To detect and address potential biases, it is 
essential to implement robust validation techniques, including bias audits and continuous monitoring 
during deployment. Engaging diverse stakeholders in the design and review processes can further help 
identify and rectify biases, ensuring fairness and equity in AI-driven treatments.

CONCLUSION
AI’s potential is vast and multifaceted, ranging from enhancing diagnostic accuracy to optimizing 
postoperative care. Its applications can lead to significant cost reductions, improved therapeutic outcomes, 
and enhanced quality of patient care. However, realizing this potential requires addressing challenges in 
data quality, standardization, and ethical implementation. By advancing and actively engaging in the 
ongoing discourse surrounding AI technologies, we can ensure that AI serves as a transformative force in 
spine surgery, ushering in a new era of personalized, precise, and proactive spine care.

https://www.biorender.com/
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