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Abstract
The adaptability of natural organisms in altering body shapes in response to the environment has inspired the 
development of artificial morphing matter. These materials encode the ability to transform their geometrical 
configurations in response to specific stimuli and have diverse applications in soft robotics, wearable electronics, 
and biomedical devices. However, achieving the morphing of intricate three-dimensional shapes from a two-
dimensional flat state is challenging, as it requires manipulations of surface curvature in a controlled manner. In this 
review, we first summarize the mechanical principles extensively explored for realizing morphing matter, both at 
the material and structural levels. We then highlight its applications in the soft robotics field. Moreover, we offer 
insights into the open challenges and opportunities that this rapidly growing field faces. This review aims to inspire 
researchers to uncover innovative working principles and create multifunctional morphing matter for various 
engineering fields.
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INTRODUCTION
The remarkable adaptability of natural organisms fascinates us due to their ability to alter their body shapes 
in reaction to their environment[1-5]. Inspired by nature, artificial materials and structures that could change 
their geometrical configurations in response to specific stimuli, referred to as “morphing matter”, have been 
developed in diverse engineering fields, including soft robotics[4,6-10], wearable electronics[11-13], biomedical 
devices[14-16], etc.

While the morphing matter has demonstrated the potential to emulate the functionalities of living 
organisms and has made significant contributions across various engineering domains, attaining the ability 
for shape-morphing is not trivial[17,18]. The transformation from a two-dimensional (2D) flat sheet to 
intricate three-dimensional (3D) shapes requires a controlled manipulation of surface curvature[19-21]. Basic 
shape morphing forms (e.g., bending and rolling of flat sheets), which preserve the Gaussian curvature, can 
be achieved by leveraging the elasticity[22,23] and instabilities of materials and/or structures[24,25], such as 
strain-mismatch in bilayers and buckling of slender beams[21]. However, achieving more complex target 
shapes characterized by non-zero Gaussian curvature, such as spheres with positive curvature or hyperbolic 
shapes with negative curvature, requires approaches that generate localized extensional deformations of flat 
sheets[26,27]. To address this challenge, approaches based on origami/kirigami designs[28,29] and discrete 
element assemblies[30,31] have been exploited. Furthermore, inspiration has been drawn from the differential 
growth observed in plant morphogenesis, allowing for the programming of artificial materials to modify the 
surface metric tensor under external stimuli[32-36]. With a growing understanding of the mechanical 
principles governing shape morphing, the field of soft robotics is experiencing substantial benefits in its 
pursuit to replicate the remarkable adaptability seen in biological organisms[11,37-39].

In this review, we summarize recent developments in morphing matter, highlighting both the underlying 
mechanical principles and their applications in robotics. After providing an overview of the current 
challenges and methods for achieving morphing matter in the Introduction, we delve into the main 
mechanical principles utilized in morphing matter in Section “MECHANICAL PRINCIPLES 
UNDERLYING MORPHING MATTER”. These principles encompass strain-mismatch, instability, 
origami/kirigami, discrete elements, and morphogenesis. Section “MORPHING MATTER IN ROBOTIC 
APPLICATIONS” is dedicated to exploring the exciting applications of morphing matter in the field of 
robotics. Finally, we conclude with perspectives on potential future advancements and implications in 
Section “CONCLUSION AND OUTLOOK”.

MECHANICAL PRINCIPLES UNDERLYING MORPHING MATTER
Strain-mismatch
The intricate 3D deformation of a slender object can be decomposed into a combination of an in-plane 
stretching term and an out-of-plane bending term[40-43]. The out-of-plane bending is typically the 
consequence of a gradient in the planar stress distributed through the thickness of the material when 
subjected to a stimulus. Based on their dimensionality, slender bodies are commonly classified into beam 
elements and plate (shell) elements. One of the most straightforward strategies for creating morphing 
matter involves using a comparable bilayer composite with strain-mismatch between layers. To maintain 
the strain compatibility at the cohesive interface between the two layers upon activation, part of the 
composite is subjected to tension while the other undergoes compression. The curvature response of a bi-
metal beam to changes in temperature can be studied using the Timoshenko beam theory[44]; the solution is 
directly proportional to the difference in the thermal expansion coefficients and inversely proportional to 
the thickness. Although this theory was initially derived from thermally activated metal strips, its general 
concept is also applicable to other responsive materials[45-47]. Various stimuli can be harnessed for activating 
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these bi-layer structures, such as the swelling (or deswelling) of hydrogels[48], the evaporation or diffusion of 
polymer films[49,50], and light-induced extraction of liquid nematic elastomer[51], among others. An example is 
the use of bi-layer Polydimethylsiloxance (PDMS) films with inherent curvature[49], as illustrated in 
Figure 1A. The upper layer, containing controlled silicone oil, functions as the active layer when immersed 
in a chloroform bath due to the diffusion of the oil into organic solvents. After being left to dry at room 
temperature for several hours, the active layer tends to contract to restore its density. The mismatch in 
contraction between the top and bottom layers induces in-plane stress and bending moment in the film. 
Under the influence of the vertical gradient of the extraction strain, the film with a narrow width exhibits 
cylindrical deformation. The shape of the bilayer can be engineered through the manipulation of factors 
such as the volume fraction of the oil, the layer thickness, and the selective distribution of the active layer, 
enabling localized bending and alternative direction of out-of-plane deformation. Effective control of the 
interfaces within heterogeneous laminated systems is crucial for achieving the desired programmed 
configurations. To address this challenge, several strategies have been proposed to regulate interface 
bonding. These approaches encompass chemical surface modification[52-55] and the integration of surface 
microstructures[56,57]. Typical examples of application include electroadhesion and hierarchical cilia, both of 
which provide versatile pathways to facilitate the practical utilization of morphing matter.

The mechanism of inducing strain-mismatch in multi-layer composites can be extended to incorporate 
strain gradients within materials[58]. A commonly reported method for generating strain gradients along the 
thickness of films includes mechanically peeling plastic homogeneous materials[59] and utilizing external 
fields to activate graded material[50,60,61]. These methods mitigate delamination risks and streamline 
fabrication compared to laminated structures. Passive materials are inherently insensitive to external stimuli 
and resistant to configuration changes, while plastic yielding provides a clue for shape morphing[59] 
[Figure 1B]. Peeling adherent films from substrates can induce asymmetric plastic strains due to the 
interplay between peeling force and adhesion force. By carefully adjusting the peeling angle and deviation 
angle, precise control over the gradient of plastic strain and its orientation is achieved. This results in the 
transformation of the plastic film into intricate 3D shapes, such as curling, helices, and polygons. The 
method is versatile and applicable to plastic polymers, metals, and composite materials, thus enabling the 
creation of free-standing 3D electronics. Graded materials also find extensive use in creating morphing 
matter, with examples such as photocurable polymers[60], porous cationic poly membranes[61], and molecules 
diffused elastomers[50]. Photocurable polymers are exposed to specific wavelengths of light from one side, 
leading to a differential light absorption across the thickness and, consequently, an asymmetric cross-
linking density in a swellable material[60]. Porous membranes are prepared by electrostatic complexation of 
an ionic solution coupled with the diffusion of ammonia into the membrane, promptly establishing a 
gradient cross-linking network instantly triggered by humidity[61]. Similar principles of diffusion are 
applicable to composite elastomers[50] [Figure 1C]. These elastomers are fabricated by immersing a soft 
elastomer film in a melted paraffin bath at high temperatures. Paraffin molecules diffuse into the elastomer, 
creating a concentration gradient along the thickness direction of the composite elastomer film, which is 
then locked in place by crystallization during cooling to room temperature. Stretch-and-release procedures 
introduce residual strains in brittle paraffin crystals while the elastomer recovers to its initial configuration. 
The geometrically programmed stretch-activated morphing behaviors can be achieved using patterned 
masks and reprogrammed with the assistance of the hexane solvent.

For isotropic slender structures, the response to mismatch strain has been elucidated through beam theory. 
Further research indicates that the aspect ratio (length to width ratio) significantly influences deformation 
characteristics[42,62,63]. Films with considerable aspect ratios approximate the surface of a sphere through a 
combination of bending and stretching deformation, eventually bifurcating into predominantly single 
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Figure 1. Morphing matter based on strain-mismatch. (A) Bilayer PDMS films exhibiting inherent curvature. The top layer, containing 
silicone oil, undergoes drying and contraction, leading to bending behavior. The shape of the composite can be programmed through the 
selective patterning of the active layer. Reproduced with permission from[49]; Copyright 2016, The Royal Society of Chemistry; (B) Strain 
gradient induction via the peeling of plastic films. The interaction of peeling and adhesion force generates bending moments, and the 
plastic deformation can be precisely tailored by controlling peeling parameters and geometry. Reproduced with permission from[59]; 
Copyright 2022, Macmillan Publishers Limited; (C) Material gradient achieved by paraffin-diffused elastomer. Stretch-and-release 
procedures introduce residual strain in brittle paraffin crystals, while the elastomer tends to recover its initial shape. Reproduced with 
permission from[50]; Copyright 2022, Wiley-VCH; (D) The aspect ratio significantly influences deformation characteristics. Reducing the 
strip width within star polygons prevents the gripper from an axisymmetric cage-like configuration. Reproduced with permission 
from[64]; Copyright 2018, Wiley-VCH; (E) A network comprising multiplexed pairs of bilayer ribs yields a human face structure after 
swelling. Reproduced with permission from[66]; Copyright 2019, National Academy of Sciences, U.S.A; (F) Anisotropic strain-mismatch 
achieved by perpendicular shrinking of two layers results in a helical configuration with locally saddle geometry. Reproduced with 
permission from[67]; Copyright 2011, AAAS; (G) Programmed bilayer architectures demonstrating anisotropic swelling display complex 
3D shapes of the underlying surface. Reproduced with permission from[46,68]; Copyright 2016, Macmillan Publishers Limited; (H) Radially 
curved ribbons, featuring geometrical frustration, assume bending or stretching-dominated configuration dependent on geometry. 
Reproduced with permission from[70]; Copyright 2021, American Physical Society; (I) An inverse design tool, utilizing hindered fabric 
contraction and bending of patterned ribbons, expands the range of achievable surfaces. Reproduced with permission from[72]; Copyright 
2022, Wiley-VCH. PDMS: Polydimethylsiloxance.
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curved shapes as strain increases[64,65]. Decreasing the strip width within star polygons results in 
axisymmetric cage-like configurations under significant mismatch strain, enabling the creation of self-
folded grippers[64] [Figure 1D]. Tessellating beam elements into structured plane networks can markedly 
alter the linear growth factor, offering a method to design more complex shape-morphing structures by 
considering heterogeneous lattices as approximations of the underlying continuous surface profile[66]. Local 
metric tensor encoding is achieved by tailoring the bending deformation of ribs. Moreover, the extrinsic 
curvature necessitates multiplexed pairs of bilayers as ribs. By combining multiple materials and geometries, 
an inverse design strategy is presented to expand the range of achievable shapes, such as a complex human 
face constructed from swollen PDMS exposed to organic solvents [Figure 1E].

Anisotropic strain-mismatch is another programming strategy. This concept draws inspiration from the 
natural phenomenon of seed pods opening in Bauhinia variegate, and it involves investigating a mechanical 
analog comprised of stretched thin latex sheets to showcase the framework of incompatible elasticity[67] 
[Figure 1F]. When two layers are glued and shrink perpendicularly, the resulting composite tends to bend in 
two opposite directions, exhibiting locally saddle-shaped geometry. Notably, the initial flat sheet possesses 
zero Gaussian curvature, while the saddle configuration introduces non-zero Gaussian curvature. 
Consequently, residual stress is generated, causing the strip cut from the sheet to curl into helical 
configurations with reversible handedness, releasing stored elastic energy. The fabrication of bi-layer 
architectures with the abilities of anisotropic shrinking or swelling can be achieved through direct writing, 
offering precise control over mean and Gaussian curvatures in plane states by prescribing specific printing 
pathways[48,68]. The combination of patterns with simple geometry yields the complex shape of an orchid 
[Figure 1G]. Despite the ability of beam-based networks to approximate 3D shapes of the underlying surface 
upon activation, the creation of continuous double-curvature surfaces based on differential strain remains 
challenging. Emerging methodologies include the strategic placement of stretched or responsive ribbons/
fibers onto passive sheets[69-71] and printed elastic ribbons on pre-stressed fabrics[72]. Typical examples involve 
the creation of helical shapes and complex 3D structures achieved through precise control of thermoplastic 
lines on stress-free films using extrusion shear printing[69,71]. The selective placement of these responsive 
lines can introduce geometrical frustrations[70,71], thereby enabling coarse-scale shape changes through 
different deformation mechanisms. For radially curved ribbons, the resulting shapes exhibit either bending-
dominated toroidal configurations or stretching-dominated polygonal shapes composed of tubular regions 
and corners[70] [Figure 1H]. Computational design techniques for self-actuating deployable structures 
involve patterning ribbons on pre-stretched fabrics, leading to a wide range of versatile shapes[72] 
[Figure 1I]. The optimization of ribbon layouts inhibits fabric contraction, achieving the desired intrinsic 
curvature. Additionally, aligning the ribbons with the directions of principal extrinsic curvature helps resist 
torsion. This combination of the inverse design tool with the two shape-morphing effects paves the way for 
engineering applications.

Elastic instability
Elastic instability, encompassing phenomena such as buckling, wrinkling, and snapping, has undergone a 
paradigm shift from merely being avoided as a failure mode to being harnessed for the development of 
materials and devices with extreme properties and functionalities[73,74]. Structures comprising porous 
inclusions or flexible mechanisms experience substantial deformations, potentially surpassing the instability 
threshold when subjected to excessive external mechanical loading or multi-physical fields[42,75]. This rapid 
and profound transformation of structures can be effectively utilized in the design of morphing 
structures[21].
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To construct reprogrammable one-dimensional (1D) morphing structures, an energy-efficient strategy has 
been proposed, leveraging the multistable unit cells inspired by drinking straws[76] [Figure 2A]. These unit 
cells can independently undergo deformation among deployed, retracted, and bent states. By combining 
optimized sequences of these units, complex 3D structures are demonstrated. Structures utilizing 
independent unit cells offer multiple configurations but come at the cost of distributed activation. To realize 
autonomous deployment, transition waves have emerged as a dependable method for switching bistable 
unit cells through a domino-like effect, achieved by carefully designing connectors[77,78]. By considering rigid 
bars joined at the ends with elastic next-nearest interactions using a stretched linear spring, stored potential 
energy in a flat configuration is sequentially released after a pulse is applied to one end, effectively exciting 
transition waves[79] [Figure 2B]. The behavior of these transitions can be easily controlled by adjusting spring 
stiffness and rest length. Combining bent configurations with opposite orientations generates curved 
profiles with inflection points, serving as the fundamental element for designing arbitrary 1D profiles.

Extending snapping to the creation of multistable structures in 2D and 3D, the bistable unit cells can be 
assembled by the Cartesian tiling techniques[80] [Figure 2C]. The oblique beams within snapping triangular 
units collapse into closed configurations, while four hinge mechanisms tessellated in a diamond shape 
become a liner extension unit. By joining these linear unit cells in perpendicular planes, 3D extension units 
can be obtained. Periodic structures constructed with these flexible mechanisms exhibit rigged force-
displacement responses and significant hysteresis, making them suitable for energy-absorbing applications. 
Materials with multimodal transformation properties often require fixed deformation sequences and 
complex actuation methods, such as biaxial experimental setups, which limit their practical use in real-
world environments. To address this limitation and meet the demand for single-input actuation, an element 
is introduced, consisting of an elastic layer bonded to the plate with a bistable perforated joint[81] 
[Figure 2D]. The element can fold upon release after stretching due to the eccentric recovery force from the 
elastic membrane[82]. By combining bistable elements with distinct transition forces, programmed strips are 
created, allowing for multistep transformations into 2D or 3D shapes. To modify the encoded 
transformation pathways, responsive bistable elements are introduced, enabling the adjustment of transition 
forces and simplifying the recovery procedure. The integration of multistable elements into morphing 
surfaces offers significant advantages, particularly in the realm of tunable functionalities, such as adaptive 
optics[83] [Figure 2E]. This design strategy revolves around a compliant plate connected with independent 
snapping building blocks capable of flipping and altering the local height or curvature. The curved 
configuration of the surface can mimic various morphologies, including parallel states in diagonal 
directions, corrugated patterns, and irregular configurations. To predict snap-through transitions, an 
analytical model is developed to serve as guidance for manipulating stability by tuning geometric 
parameters.

A novel snapping element, combined with a pre-stretched membrane and an elastic boundary strip, is 
introduced to construct multistable structures capable of locomotion under selective inflatable actuation[84] 
[Figure 2F]. The stable state of snapping units is characterized by inflection points of carbon fiber composite 
strips, and stable behaviors are strongly influenced by the ratio of bending to torsional stiffness, which is 
dictated by the anisotropic properties of strips. The multistable states of the unit cell are preserved after 
tessellation, introducing a new stable state in unit cells capable of exhibiting a global cylinder configuration. 
When interactions between neighboring elements in a system are strong, the system can exhibit 
exceptionallly frustrated global deformation[85]. Silicone molds provide an interesting case for investigating 
elastic sheets integrated with multiple bistable hemispherical shells [Figure 2G]. The elastomer constituents 
are reversible under cyclic snapping, allowing for reprogrammable configurations. The dimpled sheet 
exhibits global deformations induced by the sequential popping of embedded elements. The bistability of a 
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Figure 2. Morphing matter based on elastic instabilities. (A) Reconfigurable flexible straws featuring stretched, compressed, and bent 
stable states. Through permutation and combination of these unit cells, the interconnected structure can present customized complex 
2D and 3D configurations. Reproduced with permission from[76]; Copyright 2022, Elsevier Ltd; (B) Deployable linkages comprised of 
bistable joints support transition waves to trigger the curved configurations. Reproduced with permission from[79]; Copyright 2020, 
National Academy of Sciences, U.S.A; (C) Architected materials demonstrate a wide range of stable configurations through the use of 
bistable flexible mechanisms. The constituent triangular unit exhibits bistable behavior similar to symmetric inclined beams with fixed 
ends. By tessellating the beam elements in series or perpendicular directions, the multistable structures exhibit hysteresis under loading, 
enabling energy absorption. Reproduced with permission from[80]; Copyright 2022, Wiley-VCH; (D) Self-folding bistable elements 
comprised of an elastic layer bonded to a plate can assemble and transform into multimodal 3D structures under stepwise stretch-and-
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release procedures. Reproduced with permission from[81]; Copyright 2022, AAAS; (E) Multistable surfaces connected with 2D arranged
snapping beams exhibit curved configurations in different directions resulting from displacements applied to the top plate and bistable
units. Reproduced with permission from[83]; Copyright 2022, Elsevier Ltd; (F) Reconfigurable structures are constructed using novel
multistable unit cells that combine elastic square frames with equi-biaxially pre-stretched soft membranes. Tuning the ratio of bending
to torsional stiffness of anisotropic frames can control the number of multistable states. Applying out-of-plane force to intersection
points of the grid causes the structure to snap into programmed states. Reproduced with permission from[84]; Copyright 2022, Wiley-
VCH; (G) Snapping-induced morphing sheets with periodically tessellated spherical caps exhibit global curved states activated by
popping individual shell elements. Hoop compression results in azimuthal buckling for single elements and introduces an interaction
between snapping elements underlying the global curve shape. Reproduced with permission from[85]; Copyright 2023, Elsevier Ltd; (H)
Inverse designed reconfigurable surfaces are discretized as Chebyshev nets. The discrete grid can change shape by the elongation or
contraction of diagonal bistable units. Reproduced with permission from[86]; Copyright 2021, Elsevier Ltd; (I) Pixelated metamaterials
with dense information embedded in programmed bistable kirigami-based units can be decoded sequentially by external stimuli such as
stretching and temperature. Reproduced with permission from[87]; Copyright 2023, Wiley-VCH; (J) Complex 3D mesostructures with
multiple layers of advanced materials popped up from releasable plane precursors via compressive buckling. Reproduced with
permission from[89]; Copyright 2016, AAAS. FEM: Finite element method.

single element is primarily governed by the lateral size, and the global shape bifurcation can be controlled 
by modifying the tessellation lattice or lattice constants.

The inverse design of a planar sheet using snapping elements to deploy or transform into a target surface 
requires a basic unit cell to encode target surface information in material or geometry. A quadrilateral grid 
with deployable diagonal bonds is presented to overcome this challenge by modifying bond lengths to 
deform and feature the surface with positive or negative Gaussian curvature[86] [Figure 2H]. The inverse 
design procedure starts with using a Chebyshev net to mesh the target surface and then flattening the 
quadrilateral elements to a plane configuration by changing the interior angles of each element. Encoding 
the bond lengths of four diagonal beams in each element with the desired angle changes presents a design 
principle for physical bistable snapping specimens that can be fabricated using a multi-material printer. 
Pixelated metamaterials provide an alternative method to program dense target geometry information 
through decoupled multistable building blocks[87,88]. For example, different pixel heights, when subjected to a 
stretch-and-release procedure, result in responsive building blocks exhibiting specific deformation 
dependent on target heights stored in the geometry and materials of kirigami-based bistable units 
[Figure 2I]. By increasing the number of units in series, stored multiple layers of information can be 
displayed by sequential stimuli, including mechanical loading and temperature.

Elastic buckling of slender structures provides access to large, reversible deformations useful for designing 
morphing architectures. Buckled ribbons and plates exhibit out-of-plane mesostructures induced by 
contraction of elastomer support, playing an important role in fabricating flexible electronics[13,89]. 
Multilayered precursors enable complex shapes with stacking strategies and enhance functionalities 
[Figure 2J]. More inverse design strategies based on buckling assembly will be further illustrated in the next 
section concerning kirigami.

Origami and kirigami principles
Morphing into complex 3D structures with intricate curvature variations requires substantial distortion, 
posing challenges when working with rigid materials. To create intricate surface features that can be used 
with such rigid materials, researchers have turned to the old art forms of origami and kirigami[17]. These 
techniques involve folding and transforming planar sheets using crease and cut patterns, leading to the 
creation of 3D structures at both macro and micro scales. In the case of origami, deformations are primarily 
localized along the folding line, and rigid-foldable structures undergo continuous transformations without 
involving bending or stretching of the plates during the folding process. Although folding a flat sheet along 
crease lines does not alter the Gaussian curvature of the folded sheet, connecting multiple sheets through 
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fold lines results in a global configuration exhibiting apparent Gaussian curvature. The geometric approach 
to achieving specific 3D profiles has attracted interest from multidisciplinary researchers, giving rise to the 
field of computational origami, which combines mathematics, algorithms, and manufacturing 
techniques[90]. Various approaches have been developed to approximate complex configurations, such as 
crease pattern tessellation[91-94] and origami tube assembly[92,95,96].

To control the apparent curvature of the target surface, a freeform tessellation is built based on Resch’s 
patterns with folded tucks[94]. The strategy generates plane patterns from a given polyhedral surface 
represented as triangular mesh and then optimizes the pattern to avoid the interactions between 
neighboring patterns using a penalty function. Consequently, the plane sheet could change its global 
Gaussian curvature without bending and stretching facets through the implementation of tucks within the 
Resch pattern. However, the approximated curved surfaces are mainly limited to surfaces with positive 
Gaussian curvature because saddle shapes might involve some crease bending and facet distortion that 
obstruct smooth, rigid folding. Early studies mainly focus on folding flat sheets to achieve specific 3D 
shapes. Subsequent research has indicated that deploying a predefined origami tessellation from a fully 
folded 2D state can also produce intricate configurations[91] [Figure 3A]. The development of explicit finite 
particle methods and optimization techniques for adjusting the neutral angles of the triangular Resch 
pattern across various locations provide potential for inverse designing. The Miura-ori pattern, akin to the 
spontaneous wrinkling of stiff films on soft bulk substrates subjected to biaxial compression, has been 
extensively studied. A generalized Miura-ori pattern is proposed to approximate folded complex surfaces, 
considering flat-foldability conditions and the bending energy of facets[92] [Figure 3B]. The optimized 
pattern tessellation indicates that both the flat state and the folded state of intrinsically curved surfaces are 
energetically preferable, and the barrier between these states is reduced when the flat-foldability residual is 
minimized. Furthermore, the refinement of the pattern allows for an approach to the target surface with a 
trade-off between accuracy and effort.

Beyond flat origami structures such as Resech’s patterns[91,94], Miura-ori[92], and waterbomb[97], the Kresling 
origami has garnered significant interest[98,99]. This foldable tubular structure, featuring crease patterns 
reminiscent of the buckling of thin shell cylinders, offers multiple degrees of freedom for deployment and 
bending. An origami robotic arm, composed of a series of Kresling units and magnetic panels, has been 
developed, showcasing various deformation modes resembling octopus arms[100] [Figure 3C]. This robotic 
arm can execute grasp and manipulation tasks under remote magnetic fields. The scale-independent and 
untethered design of this approach presents potential applications in miniaturized medical devices, such as 
endoscopy and catheterization procedures. Stacking basic foldable modules is an effective method for 
constructing volumetric 3D structures[96]. However, periodic tessellation using constant building blocks 
poses limitations on 3D geometries, particularly those with curved edges. To address this challenge and 
enable the inverse design of architected structures with curvilinear geometries, a modular origami strategy 
known as geometric and topological reconstruction has been proposed[95] [Figure 3D]. The synthesis process 
starts with selecting a unit cell composed of polyhedrons, followed by the presentation of a nonperiodic 
tessellation aimed at defining the curvilinear geometry using an optimum transport algorithm. Origami 
structures are then constructed by spatially shrinking and extruding prismatic tubes inside the template. 
The geometric modification procedure allows these origami structures to have reconfigurable motion 
through the application of foldable constraints for the extruded tubes. This top-down approach significantly 
expands the design space of 3D geometries of origami structures. It is noteworthy that creases play 
important roles in the folding and unfolding behaviors of origami structures. However, they may also lead 
to undesirable stress concentrations and uncertain plastic deformation states, which can be highly 
detrimental to functional performance, especially in the context of membrane-type electronic devices 
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Figure 3. Morphing matter based on origami and kirigami. (A) An origami tessellation based on Resch’s patterns is showcased, 
optimizing the developable pattern while eliminating local collisions. Reproduced with permission from[91]; Copyright 2023, Elsevier Ltd; 
(B) A Generalized Miura-ori obtained from constrained optimization algorithms exhibits surfaces with negative, positive, and mixed 
Gauss curvature, aligning well with manually folded physical paper. Reproduced with permission from[92]; Copyright 2022, Macmillan 
Publishers Limited; (C) Magnetic Kresling units capable of folding/deploying and ominidirectional bending are interconnected with a 
robotic arm, displaying multimodal behaviors under rotating magnetic fields. Reproduced with permission from[100]; Copyright 2022, 
National Academy of Sciences, U.S.A; (D) Nonperiodic modular origami structures are proposed for volumetric 3D spatial curvilinear 
geometries. Reproduced with permission from[95]; Copyright 2022, Macmillan Publishers Limited; (E) Reconfigurable kirigami with 
optimized quadrilateral tiles can morph from an initial compact configuration to a customized deployed state and finally to another 
compact configuration. Reproduced with permission from[105]; Copyright 2021, American Physical Society; (F) A computational wrapping 
method enables nonstretchable and even brittle materials to conform to curved surfaces. Reproduced with permission from[106]; 
Copyright 2020, AAAS; (G) A quad kirigami tessellation is extended to fit curved surfaces with complex Gaussian curvature. 
Reproduced with permission from[107]; Copyright 2019, Macmillan Publishers Limited; (H) Auxetic kirigami sheets, comprising spatial 
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varying motifs, exhibit stable morphing surfaces with optimized compressive stiffness. Reproduced with permission from[111]; Copyright 
2021, Association for Computing Machinery; (I) Elastic tapered patterns are cut from a sheet to form axisymmetric structures with 
programmed profiles under compressive load at their edges. Reproduced with permission from[112]; Copyright 2020, The Royal Society of 
Chemistry; (J) Perforated kirigami exhibits a programmed apple-shaped structure with potential applications in grippers or packaging. 
Reproduced with permission from[114]; Copyright 2022, Elsevier Ltd; (K) A Cellular triangular microlattice design strategy is presented to 
reconstruct biomimetic surfaces resembling the blueberry flower. Reproduced with permission from[115]; Copyright 2023, AAAS; (L) 
Functionally graded composites using multi-materials voxel-based 3D printing are employed to constitute the divided elastic strip for 
morphing structures. Reproduced with permission from[116]; Copyright 2023, Elsevier Ltd.

integrated into morphing matter[101,102]. In general, placing the device layer within the neutral mechanical 
plane can enhance bendability, while an upper layer can minimize light scattering and optical losses, crucial 
considerations for image sensors and optical devices[103,104]. Plasticized region on the top surface, serving as a 
damper and reflows, facilitates programmable transformations with mild stress accumulation, ensuring 
structural stability in transformed states. These transformable frameworks, in conjunction with origami 
structures, offer promising avenues for the development of high-performance electronic devices.

Kirigami, closely related to origami, allows for paper cutting, giving rise to complex 3D morphing 
structures. A framework for 2D reconfigurable kirigami patterns has been proposed, taking into account 
edge length constraints, the angle sum constraints, and dual pairs of geometry constraints[105] [Figure 3E]. 
Through an optimization routine, iteratively updated node coordinates are determined, leading to deployed 
kirigami that conforms to the target domain while admitting two compact configurations. Additional 
geometric constraints ensure rigid deployability, analog to planar mechanisms. These results provide a clear 
understanding of kirigami design with contractibility and rigid deployability, thereby paving the way for art-
inspired science and engineering. To transform a developable sheet to a nondevelopable 3D surface, 
polyhedral mesh unfolding proves to be an effective operation, allowing arbitrary surfaces to be flattened 
into 2D patches[106] [Figure 3F]. By algorithmically determining a polyhedral net with minimal folding angles 
and subsequently erasing crease lines, a nonpolyhedral developable net is obtained, suitable for wrapping 
the 3D surface and conformal devices with metallic and ceramic materials. The refinement of the mesh of 
the target surface reduces the area difference between the polyhedron and the target surface while leading to 
decreases in the maximum in-plane principal stress of the materials. In addition to segmentation and 
unfolding of surfaces, deployable kirigami tessellations based on geometric constraints are presented to fit 
surfaces with complex Gaussian curvatures[107] [Figure 3G]. While the contractibility constraints are similar 
to the planar case, the non-overlapping constraints and surface matching constraints differ. A bicubic Bezier 
surface is generated to fit every hole in the deployed state, with a comparison of mean and Gaussian 
curvatures to match the target surface. Various periodic tiling patterns are used for kirigami, such as 
triangles[108,109] and hexagons[110], all showing significant negative Poisson’s ratio and deploying as kinematic 
mechanisms at the flexible hinge limit. Combining auxetic kirigami and conformal geometry, an inverse 
design algorithm is established to morph complex surfaces by modifying the geometric parameters of the 
unit cell to introduce spatially metric frustration[108]. A deployable structure, transforming from a flat sheet 
to a surface with a hole, is presented, consisting of bistable auxetic units derived from the local extensibility 
of hinges[111] [Figure 3H]. The algorithm indicates that multiple solutions exist for the inverse design of the 
target surface, and the deployable structure with the highest stiffness is selected.

On the other hand, compressive loads at edges also play an important role in morphing principles based on 
kirigami, typically involving the removal of material from an elastic sheet to form a tapered pattern[112,113]. 
The fundamental mechanism driving the morphing of elastic strips is the equilibrium of tapered elastica[112], 
which lies a solid foundation of a series of inverse designs of morphing matter. When the moment of inertia 
of the strip’s cross-section varies along the strip, the resulting buckled strip exhibits noticeable curvature 



Page 12 of 26 Yang et al. Soft Sci 2023;3:38 https://dx.doi.org/10.20517/ss.2023.42

variation [Figure 3I]. A constant thickness scheme leads to gaps in the deformed shape, and relaxation in 
thickness distribution ensures full tessellation[112]. Fabricating a planar sample with variable thickness may 
present challenges, which can be circumvented by utilizing varying porosity, a strategy known as perforated 
kirigami[114] [Figure 3J]. The porosity can be tailored by introducing small pores using techniques such as 
laser cutting and microfabrication. Mechanical stability investigations of tessellated axisymmetric structures 
upon indentation tests further explore the relationship between the measured geometric rigidity of morphed 
half-ellipsoids and different aspect ratios. The design strategy of perforated sheets is not limited to regular 
poles or structures with rotational symmetry. A similar bio-inspired cellular micro-lattice design strategy 
has been presented recently, aiming to reconstruct complex surfaces using an elastic model and machine 
learning approaches[115] [Figure 3K]. For complex surfaces, an artificial neural network based on point cloud 
data is utilized to obtain the coordinates of triangular nodes and their porosity from pre-strained numerical 
datasets of microlattice ribbons. Combined with stretched elastomer, inner bonding sites, and strain-
limiting frames, these microlattices can be used to create bilayer structures and face masks, demonstrating 
functional application in electronic systems. The explicit relationship between the shape of the 2D cut 
pattern and the curvature of the 3D target structure illustrates that inverse design strategies can encode the 
moment of inertia and Young’s modulus along a strip[112]. With advancements in additive manufacturing 
technologies, local control of elastic properties in materials becomes achievable. A novel paradigm based on 
multi-material volumetric pixel-based 3D printing is proposed[116] [Figure 3L]. By determining the 
relationship between the longitudinal modulus and the volume fraction of materials, a functionally graded 
composite (FGC) strip is manufactured by assigning soft and rigid phases to each voxel according to 
theoretical modulus distribution along the strip. In addition to their shape-changing abilities, FGC-based 
morphing structures also exhibit excellent multi-functionality[116]. These methods leverage geometric 
analysis and mechanical behaviors to create shape-morphing structures with complex shapes and multiple 
functions.

Assembly of discrete elements
To approximate a targeted free-form surface, a computational method is proposed to tessellate the given 
surface into rigid convex blocks in regular topologies[117] [Figure 4A]. In this method, a 2D polygonal 
tessellation is mapped to the targeted 3D surfaces, and the mapped edges are augmented with normalized 
vectors for constructing 3D planes. Lastly, the targeted surface is offset to intersect the 3D planes for 
interlocking topology. A variety of 3D surfaces (e.g., blob, spindle, flower, and torus) are achieved utilizing 
this method via assembling particles [Figure 4A ii]. However, one drawback is that this method requires 
picking and placing these particles at designed locations, which is highly time-consuming. To address this, 
an alternative computational approach assembles the rigid tiles with pre-stretched sheets as the actuating 
material[31] [Figure 4B]. The tiles are tightly attached to two pre-stretched elastic sheets and, once released, 
will assemble the tiles to the targeted 3D shapes by restoring elastic force in the elastic sheets [Figure 4B i]. 
The distribution, shapes, and attachment regions of the 2D tile arrangements are optimized for both 
fabrication and closely resembling the desired curved up state. This method allows for the realization of 
complex surfaces (e.g., turtle, bump cap, mask, spot, etc.) from a flat state [Figure 4B]. Nevertheless, 
reversible shape morphing is unrealistic to achieve using this method as the elastic energy is hard to restore 
and keep once released. To overcome this limitation, a reversible shape morphing strategy is introduced[118] 
[Figure 4C]. The tessellated rigid blocks are concealed in the air-tight rubber envelope. Vacuum pressure is 
used to assemble the particles from the flat surface to the targeted 3D shape. Unlike traditional morphing 
materials relying on the intrinsic softness of underlying materials, the achieved 3D structure possesses high 
mechanical rigidity due to the contact of rigid particles under confining pressure [Figure 4C iii]. When the 
pressure is removed, the 3D structure will return to the initial shape due to the gravity and elasticity of the 
rubber envelope.
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Figure 4. Morphing matter based on discrete elements assembly. (A) Tessellating free-form surfaces into interlocking blocks. (i) 
Schematic of a tessellation strategy; (ii) Demonstrations of the tessellation algorithms with various surfaces; (iii) Manually assembling 
process. Reproduced with permission from[117]; Copyright 2019, Association for Computing Machinery; (B) Actuating discrete blocks 
with tension force. (i) Schematic of assembling the blocks with pre-stretched membranes; (ii) Demonstrations with various surfaces 
from flat state to curved state. Reproduced with permission from[31]; Copyright 2017, Association for Computing Machinery; (C) Shape 
morphing structures based on discrete particles under vacuum pressure. (i) Illustration of design and actuation process under vacuum 
pressure; (ii) Demonstrations with positive and negative Gaussian curvatures; (iii) Stiffness tuning ability under confining pressure. 
Reproduced with permission from[118]; Copyright 2023, Wiley-VCH; (D) Hierarchical tessellation strategy and demonstrations with 
varying curvature surfaces and asymmetric surfaces (from top to bottom: gourd shape, vase shape, and mushroom chair shape)[120]; (E) 
Grains on an elastic sheet. The sheet first conforms to individual grains, and then wrinkles will occur to the sheet as the granular grains 
rearrange and get jammed under confinement. Reproduced with permission from[121]; Copyright 2023, Cell Press; (F) Chainmail 
structure consisting of topologically interlocked particles undergoes reconfigurations and shows high mechanical rigidity under vacuum 
pressure. Reproduced with permission from[122]; Copyright 2021, Macmillan Publishers Limited.

Despite the fact that the above-mentioned strategies can achieve shape morphing from a flat surface to a 
non-deployable surface, a whole, complex 3D surface remains challenging to realize due to the restrictions 
of Gauss’ Theorema Egregium[119]. To buffer the incompatibility between 3D and flat surfaces, a two-level, 
inverse-design framework called ‘hierarchical tessellation’ is proposed[120] [Figure 4D]. At the first level, a 
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free-form 3D surface is tessellated into petaloid-topology surfaces via kirigami tessellation. At the second 
level, the subdivided surface is further tessellated into architectured particles to match the curvature 
distribution. Through assembling/disassembling the particles via tendon, general 3D structures (e.g., 
asymmetrical and varying curvature) could be achieved reversibly. Notably, the mechanical properties of the 
structures could be tuned by controlling the actuation force (the force in the actuating tendon), which is 
challenging in traditional soft morphing materials.

Furthermore, the use of identical particles on elastic sheets is explored for shape morphing. When identical 
grains populate an elastic sheet, two morphing states will arise as the grain-sheet interaction strength 
surpasses the bending rigidity of the sheet[121] [Figure 4E]. Initially, the sheet will exhibit local conformation 
to each individual grain. Subsequently, it will achieve a global conformation to the granular packing under 
two conditions: either through the application of a confining force (examined through granular self-
coherence) or by jamming on the surface of the sheet [Figure 4E]. As for jamming transition, the chainmail 
structure consisting of topologically interlocked identical octahedral particles can be shaped into various 
geometries (e.g., load bearing structures) at a soft state and using a jamming transition to fix the shape[122] 
[Figure 4F]. The discrete characteristics of the chainmail structure allow the rigid particles to become soft at 
the structure level, while they can be stiffened and lock the shape on demand under confinement. This 
reconfigurable morphing ability is essential for applications where conformability is required.

In addition to the well-established morphing materials/structures involving programming localized strain or 
cuts/folds[4,123], there has been another innovative method recently developed - the assembly of discrete 
elements (e.g., architectured particles) from basic building blocks[31,117,118,121,122,124]. The discrete characteristics 
grant the building blocks more freedom of movement, enabling easy changes in Gaussian curvature[17,112]. 
Recent developments have used architectured blocks[117], rotating beams[125,126], and curved ribbons[127] as the 
basic building elements. Through designing the geometries of the discrete building elements and their 
interactions (e.g., assembling, sliding, rotating, etc.), structures with respectable morphing capability can be 
achieved.

Morphogenesis-inspired design
Morphogenesis, a fascinating phenomenon observed in biological systems, orchestrates the development of 
diverse functional organs[128-130]. In plants, while specific genes regulate programmable cell growth, 
biomechanical constraints (e.g., physical restrictions from adjoining cell walls) and the differential growth 
strain (e.g., varying cell growth rates in response to environmental stimuli) also significantly contribute to 
evolving into complex 3D configurations at the organ level[131,132].

To understand this from the perspective of biomechanics, a morphological phase diagram is presented, 
rationalizing four general geometrical configurations (twisting, helical twisting, saddle bending, and edge 
waving) in plants[133] [Figure 5A]. Specifically, using a narrow strip to represent the leaf, the growth strain 
along the axial direction of the strip can be taken as: εg(y) = β(y/W)n, where y and W are the distance from 
the leaf center and half width of the leaf, respectively. The growth strain εg(y) increases from zero at the 
center to a maximum value of β at the edge. The power-law exponent, n, characterizes the steepness of the 
differential growth strain profile. Four configurations emerge with different n and β. The large intermediate 
state between the saddle bending state and the edge waving state may arise from the structure instability and 
residual stresses in the center. The findings indicate that the shape development of maturing leaves is 
influenced by both the highest magnitude and the spatial arrangement of growth-induced strain. Guided by 
this phase diagram, artificial hydrogels that could mimic the morphing behaviors of leaves are presented by 
controlling the polymerization process [Figure 5A iii].



Yang et al. Soft Sci 2023;3:38 https://dx.doi.org/10.20517/ss.2023.42 Page 15 of 26

Figure 5. Morphogenesis inspired morphing matter. (A) Differential growth in plants and their principles of morphogenesis. (i) 
Morphogenesis of long orchid petals and their corresponding basic mechanical configurations; (ii) Morphologies phase diagram as 
functions of n and β; (iii) Reproduction of the plant leaf morphogenesis through controlling the hydrogel polymerization process. 
Reproduced with permission from[133]; Copyright 2018, National Academy of Sciences, U.S.A; (B) Design principles of the liquid crystal 
elastomer actuator. The actuator combines the morphogenesis of plant leaves and the motion of a ray during swimming and could 
generate autonomous wave motions under structured light. Reproduced with permission from[134]; Copyright 2022, American Chemical 
Society; (C) Principles of the pneumatic morphing elastomers with air channels inside. (i) The anisotropic deformation of the elastomer 
under pneumatic actuation and the mold used to cast the elastomer plate with air channels; (ii) Two morphing states under pneumatic 
actuation; (iii) Morphogenesis of the Acetabularia alga from positive Gaussian curvature to negative Gaussian curvature shape due to 
the differential growth. Reproduced with permission from[135]; Copyright 2019, Macmillan Publishers Limited; (D) Design and 
demonstration of inflatables. (i) Heating to seal the two inextensible sheets using a soldering iron. Through controlling the sealing path, 
various shapes could be achieved; (ii) Demonstration with a “waving man”. The sealing path is programmed to be the shape of a waving 
man; (iii) Demonstration with a “Hello”. The sealing path is programmed to be the contour of “Hello”. Reproduced with permission 
from[136]; Copyright 2018, National Academy of Sciences, U.S.A; (E) Design guidelines and demonstration of discrete strain-limiting 
patches on inflatables. (i) The inverse-design pipeline; (ii) Demonstration of the design with a hyperbolic paraboloid surface; (iii) 
Grasping and lifting two baskets using a designed loop knot geometry. Reproduced with permission from[137]; Copyright 2023, Wiley-
VCH; (F) The responsive surface by halftone gel lithography. (i) Schematic of the fabrication process; (ii) Programmed patterned sheets 
generate a saddle surface, a saddle surface with a defect, a cap surface, and a cone surface. Reproduced with permission from[138]; 
Copyright 2012, AAAS.
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Inspired by this biological morphogenesis, a wavy soft, light-actuated robot that could perform rhythmic
motor patterns for locomotion is presented[134] [Figure 5B]. This locomotion robot combines the two
shaping principles developed from plant morphogenesis and the ray fish undulatory motion. Firstly, liquid
crystal elastomer (LCE) strips could achieve differential morphing into various wavy shapes from flat shapes
under nonuniform structured light. Secondly, a rhythmic motor pattern is achieved through localized light-
induced contracting/expansion. These autonomous wave behaviors enable artificial soft machines to mimic
the complex peristaltic waves in biological organisms. Apart from achieving differential growth through
photothermal effect, pneumatic actuation offers fast and reversible actuation. By incorporating a specialized
network of airways within the rubber plate, the channels tend to inflate (deflate) anisotropically (i.e., the
width changes while the length remains almost the same) when the inner pressure is increased
(decreased)[135] [Figure 5C i]. As a result, negative pressure contracts the plate in the azimuthal direction,
resulting in a bowl shape with positive Gaussian curvature, while positive pressure transforms the plate into
a saddle shape with negative Gaussian curvature [Figure 5C ii]. The desired curvature tensor can also be
programmatically achieved using a bilayer structure consisting of two separate networks of airways. This
precise control of local growth enables effectively mimicking the anisotropic growth of Acetabularia
[Figure 5C iii].

To overcome the limitations of intrinsic softness in elastomers, stiff inflatables are developed based on
inextensible sheets sealed along desirable continuous paths on their edges[136] [Figure 5D i]. Through
rationalizing the stress state and curvature under inflation, a reversed model is proposed to design arbitrary
2D shapes from flat sheets. Specifically, the cross-sectional shape exhibits singularities and a complex
arrangement of wrinkles, causing the outline of the inflated curved balloon with unfixed ends to become
more curved during inflation. The feasibility of the model is validated with the targeted “waving man” and
“hello” shapes [Figure 5D ii and iii]. Similarly, another inverse-designed inflatable is developed based on 3D
discretely placed strain-limiting patches[137] [Figure 5E]. In this design, starting with a user-defined spatial
curve, the authors employ kinematics to create a preliminary strategy for the positioning and heights of
strain limiters on the unexpanded structure. This preliminary strategy then serves as the starting point for a
finite element method (FEM) simulation integrated into an optimization framework aimed at refining strain
limiter placement and dimensions. The initial approach is derived from a simplified model that offers
insights into the mechanics governing elongated hyperelastic inflatables adorned with distinct strain
limiters. Moreover, employing this preliminary approach to initiate the FEM optimization process narrows
down the design possibilities, enhancing the convergence rate towards valid parameters as compared to
using FEM alone. Using this design pipeline, various shapes, such as hyperbolic paraboloid surfaces, are
presented [Figure 5E ii ]. As for applications, the soft inflatable equipped with this inverse design framework
could be shaped into a loop knot for grasping and lifting the object [Figure 5E iii].

Additionally, spatially nonuniform growth in soft materials is explored as an alternative way to mimic
biological morphogenesis. To create smooth nonuniform growth in a sheet, an approach called “halftone gel
lithography” based on a two-mask lithographic patterning is described[138] [Figure 5F]. The detailed process
involves coating a sacrificial layer on a wafer, and then the temperature-responsive N-isopropylacrylamide
copolymer is solution cast and exposed to a small dose of UV light through the first mask. And then a large
dose through the second mask.

The benzophenone acrylamide unit in the copolymer under UV light can be converted into cross-links that
can swell. Finally, the sample is immersed in an aqueous solution for swelling [Figure 5F i]. The arbitrary
and uniform distribution of highly cross-linked dot patterns could generate various shapes, such as saddle
surfaces, a cone with a center defect, a cap, and a cone shape [Figure 5F ii].
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MORPHING MATTER IN ROBOTIC APPLICATIONS
The exploration of various shape morphing mechanisms over the past few decades has led to a 
demonstration of various sophisticated soft robotic applications[4,139-141]. In contrast to traditional rigid 
robots, soft robots are designed to emulate natural organisms and adapt to specific external environments. 
Therefore, the ability to undergo shape morphing becomes a crucial benchmark for evaluating their 
reconfigurability in diverse surroundings[142,143]. Various actuation strategies have been employed to achieve 
active shape morphing in soft robotics, including pneumatic[144-147], magnetic[140,148,149], light[150,151], and heat-
based[152,153] methods. These approaches allow soft robots to change their shapes and configurations in 
response to specific stimuli, making them highly versatile and capable of performing a wide range of tasks.

Pneumatic actuation is one of the most common methods used to change the shape of soft robots. The 
channels inside the soft bodies allow converting the internal pressure in the voids to the strain easily. A 
simple bubble casting method is proposed to manufacture the soft robot with voids[146] [Figure 6A i]. An 
uncured elastomer is filled into the tubular mold, and then air is injected into the elastomer to form an 
elongated bubble acting as the inner void of the soft actuator. Interestingly, gravity and viscosity drive the 
formation of the eccentric void topology [Figure 6A i]. The asymmetric wall thickness distribution leads to 
bending motion under inflation. The bending motion can be readily used as a self-folding gripper 
[Figure 6A ii]. Similarly, collective entanglement grasping is developed based on actuating eccentric 
filaments[147] [Figure 6B]. Dip coating aids the fabrication of the off-center internal channel, and the 
asymmetry enables it to deform into a highly curved state under pressure. For demonstration, through 
designing eccentric geometries, 12 filaments self-entangle to conformally grasp a house plant under 
pressure.

For delicate grasping, kirigami cut patterns designed on a flexible, thin shell transfer linear uniaxial tension 
into grasping motion[154] [Figure 6C]. The pattern is generated on a polyethylene terephthalate sheet 
(thickness: 0.127 mm) via laser cutting, and then the kirigami sheet is mounted on a cylinder and heated to 
form the initial curvature. The grasping performance under tension depends on the cut parameters, i.e., the 
holding force increases monotonically with lc(ly - tc)κ0/[4(1 + ν)lxsin(κ0Le)] where ν is the Poisson’s ratio. The 
demonstration shows the ability of a kirigami sheet to grasp a raspberry. Another kirigami sheet design 
achieves 3D morphologies by programming the curvature of cut boundaries instead of cutting patterns[155] 
[Figure 6D]. The kirigami sheet consists of parallel cuts enclosed by continuous boundaries. By prescribing 
the boundaries, the stretching of the sheet generates various 3D shapes. For applications, a soft gripper is 
presented for delicate grasping. The 2D kirigami precursor transforms into a gripper grasping raw egg, live 
fish, and shampoo bubbles under simple stretching.

Different from pneumatic or mechanical stretching actuated shape morphing structures, smart, responsive 
materials offer a feasible way for remote control. 3D printing of ferromagnetic soft materials for fast 
morphing robots is developed based on embedding ferromagnetic microparticles (neodymium-iron-boron 
alloy) into soft silicone polymer matrix[156] [Figure 6E]. The orientation of the particles is controlled via the 
magnetic field applied during printing. The programmable and desirable orientation enables precise control 
of the modes of transformation. The capability of the complex shape changing enables the construction of a 
hexapedal structure that can act as cargo for carrying an object and releasing it. Thermo-responsive 
materials do not require complex magnetic fields. As an example, an untethered self-propelling robot based 
on LCE is presented[157] [Figure 6F]. The LCE samples consist of two layers with a difference of 90° in 
printing directions. The strain mismatch between the two layers forces the planar sample to transform into 
a helix tubular structure under heating. When the tubular sample is placed on a hot plate, a temperature 
gradient causes contrasting changes at the bottom and top of the circle, with the bottom shrinking while the 
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Figure 6. Robotic applications of morphing matter. (A) Soft robots fabricated by bubble casting. (i) Illustration of fabrication processes 
and demonstration of acting as a gripper; (ii) Spiral-shaped actuator fabricated by bubble casting method. Reproduced with permission 
from[146]; Copyright 2021, Macmillan Publishers Limited; (B) Entangling filaments. (i) Schematic of the eccentric design of the filaments 
and their actuating performance; (ii) 12 eccentric hollow filaments grasping a house plant under actuation. Reproduced with permission 
from[147]; Copyright 2022, National Academy of Sciences, U.S.A; (C) Soft kirigami gripper. (i) Design parameters of the kirigami sheet 
and its morphing ability under stretching; (ii) Grasping a raspberry using the kirigami gripper. Reproduced with permission from[154]; 
Copyright 2021, AAAS; (D) Kirigami sheet with prescribed boundaries as soft grippers. (i) 2D precursors before stretching and 
morphing into a dome shape under stretching; (ii) Grasping raw egg yolk; (iii) Grasping a swimming fish. (iv) Grasping shampoo bubble. 
Reproduced with permission from[155]; Copyright 2022, Macmillan Publishers Limited; (E) Soft magnetic robot. (i) Schematic of the 
printing process and the composite ink composition. The magnetic field generated by the permanent magnet/electromagnetic reorients 
the hard ferromagnetic particles in the soft matrix; (ii) A soft magnetic robot for delivery under magnetic actuation. Reproduced with 
permission from[156]; Copyright 2018, Macmillan Publishers Limited; (F) A self-propelling thermo-responsive soft robot. (i) Schematic of 
the printing, morphing, and rolling process on a hot plate; (ii) Morphing process and rolling process on a hot plate; (iii) The rolling 
direction depends on the curvature direction of the tubule. Reproduced with permission from[157]; Copyright 2021, Cell Press; (G) A 
pipeline robot. (i) Schematic of the structure of the pipeline robot; (ii) Two different types of pipeline robots. Type A: two anchoring 
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units and one elongation unit. Type B: two elongation units with two anchoring units; (iii) Navigating into a pipe with variable internal
diameters (10 to 9 to 10 mm). Reproduced with permisFEMsion from[159]; Copyright 2022, AAAS. FEM: Finite element method.

top extends. This disrupts the balance of forces and results in the sample experiencing rolling ability. 
Moreover, compared to existing light-controlled and magnet-controlled soft robots, which rely on varying 
the direction of light or magnetic fields to control motion, the proposed robot only needs a slight change in 
curvature direction without modifying environmental factors.

Apart from the magnetic-actuated and heat-driven robots, the electric field is also employed in soft robots 
for their fast actuation speed[158]. A pipeline inspection robot is designed based on the high-power density 
dielectric elastomer actuators (DEAs)[159] [Figure 6G]. The DEAs act as the elongation unit, and the Smart 
composite microstructure (SCM) based on carbon fiber laminates is used as anchoring units. Through 
modeling and dynamic analysis of the robot’s characteristics, the pipeline robot demonstrated exceptional 
performance coupled with precise adjustments to the frequencies and phases of activation voltages. It 
achieved rapid bidirectional motion, both horizontally and vertically, at speeds surpassing one body length 
per second within confined subcentimeter-sized pipelines. Notably, this motion was enabled by tethered 
cables originating externally to the pipe. Moreover, the robot exhibited remarkable adaptability, showcasing 
its capability to navigate pipes with changing diameters, complex geometries such as L-shaped and S-shaped 
pipes, spiral configurations, and pipes filled with various oils and constructed from diverse materials.

CONCLUSION AND OUTLOOK
In this review, we have briefly discussed the recent developments of morphing matter, focusing on its 
mechanical principles. The inherent softness of morphing matter at both the material level (in terms of 
elasticity[21]) and the structural level (involving characteristics such as instability[85] and discreteness[86]) has 
greatly facilitated its applications in the realm of soft robotics, where adaptive shape reconfigurations are 
essential for interaction with dynamic environments[160]. Despite the significant progress made in this field, 
several challenges remain to be addressed before these technologies can be fully integrated into practical 
applications:

(1) Firstly, A pivotal challenge lies in ensuring that the achieved morphed shape remains stable without 
continuous actuation, thus conserving energy expended to maintain the shape[80,161]. Current actuation 
methods, such as pneumatic[162], thermal[16], or light-based techniques[123], often necessitate sustained 
pressure or temperature to retain the desired shape. Developing multistable designs could enable morphing 
matter to transform among various configurations while saving the energy for maintaining the shape, 
opening up new possibilities for diverse applications[163,164].

(2) Secondly, achieving morphing into intricate 3D geometries poses a challenging inverse-design 
problem[116,165]. While analytical models can be developed for specific strain-driven morphing scenarios, they 
encounter difficulties when confronted with complex shapes that involve intricate interactions between 
actuating forces and nonlinear material deformations. Often, addressing such complexities requires solving 
intricate partial differential equations[166-168]. Overcoming this challenge may entail harnessing the 
capabilities of machine learning techniques and capitalizing on extensive data acquired from experiments or 
finite element simulations[115,169,170].

(3) Thirdly, given the diverse range of actuation strategies available for morphing matter - such as 
electric[171-173], magnetic[174,175], and thermal[176,177] methods - accomplishing multiphysics simulations and 
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predictions for these systems is paramount[178]. This is especially true when combining inverse design 
methodologies with multiphysics actuation strategies. In addressing this challenge, machine learning 
presents a viable solution for tackling complex multiphysics interactions[179]. Employing machine learning 
can facilitate the development of intricately morphed shapes under the influence of multiple interacting 
physical fields.

(4) Lastly, selecting an actuation method for robotic applications depends on the desired morphing range, 
morphing speed, and the available power consumption[171,173]. Actuators with high energy density[180,181], 
power density[182,183], and high efficiency[172,184] are still in great demand to realize soft-morphing robots with 
remarkable performance. Therefore, a major challenge in the application of morphing matter in robotics is 
to combine the morphing mechanisms with appropriate actuators to achieve controlled morphing.
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