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Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Numerous cardiac 
pathologies result in myocardial damage or dysfunction, inevitably leading to heart failure. A fundamental 
roadblock in heart failure treatment is the inability of the adult human heart to repair itself after injury, 
which results from permanent cardiomyocyte cell cycle arrest shortly after birth. As such, mechanism(s) 
that regulate cardiomyocyte cell cycle progression have been the focus of intense research over the past two 
decades.

WNT/β-Catenin pathway is an evolutionarily conserved signaling pathway with essential roles in cell 
proliferation and differentiation. Canonical WNT signaling, mediated by the binding of WNT ligands to its 
membrane receptors, Frizzled and LRP5/6, and subsequent activation of downstream β-Catenin-dependent 
transcription has a pivotal role in the heart. During embryogenesis, WNT/β-Catenin signaling regulation is 
essential for the proper specification and proliferation of cardiac progenitor populations in the first and 
second heart fields[1,2]. Canonical WNT signaling has low activity in the adult heart[3]. However, this 
signaling pathway has also been shown to mediate cardiac pathology, such as cardiomyocyte hypertrophy 
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and death[4].

In this issue, Olcum et al.[5] provide a deep analysis of the short-term transcriptional changes taking place 
upon WNT/β-Catenin signaling modulation in the adult mouse heart. By using cardiomyocyte-specific 
inducible gain (GOF) and loss (LOF) of function models of the canonical WNT pathway, the authors found 
that WNT/β-Catenin signaling governs the expression of cell cycle and oxidative phosphorylation-related 
genes in adult cardiomyocytes. Enhanced β-Catenin transcriptional activity in the GOF model resulted in 
increased expression of cell cycle re-entry and cytokinesis genes, while a decrease in the transcriptional 
activity of β-Catenin in the LOF model led to a modest increase of genes related to oxidative 
phosphorylation. Interestingly, none of the genetic models caused functional alterations in the heart, in 
terms of fibrosis, lipogenesis, cardiac function, cell size, or cardiomyocyte number.

Moreover, GOF animals did not show an increase in mitotic cardiomyocytes by means of pH3 
immunostaining (although there was a trend towards increase, with considerable variability), a mitosis 
marker considered a gold standard for assessment of cardiomyocyte cell cycle entry, indicating that 
increased canonical WNT signaling may not be sufficient to induce cardiomyocyte proliferation under basal 
conditions. Additional studies, including S-phase and cytokinesis makers, would help clarify the effect of 
GOF on cardiomyocyte cell cycle. In addition, it would be important for future studies to determine the 
effect of GOF on cardiomyocyte cell cycle following ischemic injury.

Interestingly, the LOF model showed a modest increase in transcripts related to mitochondrial oxidative 
phosphorylation. These results, even if modest, would be interesting to pursue. For example, some 
functional experiments in the LOF model, such as mitochondrial activity, morphology, and substrate 
utilization, would be important to delineate the role of canonical WNT signaling in the mitochondrial 
biology of adult cardiomyocytes. Conceptually, a shift towards an oxidative phenotype is generally 
considered a facet of cardiomyocyte maturation. If true, although the picture is not complete at this stage, it 
would suggest that WNT signaling might regulate a cardiomyocyte maturation program involving 
metabolism and cell cycle regulation.

Previous studies in pathological cardiac conditions showed contradictory roles of WNT/β-Catenin signaling 
depending on the cell type studied. For example, inhibition of the canonical WNT pathway upon cardiac 
injury improves heart function and reduces fibrosis[6,7]. However, inhibition of the same pathway in 
epicardial cells and cardiac fibroblasts led to worsening of cardiac function and wound healing following 
myocardial infarction[8]. This highlights the importance of cell type-specific studies in regard to canonical 
WNT signaling in the adult heart. In this regard, Olcum et al.[5] performed all the analyses using cell-specific 
genetic models, providing a cardiomyocyte-specific signature of transcriptional changes upon β-Catenin 
GOF and LOF in adult cardiac myocytes.

Previous studies have also demonstrated that β-Catenin is a component of the intercalated disk, and that it 
accumulates in that location during cardiac hypertrophy[9] and aging[10]. Given the increased β-Catenin levels 
achieved in the GOF model in the current study, despite the fact that there does not seem to be any overt 
electrical or contractile consequences, it would be interesting to determine whether β-Catenin levels are also 
increased at the level of intercalated disks and whether some of the transcriptional changes or long-term 
effects are dependent on it.

WNT signaling is known to have a non-canonical pathway that acts independently of β-Catenin. However, 
there is increasing evidence that both WNT canonical and non-canonical WNT signaling interact and 
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coordinately regulate several cellular processes[11]. In that regard, it is possible that some of the de-regulated 
pathways in the GOF and LOF models are due to alterations in the non-canonical branch of the pathway. 
Perhaps additional studies using double mutants of both β-Catenin and non-canonical WNT pathway 
members would help dissect the role of each signaling cascade in the adult cardiomyocytes.

In conclusion, Olcum et al.[5] conducted a series of elegant studies that suggest a degree of regulation of cell 
cycle genes and cell cycle progression pathways by canonical WNT signaling in adult myocytes. As 
mentioned above, this does not appear to be sufficient for bona fide induction of cardiomyocyte mitosis in 
the adult heart under basal conditions; however, additional long-term and injury-related studies may be 
needed to further delineate the role of WNT signaling in myocardial regeneration following injury. From a 
mechanistic standpoint, it would be important to determine whether WNT signaling acts as a nodal point 
for the regulation of a cardiomyocyte maturation program involving metabolism and cell cycle.
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