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Abstract
Drug resistance is a major challenge in cancer therapy that often leads to treatment failure and disease relapse. 
Despite advancements in chemotherapeutic agents and targeted therapies, cancers often develop drug resistance, 
making these treatments ineffective. Extracellular vesicles (EVs) have gained attention for their potential 
applications in drug delivery because of their natural origin, biocompatibility, and ability to cross biological barriers. 
Using the unique properties of EVs could enhance drug accumulation at target sites, minimize systemic toxicity, 
and precisely target specific cells. Here, we discuss the characteristics and functionalization of EVs, the 
mechanisms of drug resistance, and the applications of engineered EVs to overcome drug resistance. This review 
provides a comprehensive overview of the advancements in EV-based drug delivery systems and their applications 
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in overcoming cancer drug resistance. We highlight the potential of EV-based drug delivery systems to 
revolutionize cancer therapy and offer promising strategies for more effective treatment modalities.

Keywords: Extracellular vesicles, drug delivery systems, drug resistance, tumor microenvironment, cancer therapy

INTRODUCTION
Drug resistance remains a formidable obstacle in cancer therapy, often leading to treatment failure and 
disease relapse[1,2]. Despite the advancements in the development of chemotherapeutic agents and targeted 
therapies, cancers often develop resistance mechanisms that render these treatments ineffective[3]. The 
emergence of drug-resistant cancer cells can be attributed to various factors including genetic mutations, 
altered drug metabolism, efflux pump overexpression, and modifications in cell signaling pathways[4-6]. 
These complexities necessitate innovative approaches for enhancing the efficacy of cancer treatments.

Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, have garnered 
considerable attention in recent years because of their potential role in intercellular communication and 
ability to transfer bioactive molecules between cells[7-11]. EVs are lipid bilayer-enclosed particles released by 
cells that carry diverse cargoes such as proteins, lipids, nucleic acids, and other small molecules[12-14]. Their 
natural origin, biocompatibility, and inherent ability to cross biological barriers make them promising 
candidates for drug delivery[15,16].

Recent studies have highlighted the potential of EV-based drug delivery systems to overcome drug 
resistance in cancer[7,13,17]. By leveraging their unique properties, EVs can be engineered to directly deliver 
chemotherapeutic agents, small interfering RNAs (siRNAs), microRNAs (miRNAs), and other therapeutic 
molecules to cancer cells, thereby enhancing drug accumulation at target sites and minimizing systemic 
toxicity[18-20]. In addition, EVs can be modified to target specific cell types, thereby providing a level of 
precision that conventional drug delivery methods lack[21-23].

This review aims to provide a comprehensive overview of the current advancements in EV-based drug 
delivery systems and their applications in overcoming drug resistance in cancer. We discuss EVs and their 
functionalization, mechanisms of drug resistance in cancer, and the application of engineered EVs to 
overcome drug resistance. By exploring these aspects, we hope to shed light on the potential of EV-based 
drug delivery systems to revolutionize cancer therapy and address the pressing issue of drug resistance in 
cancer.

EVS AND THEIR FUNCTIONALIZATION
EVs
In 1985, Pan et al. observed the vesicle structures secreted during the maturation of reticulocytes using a 
microscope[24]. Over the past few decades, in-depth studies have provided a clearer understanding of the 
biological processes and structure of EVs. The 2023 edition of the International Society for EVs provides a 
clear definition. The term “Evs” refers to particles that are released from cells, delimited by a lipid bilayer, 
and cannot replicate on their own (that is, they do not contain a functional nucleus)[8]. EVs are classified 
into three subtypes based on their size, structure, and biological processes of formation: exosomes, 
microvesicles, and apoptotic bodies [Figure 1][9]. Exosomes are vesicles formed by the inward budding of the 
membrane through endocytosis and then secreted outside the cell. Microvesicles are formed by the outward 
budding and shedding of the cell membrane; apoptotic bodies are produced by the disintegration of cells 
during programmed cell death[10,11]. EVs act as messengers for intercellular communication, with numerous 
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Figure 1. Schematic representation of subtypes of EVs. EVs: Extracellular vesicles.

studies indicating that they play significant roles in tumor formation and development and are closely 
related to cancer resistance mechanisms[7]. In addition, EVs serve as excellent drug carriers, capable of 
delivering proteins, DNA, RNA, and other molecules for the treatment of cancer or chronic wounds[12-14,25].

Characterization of EVs
EVs are complex structures containing various proteins and lipids. Common laboratory characterization 
methods for studying EV structures include nanoparticle tracking analysis (NTA), dynamic light scattering 
(DLS), transmission electron microscopy (TEM), flow cytometry, and western blotting (WB).

NTA uses laser scattering and the principle of the random Brownian motion of particles to measure the size 
distribution and concentration of EVs in liquid suspensions, making it one of the most used 
characterization methods in EV research[26,27]. DLS, similar in principle to NTA, also detects the size of EVs 
but measures the overall scattering intensity from the entire sample[28,29]. TEM enables direct observation of 
EV morphological characteristics[30]. Flow cytometry can be used to quantitatively analyze EVs by detecting 
the signal intensity of fluorescence-labeled antibodies specific to membrane surface markers[31-33]. WB is 
commonly used to detect proteins within EVs, which are first separated by gel electrophoresis and labeled 
with antibodies for qualitative or semi-quantitative analysis of the labeled proteins[8,34].

Isolation of EVs
EVs are small vesicles of varying sizes that are secreted by cells and are characterized by low toxicity, low 
immunogenicity, and excellent biocompatibility, making them ideal drug delivery vehicles. The following 
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sections outline several commonly used methods for isolating EVs from cells. Different EV isolation 
techniques of EVs are summarized in Table 1.

Ultracentrifugation
Ultracentrifugation separates components in a solution based on size and density differences and is the 
most used method because of its simplicity[35,38,39]. EVs can be isolated from samples such as human urine, 
saliva, intestinal digestive fluid, cardiac and alveolar cell culture media, mouse hippocampal interstitial fluid, 
and milk using ultracentrifugation[60-66]. However, this method has several drawbacks, including time-
consuming extraction and the low purity of isolated EVs, making it suitable only for small sample 
sizes[36,40,67].

Precipitation
Precipitation is a straightforward, instrument-free technique for exosome isolation. It is a polymer-based 
method in which a sample is mixed with a polymer at a low temperature and the salt concentration is 
adjusted, inducing EV aggregation and precipitation by reducing solubility[45-47]. For example, Mishra et al. 
used polyethylene glycol (PEG) to precipitate EVs from the plasma of patients to achieve high purity[68]. 
Similarly, Pecksen et al. used PEG to isolate monocyte-derived EVs from a co-culture of induced 
pluripotent stem cells and human monocytes[69]. Matchett and Kornbluth used a modified PEG-acetate 
reagent to isolate natural killer (NK) cell-derived EVs[70].

Size-exclusion chromatography
Size-exclusion chromatography (SEC) effectively separates EVs according to particle size, using porous 
beads that are smaller than EVs. It is suitable for isolating EVs from complex tissue or fluid samples and has 
significant clinical research applications[49,50,52,53,55]. For example, Livkisa et al. used SEC to remove impurities, 
such as carrier proteins, coagulation factors, and complement proteins, from platelet lysates, thereby 
achieving high-purity EVs[71].

Immunoaffinity capture
Immunoaffinity capture uses substances such as proteins, aptamers, and antibodies that specifically 
recognize and capture EVs based on the unique structures on their surfaces. This method exhibits high 
efficiency, specificity, and purity[56-59]. For instance, Koksal et al. used phycoerythrin-conjugated human 
CD9, AFP, and GPC3 antibodies to capture exosomes from the sera of patients[72]. Wang et al. modified 
nanofibers with CD63 antibodies to effectively capture EVs expressing surface CD63 proteins[73].

Ultrafiltration
The ultrafiltration technique uses a porous filter of a certain size with exclusion limits to eliminate smaller 
molecules (non-EVs) by flow-through[74]. This method is typically combined with other methods. 
Hanson et al. used ultrafiltration and SEC to isolate EVs from C2C12 myoblasts[75]. Moreover, ultrafiltration 
combined with differential centrifugation or ultracentrifugation can be used to isolate EVs derived from 
stem cells and gut bacteria[76-78].

Other methods
Existing methods for separating EVs cannot meet the experimental requirements, and there is an urgent 
need for new separation methods or improvements to existing ones. Bathini et al. proposed a liquid biopsy 
chip using the synthetic peptide Vn96 for EV isolation based on magnetic particles[79]. Chattrairat et al. 
upgraded the conventional well plate assay to an all-in-one nanowire-integrated well plate assay for charge-
based EV capture and membrane protein analysis[80]. Zhang et al. developed a rapid EV aggregation induced 
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Table 1. Comparison of different isolation methods of EVs

Isolation method Principle Advantages Disadvantages Application Ref.

Ultracentrifugation Isolation based on size and density through centrifugal force to
separate the impurities from samples

High productivity; 
Simple procedure; 
Easy to use

Time-consuming; 
Damage to the EVs; 
Formation of aggregates and 
precipitation

Blood, urine, cerebrospinal fluid [35-40]

Ultrafiltration Isolation uses a porous filter of size�exclusion limits, which 
removes smaller molecules (non�EV) by flow�through

Simple procedure; Suitable for large-
volume isolation; Retain EVs 
functionality and integrity

Time-consuming; 
Low purity; 
Low productivity

Blood, urine, and saliva [41-44]

Precipitation Induced clumping of EVs in the form of pellet by decreasing the 
solubility

Simple procedure; 
No additional equipment required; 
Suitable for large-volume isolation

Low efficiency; 
Time-consuming; 
High cost; 
Low purity with co-precipitation 
of protein and other molecules

Plasma, urine, saliva [45-47]

Size-exclusion 
chromatography

Isolation based on single isolation column containing porous 
beads with radii smaller than EVs

High purity; 
High homogeneity; Retain EVs 
functionality and integrity

Low productivity; 
Not suitable for higher sample 
volumes

Cell culture supernatants and 
complex biological fluids like 
plasma

[48-55]

Immunoaffinity Using immunoaffinity substances such as proteins, aptamers, and 
antibodies that can recognize the surface-specific structure of EVs 
to recognize and capture EVs

High efficiency; 
High specificity and purity; 
Retain EVs functionality and integrity

Low productivity; 
Only enrichment of EVs with 
specific proteins; 
Not suitable for larger sample 
volumes; 
High cost

Tumor cells, immune cells [56-59]

EVs: Extracellular vesicles.

in-situ miRNA detection technology based on a cationic lipid-polymer hybrid nanoparticle encapsulating cascade system of catalytic hairpin assembly and 
CRISPR-Cas12a, achieving an enrichment efficiency of > 90% in 30 min, 5 times higher than that of ultracentrifugation[81].

Strategies to functionalize EVs
Methods for functionalizing EVs primarily include surface modification and loading of targeted drug molecules.

Surface modification strategies
Before using natural EVs for drug delivery, EV membranes can be modified with various molecules to increase the specificity for target cells. The surface 
modification strategies for EVs include genetic modification, chemical modification, metabolic labeling, enzymatic conjugation, membrane fusion with 
liposomes, and affinity binding[82-85]. Here, we focus on the current EV surface modification strategies, including genetic and chemical modifications [Figure 2].
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Figure 2. Alteration of EV surface by chemical modification and genetic engineering. EVs: Extracellular vesicles; EGFR: epidermal growth 
factor receptor; PDGFR: platelet-derived growth factor receptor; GPI: glycosylphosphatidylinositol.

Genetic modifications 
This approach enhances EV targeting to specific cellular and tissue environments but is limited to targeting 
genetically encodable motifs[86]. Genetic modifications involve the fusion of gene sequences of proteins or 
polypeptides with selected EV membrane protein gene sequences[21][Table 2].

Lamp2b, a member of the lysosome-associated membrane protein family, is highly expressed in EVs derived 
from dendritic cells (DCs) and is commonly used as a fusion protein for genetic modification of EVs. 
Fusing the Rabies Virus Glycoprotein-Derived Peptide with the Lamp2b on EV surfaces improves the 
brain-targeting ability of EVs, making them potential carriers for brain disease therapeutics[87]. The iRGD 
specifically binds to αv-integrins, and fusing it with Lamp2b on EV surfaces efficiently targets αv-integrin-
positive breast cancer cells[88]. EVs overexpressing the fused protein Lamp2b-IL3 effectively target LSCs and 
are a potential drug carrier for acute myeloid leukemia[22]. Fusing Intercellular adhesion molecule-1 with 
Lamp2b on EVs can specifically target T cells[89].

The platelet-derived growth factor receptor (PDGFR) is expressed on EV membranes and can be fused with 
various antibodies. For example, combining anti-CD3 and anti-epidermal growth factor receptor (EGFR) 
antibodies with the PDGFR region on EV membranes can simultaneously target T cells and EGFR-
expressing triple-negative breast cancer cells[90]. Similarly, the fusion of anti-CD3 and anti-HER2 antibodies 
targets T cells and HER2-expressing breast cancer cells[91].
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Table 2. Applications of genetic modifications to EVs

Fusion 
protein EVs source Modification

details Target Comments Ref.

Lamp-2b MSCs IL3 LSCs Enhanced bone marrow homing and
selective targeting of LSCs

[22]

Lamp-2b Dendritic cells RVG peptide Neurons, microglia, 
Oligodendrocytes

Demonstrates effective siRNA brain 
delivery

[87]

Lamp-2b Mouse immature 
dendritic cells

iRGD peptide αv integrin-positive breast cancer 
cells

Enhanced targeting ability [88]

Lamp-2b HEKT 293 cell ICAM-1 Recombinant LFA-1 Interacts with T cells, efficiently delivers 
functional plasmids

[89]

PDGFR Expi293F cells CD3 and EGFR 
antibody

T cell CD3 and 
EGFR

Cross-links T cells and EGFR-positive 
cancer cells, triggers antitumor immunity

[90]

PDGFR Expi293 cells CD3 and HER2 
antibodies

T cell CD3 and breast cancer-
associated HER2 receptors

Promising exosome-based HER2 breast 
cancer immunotherapy

[91]

CD63 HEK293T cells Apo-A1 complex HepG2 cells Shows effective targeted miRNA delivery 
for liver cancer therapy

[92]

EVs: Extracellular vesicles; MSCs: mesenchymal stem cells; EGFR: epidermal growth factor receptor; PDGFR: platelet-derived growth factor 
receptor; LSCs: leukemic stem cells.

The CD63, a common tetraspanin on EV surfaces, has been used for genetic modifications. The fusion of 
CD63 with the Apo-A1 sequence enables the targeting of HepG2 cells[92]. Furthermore, combining the 
inhibitory domain of the myostatin propeptide with CD63 can enhance the delivery and efficacy of the 
treatment for Duchenne muscular dystrophy[93].

Chemical modifications 
Chemical modifications involve the attachment of specific molecules to the surface of EVs via chemical 
reactions[94]. These modifying molecules are primarily antibodies, peptides, or other targeting aptamers that 
selectively bind to receptors on cancer or immune cells to enhance their therapeutic effects[95-97] [Table 3].

The lipid surfaces of EVs can be functionalized to improve their targeting capabilities by incorporating 
various small molecules using click chemistry. Using click chemistry, neuropilin-1 targeting peptides 
(RGERPPR, RGE) can be conjugated to the lipid surface of EVs, facilitating targeted delivery to glioma 
tissue[23]. There are reports where the parental cells can be metabolically engineered to secrete EVs with 
surface-modified azides. Click chemistry can be used to modify the azides on the surface of EVs with 
antibodies or peptides to enhance the targeting ability of EVs[83]. For instance, exosomes modified with 
c(RGDyK) peptides using click chemistry targeted ischemic brain regions in a mouse model of transient 
middle cerebral artery occlusion[98]. Cathepsin K (CatK), a cysteine protease overexpressed in the vascular 
walls of abdominal aortic aneurysms, can be targeted by attaching CatK-targeting peptides to EVs using 
click chemistry, thereby improving their uptake by tumor cells[99]. Similarly, azide-modified exosomes can 
be conjugated with dibenzocyclooctyne-modified antibodies of CD47 and SIRPα (aCD47 and aSIRPα) 
through a pH-sensitive linker. These exosomes can actively target tumors[100].

Chemical modifications of EV membranes can also be achieved using other methods. Functionalized PEG 
fused with EV membrane can achieve different functional effects. For example, EVs combined with folic 
acid-modified functional PEG can effectively target glioma cells and deliver drugs[101]. EVs conjugated with 
EGFR antibody-modified functional PEG can target tumor cells overexpressing EGFR receptors[102]. 
Glycosylphosphatidylinositol (GPI) anchor proteins, commonly occurring on cell membranes and 
expressed on EV membranes, can bind to anti- EGFR nanobodies, enabling the targeting of tumor cells 
overexpressing EGFR[103].
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Table 3. Applications of chemical modifications to EVs

EVs source Modification 
details Target Comments Ref.

MSCs c(RGDyK) peptide The lesion region of
the ischemic brain

Suppress the inflammatory response and cellular apoptosis in the 
lesion region

[98]

BM-MSCs Cathepsin K SMCs Improve the cell-specific uptake of EVs and may be effective in 
facilitating AAA-targeted therapy

[99]

M1 macrophages Antibodies of CD47 
and SIRPα

aCD47 and CD47 on 
tumor cell surface

Actively target tumors through the specific recognition between 
aCD47 and CD47 on tumor cell surface

[100]

U-87 cells DSPE-PEG2000-FA U-87 cells Reduce the side effects of TMZ (minimal change in body weight), 
prolong survival, and inhibit tumor growth in mouse glioma models

[101]

Neuro2A cells Nanobody-PEG-lipids EGFR Improve cell specificity and prolong circulation time, potentially 
increasing; 
EV accumulation in targeted tissues and improving cargo delivery.

[102]

Neuro2A cells GPI-linked EGFR 
nanobodies

EGFR Greatly improve EV binding to tumour cells [103]

Primary dendritic 
cells

Aptamer AS1411 MDA-MB-231 cells Tumor targeting [104]

Mouse liver 
proliferative cells

Glycosylation - Promote the accumulation of EVs in the lungs [105]

M2 macrophages BMSC-specific 
aptamer

BMSCs promote the proliferation, migration, and osteogenic differentiation 
of BMSC

[106]

HeLa cells pH-sensitive 
fusogenic peptide

- The effective cellular uptake and cytosolic release of an artificially 
encapsulated dextran macromolecule (70 kDa) in exosomes

[107]

HEK 293 T cells CPP-conjugated-
lipids

HUVECs Improve the intracellular delivery of exosomes [108]

Raw264.7 cells Neuropilin-1-targeted 
peptide

Glioma cells cross the BBB, achieve targeted imaging and therapy of glioma [23]

EVs: Extracellular vesicles; MSCs: mesenchymal stem cells; TMZ: temozolomide; PEG: polyethylene glycol; EGFR: epidermal growth factor 
receptor; GPI: glycosylphosphatidylinositol.

The EVs membrane can also bind to the aptamer AS1411 through hydrophobic interactions, allowing the 
targeting of breast cancer tissues[104]. In addition, chemical modifications can influence the affinity of EVs 
for specific tissues. For example, EVs modified with neuraminidase have a strong affinity for the liver, 
whereas EVs modified with glycosidase have a strong affinity for the lung tissue[105].

Therapeutic cargo loading in engineered EVs
Functionalized EVs not only require surface modifications to enhance targeting capabilities but also need to 
load drugs into the vesicles. The commonly used methods for drug loading are divided into two categories: 
endogenous and exogenous loading [Figure 3]. Endogenous loading involves transfection to make donor 
cells express certain molecules or incubation of the donor cells with drugs, allowing the cells to uptake these 
drug molecules and subsequently secrete drug-loaded EVs[109]. Endogenous loading does not disrupt the 
structure and activity of EVs and provides stable loading; however, loading efficiency is relatively low[110]. 
Exogenous loading involves isolating EVs from cells and then loading drugs into the vesicles through 
physical or chemical methods such as electroporation, sonication, membrane permeabilization, freeze-thaw 
cycles, and extrusion[111]. Exogenous loading offers a higher loading efficiency but can affect the structure 
and activity of EVs to some extent[112,113]. The choice of drug-loading method depends on specific 
experimental needs, with detailed applications provided in Tables 4 and 5.

MECHANISMS OF CANCER DRUG RESISTANCE
Drug resistance is a major challenge for effective cancer treatment. Depending on the treatment method, 
cancer resistance can be classified as chemotherapy, targeted therapy, immunotherapy, or endocrine 
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Table 4. Applications of endogenous loading strategies for EVs

Cargo Loading 
method

Isolation
method Loading efficiency Ref.

Oxaliplatin Incubation SEC - [114]

PEG-HGNs Incubation - ~ 50% [115]

DSPE-PEG-RGD Incubation UC - [116]

Linezolid Incubation Precipitation - [117]

microRNA let-7a-5p Transfection UC, UF The let-7a-5p copy numbers within 1 × 1010 EVs had 6.46 × 1010

copies
[118]

MicroRNA-27a Transfection UF - [119]

VMP1 Transfection UF, UC - [120]

pDNA/CPP Transfection Precipitation, UF, 
SEC

76% to 86% [121]

GDF-15 Transfection UC, UF - [122]

RAGE siRNA Transfection UC - [123]

CD64WT, CD64CK, TP53, and 
small hairpin KRASG12D

Transfection UC, UF, SEC The colocalization ratios of encapsulated TP53 mRNA or si
KRASG12D and CD64CK surface protein within dtEV were ~ 60%

[124]

EVs: Extracellular vesicles; PEG: polyethylene glycol; UC: ultracentrifugation; UF: ultrafiltration; SEC: size exclusion chromatography.

Table 5. Applications of exogenous loading strategies for EVs

Cargo Loading method Isolation 
method Loading efficiency Ref.

microRNA Extrusion UC, UF - [125]

Clodronate Extrusion UC - [126]

Dapagliflozin Extrusion UC ~ 45% [127]

PTX Extrusion UC, UF ~ 14.23% [128]

GQDs/Cy5-miR Sonication UC 5.6 times higher than the untreated sEVs [129]

Erastin and Rose Bengal Sonication UC - [130]

PTX Sonication UC - [131]

Tripeptidyl peptidase-1 Sonication UC - [132]

FX Sonication UC, UF The loading rates of LpEVs-FX and GA-LpEVs-FX were
approximately 69% and 86%

[133]

miRNA-497, 
DOX

Membrane 
Permeabilization

UC, UF 4.3-fold and 7.2-fold greater than traditional methods [134]

miR-195-5p Electroporation UC - [135]

siRNA Electroporation UC - [136]

IL-10 Electroporation UC ~ 70% [137]

DDHD1-siRNA Electroporation UC 13% [138]

CCL2-siRNA Electroporation UC - [139]

miR-223 Electroporation UC around 60% [140]

Ca(HCO3)2 Electroporation UC - [141]

Dox Electroporation UC - [142]

HAL Electroporation UC ~ 25.14% [143]

Dox Electroporation SEC, UF 190-fold increased response compared to naked doxorubicin [144]

gRNA: Cas9 RNP 
complexes

Electroporation UC ~ 80% [145]

Zinc oxide Nanocrystals Freeze-Thaw UC - [146]

EVs: Extracellular vesicles; UC: ultracentrifugation; UF: ultrafiltration; FX: fucoxanthin; IL-10: interleukin-10; RNP: ribonucleoprotein; SEC: size 
exclusion chromatography.
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Figure 3. Therapeutic cargo loading methods in engineered EVs. Endogenous loading involves transfecting donor cells to express specific 
molecules or incubating them with drugs, enabling the cells to absorb the drugs and release drug-loaded extracellular vesicles. 
Exogenous loading involves isolating extracellular vesicles from cells and then using physical or chemical methods to load drugs into the 
vesicles. EVs: Extracellular vesicles.

therapy resistance. The mechanisms of cancer resistance include increased drug efflux, reduced drug 
uptake, drug inactivation, target mutations, signaling pathway alterations, apoptotic defects, phenotype 
switching, and resistance to immunotherapy.

The following sections introduce the specific mechanisms of cancer resistance and the methods to 
overcome them.

Increased drug efflux
Drug efflux refers to the process by which cells expel drug molecules from the inside to the outside through 
specific transport proteins on the membrane. These transport proteins primarily belong to the ATP-binding 
cassette (ABC) transporter family, including P-glycoprotein (P-gp), multidrug resistance-associated 
proteins (MRPs), breast cancer resistance protein (BCRP), cholesterol transport protein (ABCA1), and bile 
salt export pump (BSEP). They regulate drug distribution, absorption, and excretion, thereby protecting 
cells from death caused by high intracellular drug concentrations[1]. During tumor treatment, ABC 
transporters can reduce the effective concentration of drugs inside tumor cells, resulting in multidrug 
resistance (MDR).

In most cases, overcoming the resistance caused by increased drug efflux involves increasing drug 
concentration; however, this often leads to systemic toxicity[1]. The latest strategy involves collateral 
sensitivity (CS), in which cells exhibiting resistant phenotypes owing to ABC transporter overexpression are 
highly sensitive to certain compounds. This phenomenon is known as CS and can be considered a lethal 
weakness in cancer cells overexpressing ABC transporters[147]. Zhang et al. reported that using BAY-1082439 
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and CRISPR/Cas9 to knock out Pik3ca and Pik3cb can inhibit the activation of PI3K 110α and 110β catalytic 
subunits, downregulating ABC transporters P-gp/ABCB1 and BCRP/ABCG2, thereby re-establishing drug 
sensitivity in resistant epidermoid carcinoma and non-small cell lung cancer (NSCLC) cells[148]. They also 
discovered that CDK6 deletion altered ABCB1 levels, increased drug accumulation in tumors, significantly 
inhibited tumor growth and metastasis, and improved survival. Thus, the CDK6-PI3K pathway may serve as 
a new target for reversing ABCB1-mediated cancer resistance[149]. Additionally, computer-aided drug design, 
high-throughput screening, or structure-based drug design and synthesis can be used to develop 
chemotherapeutic adjuvant inhibitors of ABC transporters[150-153].

Reduced drug uptake
Similar to increased drug efflux, reduced drug uptake decreases the concentration of drug molecules in the 
cellular environment, thereby limiting their efficacy. Chemotherapeutic drugs such as methotrexate, 5-
fluorouracil, 8-azaguanine, and cisplatin are most affected by this resistance mechanism. They use transport 
proteins, such as solute carrier (SLC) transporters, to enter cells. Downregulation of SLC transporter 
expression and function in tumor cells limits drug uptake, leading to reduced drug efficacy[154]. Overcoming 
this resistance mechanism involves maximizing the passive permeability of anticancer drugs or using 
alternative active transport pathways[3].

Nonselective upregulation of SLC transporters can lead to increased drug accumulation in normal cells. 
Therefore, it is crucial to develop drugs that selectively regulate the expression of SLC transporters in cancer 
cells[155,156]. Huttunen et al. showed that attacking several SLCs to alter the nutrient environment of cancer 
cells could serve as adjuvant therapy for other chemotherapeutic drugs, providing an alternative to ABC 
transporter inhibitors[157]. The poor prognosis of advanced metastatic differentiated thyroid cancer (DTC) is 
primarily due to reduced expression of the sodium/iodide symporter (NIS) or decreased targeting of NIS to 
the cell membrane, which reduces the efficacy of radioactive iodine therapy[158]. Ullmann et al. reported that 
dual treatment with BRAF and MEK inhibitors could upregulate NIS expression, increase iodine uptake in 
tumors, enhance efficacy, and overcome resistance[159].

Drug inactivation
After drugs enter the body and exert their effects, they are metabolized and excreted. Carrier molecules and 
enzymes responsible for drug metabolism play important roles in resistance to chemotherapy[1]. Glutathione 
(GSH) is involved in maintaining the cellular redox balance and can detoxify xenobiotics, enhancing MDR 
in cancer cells[1]. Reducing GSH levels is an effective strategy for increasing the sensitivity of cancer cells to 
chemotherapy[160]. Some drugs require enzymatic metabolism to become active, and mutations or 
downregulation of these enzymes can affect drug efficacy. For example, cytarabine (Ara-C) must be 
metabolized into the active substance Ara-C triphosphate. Mutations or downregulation of enzymes such as 
deoxycytidine kinase can lead to drug resistance in tumor cells[161].

The cytochrome P450 (CYP) family primarily participates in drug metabolism. Overexpression of these 
enzymes has been observed in drug-resistant tumor cells. Kawahara et al. discovered that overexpression of 
the CYP enzymes CYP3A4 and CYP2C8 in malignant breast cells leads to the metabolic inactivation of 
paclitaxel in liver tissue[162]. Cytochrome P450 1B1 (CYP1B1) is overexpressed in various solid tumors. 
Hachey et al. used scaffold hopping to explore the chemical space of CYP1B1 inhibitors and found a new 
lead compound that inhibited CYP1B1 in trace amounts, potentially restoring drug sensitivity in resistant 
cells[163].
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Target mutation
Target mutations can lead to the development of resistance to therapeutic molecules[3]. Target mutations 
include steric impact on drug binding, impact on cofactor affinity, and conformational change of target.

Steric impact on drug binding
First, the substitution of smaller amino acids with larger ones increases steric hindrance and reduces the 
affinity of the drug molecules. Second, mutations of polar amino acid side chains to hydrophobic ones, or 
vice versa, can disrupt polar or nonpolar interactions and increase steric hindrance[3]. Abnormal activation 
of CDK9 is associated with the super-enhancer-mediated transcription of short-lived proteins required for 
cancer cell survival. Targeting CDK9 results in potent antitumor activity. Hu et al. showed that tumor cells 
develop resistance to CDK9 inhibitors due to the CDK9 L156F mutation, which disrupts the binding of the 
inhibitor to CDK9 through steric hindrance, thereby affecting the stability and catalytic activity of the CDK9 
protein[164]. Targeting the proto-oncogene protein RET with small-molecule tyrosine kinase inhibitors 
(TKIs) is an effective treatment strategy for thyroid cancer. Meng et al. reported that mutations in the 
gatekeeper residues V804M and V804L of the RET kinase domain create steric hindrance, leading to TKI 
resistance[165].

Impact on cofactor affinity
If the mechanism of action of a drug involves competition with cofactors or substrates, target mutations that 
increase affinity for cofactors or substrates can lead to resistance[3]. Conversely, mutations that decrease 
drug-target affinity can also cause resistance. Neratinib, a HER2 tyrosine kinase inhibitor (TKI), is effective 
for the treatment of breast cancer. The HER3 E928G kinase domain mutation enhanced the affinity of 
HER2/HER3, reducing the binding of HER2 to neratinib, thereby causing resistance[166].

Conformational change of target
Mutations can cause resistance by inducing conformational changes that activate kinase mechanisms[3]. 
Most HER2 exon 20 insertions (ex20ins) are resistant to EGFR or pan-HER TKIs. Zhao et al. showed that 
ex20ins in HER2-mutant lung cancers lead to ligand-independent kinase activation by altering the 
conformational landscape of HER2 kinase and restricting its conformation in the active state. This 
mechanism explains the TKI[167].

Signaling pathway alterations
Tumor cells can achieve resistance to drug treatment by activating certain signaling pathways through 
specific gene changes[168].

BRAF inhibitors (BRAFis) are targeted drugs used to treat melanoma. Wang et al. showed that treatment 
with BRAFis increased the expression of IRF9 and STAT2 in melanoma cells. Overexpression of IRF9 or 
STAT2 slowed BRAFis-induced tumor shrinkage, while knockdown of IRF9 or STAT2 accelerated BRAFis-
induced tumor shrinkage. IRF9-STAT2 signaling controls GSDME-dependent pyroptosis by restoring 
GSDME transcription. Targeting IRF9/STAT2 may prevent BRAFis resistance in melanoma by inducing 
pyroptosis[169]. Kobayashi et al. summarized the signaling pathways related to cancer immune evasion and 
immune checkpoint inhibitor (ICI) resistance[170].

Apoptotic defects
The goal of most cancer drugs is to induce tumor-selective cell death. Disruption of apoptotic mechanisms 
can lead to drug resistance, particularly in cases where chemotherapy resistance is related to defects in cell 
death mechanisms[3].
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The first-line treatment for most hematological malignancies (HMs) relies primarily on cytotoxic agents. 
However, HM recurrence is often associated with defects in the DNA damage response (DDR) pathways 
and anti-apoptotic blocks. BH3 mimetics represent a new class of pro-apoptotic anticancer drugs that can 
directly target the mitochondria, independent of TP53 gene aberrations. These drugs effectively clear non-
dividing malignant cells with adverse molecular cytogenetic alterations[171]. Treatment of prostate cancer 
(PCa) primarily inhibits tumor growth by inducing apoptosis. However, defects in the apoptotic response 
frequently lead to resistance. Therefore, triggering non-apoptotic cell death may be an alternative strategy 
for preventing cancer resistance. Montagnani Marelli et al. found that the combination of δ-tocotrienol (δ-
TT) and docetaxel (DTX) enhanced DTX cytotoxicity in DU145 cells. In addition, δ-TT induced necrotic 
apoptosis in DTX-resistant cells[172].

Phenotype switching
Phenotype switching refers to the ability of cells to change among various forms, allowing them to adapt to 
environmental changes. This switching can serve as a drug resistance mechanism independent of drug-
target pathways. The molecular mechanisms underlying cancer cell phenotype remodeling include both 
endogenous and exogenous factors. Endogenous mechanisms involve changes in epigenetic modifications 
and the expression of related transcription factors, whereas exogenous mechanisms are primarily related to 
changes in the tumor microenvironment (TME), such as hypoxia, infiltration of tumor-promoting immune 
cells, and the release of pro-inflammatory factors[173].

The phenotypic transition from EGFR-mutant lung adenocarcinoma (LUAD) to small cell lung cancer 
(SCLC) is considered a clinical mechanism of resistance to EGFR inhibitors[3]. It has been reported that 
EHMT2 participates in SCLC transformation and EGFR-TKI resistance through enzyme activity-dependent 
mechanisms[174]. EHMT2 affects the accumulation of H3K9me2 in the promoter region of SFRP1, thereby 
remodeling chromatin structure and inhibiting the expression of the WNT/β-catenin pathway negative 
regulator SFRP1. This abnormal activation of the WNT/β-catenin pathway in SCLC-transformed cells 
ultimately drives the neuroendocrine transformation of NSCLC to SCLC.

Immunotherapy resistance
The mechanisms of resistance to cancer immunotherapy involve interactions among tumor cells, the TME, 
and the host immune system. These resistance mechanisms can be divided into several major categories:

Tumor Cell Evasion
Initially, tumor cells overexpress immune checkpoint molecules such as PD-L1 (programmed death-ligand 
1), TIM-3 (T-cell immunoglobulin and mucin-domain containing-3), LAG-3 (lymphocyte-activation gene 
3), and VISTA (V-domain Ig suppressor of T cell activation), which inhibit T cell activation by binding to 
their respective receptors[175]. Concurrently, genetic mutations, like those in the β-2 microglobulin (B2M) 
gene, reduce MHC-I expression, preventing effective antigen presentation and T cell recognition[176,177]. To 
ensure survival once recognized, tumor cells upregulate anti-apoptotic proteins such as BCL-2, making 
them resistant to immune-mediated apoptosis[178]. Additionally, tumor cells leverage epigenetic 
modifications - such as DNA methylation - to regulate tumor antigens and immune-related gene 
expression, dynamically adapting to immune pressures[179]. Furthermore, tumor cell plasticity, including 
epithelial-mesenchymal transition (EMT), allows them to alter their phenotype to evade immune attack, 
and tumor heterogeneity creates distinct subpopulations, complicating treatment due to differential 
responses to therapy[180]. Together, these mechanisms form a multi-layered defense strategy that enables 
tumor cells to escape immune detection, resist treatment, and ultimately contribute to therapeutic failure.
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Abnormal Tumor Vasculature
Tumor vessels are often irregular and tortuous, resulting in unstable blood flow and poor perfusion, 
effectively limiting immune cell infiltration[181]. Additionally, the abnormal structure of tumor vasculature 
leads to hypoxia, which suppresses effector immune cell activity and drives the production of 
immunosuppressive factors such as VEGF, IL-10 (interleukin-10), and TGF-β (transforming growth factor-
beta), while also promoting PD-L1 upregulation, thereby facilitating immune evasion[182]. Furthermore, 
plasma leakage from these abnormal vessels creates high interstitial pressure, forming a physical barrier that 
further hinders immune cell migration and reduces immunotherapy effectiveness[183].

Immunosuppressive TME
The TME often contains a high concentration of immunosuppressive cells, such as regulatory T cells 
(Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs), which 
secrete inhibitory cytokines (e.g., TGF-β and IL-10)[184]. Moreover, metabolic products like lactate and 
adenosine accumulate in the TME, further inhibiting immune cell activity, while hypoxia promotes PD-L1 
expression, reducing the immune system’s ability to recognize and attack tumor cells[185].

T Cell Dysfunction
T cells can become exhausted after prolonged antigen exposure, characterized by the overexpression of 
inhibitory receptors and decreased secretion of effector cytokines. Additionally, some tumors inhibit the 
formation of memory T cells, increasing the likelihood of relapse after initial treatment[186,187].

ENGINEERING EVS AS DRUG CARRIERS TO OVERCOME DRUG RESISTANCE
Drug resistance is closely related to tumor recurrence and mortality, posing the greatest obstacle to clinical 
cancer treatment. Therefore, developing effective strategies to overcome cancer resistance is crucial. This 
section focuses on the progress in the use of EVs as drug carriers to overcome resistance to cancer 
treatments, including chemotherapy, targeted therapy, immunotherapy, and endocrine therapy.

Overcoming chemotherapy resistance
Studies have shown that EVs can improve the efficacy of chemotherapy by delivering chemotherapeutic 
drugs, RNA, or other biomolecules to regulate cancer chemotherapy resistance [Table 6].

Overcoming drug efflux-induced resistance
miR-9 is upregulated in temozolomide (TMZ)-resistant Glioblastoma (GBM) cells and is involved in the 
expression of the drug efflux transporter P-gp. Munoz et al. loaded anti-miR-9 into EVs derived from 
mesenchymal stem cells (MSCs), thereby reducing the expression of proteins associated with resistance[194]. 
Liu et al. inserted lipidomimetic chain-conjugated HA (lipHA) into the membranes of EVs[210]. As lipHA-
hEVs can reduce P-gp expression in resistant MCF7/ADR cells, loading doxorubicin onto lipHA-hEVs 
effectively inhibited its efflux, thus overcoming doxorubicin resistance[210]. Treatment of metastatic 
colorectal cancer (mCRC) is inevitably affected by oxaliplatin resistance. Studies have shown that EV-
delivered circular RNA F-box and WD repeat domain-containing 7 (circ-FBXW7) can bind to miR-128-5p 
and restore oxaliplatin sensitivity in resistant CRC cells by inhibiting drug efflux, thus providing a novel 
treatment strategy for patients with CRC with oxaliplatin resistance[206].

Overcoming reduced drug uptake-induced resistance
Studies have shown that loading cisplatin onto EVs derived from mononuclear M1 and M2 macrophages 
results in the preferential accumulation of the chemotherapeutic drug in tumors, significantly increasing its 
cytotoxicity against resistant A2780/DDP and A2780 cells[208]. Hyperthermic intraperitoneal chemotherapy 
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Table 6. EVs in overcoming cancer chemotherapy resistance

EVs source Cargo carried Drug Mechanisms Ref.

Melanoma cells survivin-T34A Gemcitabine Block Survivin, induce caspase activation and apoptosis [188]

AMSCs miR-199a DOX Inhibit mTOR activation and the phosphorylation of 4EBP1 and 70S6K [189]

BM-MSCs miR-124 5-FU Suppress cell viability, invasion, and migration, as well as inducing cell
apoptosis in pancreatic cancer by regulating EZH2

[190]

MSCs miR-1236 DDP SLC9A1 downregulation and Wnt/β-catenin inactivation [191]

hUCMSCs miR-146a DTX, TAX Reduce LAMC2 expression via the PI3K/AKT signaling pathway [192]

BMSCs miR-193a DDP Suppress the colony formation, invasion, migration, and proliferation, as 
well as advancing apoptosis by downregulating LRRC1

[193]

MSCs anti-miR-9 TMZ Decrease the expression of the drug transporter gene MDR1 [194]

HEK293T cells lncRNA DARS-
AS1 siRNA

DOX Suppress TGF-β/Smad3 signaling pathway-induced autophagy [18]

hMSCs miR-199a TMZ Downregulation of AGAP2 [195]

WJ-MSCs miR-124 TMZ - [196]

HEk293T cells si-c-Met Cisplatin Si-c-Met inhibited migration, invasion and promoted apoptosis in vitro [20]

MDA-MA-231, MCF-7, 
4T1 cells

siMTA1 Gemcitabine Enhance the sensitivity of MCF-7 to gemcitabine and weaken the 
metastasis ability of MCF-7

[197]

HCT116, SW480 cells CPT1A siRNA Oxaliplatin Silence CPT1A by siRNA or etomoxir, a specific small-molecule inhibitor 
of CPT1A

[198]

TMZ-resistant cells miR-151a TMZ Restore miR-151a expression sensitized TMZ-resistant GBM cells via 
inhibiting XRCC4-mediated DNA repair

[199]

HEK293T, HUVEC, 
OVCAR-3 cells

miR-484 Cisplatin induce vessel normalization [200]

HEK293T cells anti-miR-214 Cisplatin Downregulate miR-214 and overexpress possible target proteins [201]

HEK293T cells miR-374a-5p 
inhibitor

Oxaliplatin Inhibit MiR-374a-5p [202]

UPCI-SCC-131 cells miR-155 
inhibitor

Cisplatin Upregulate FOXO3a and inhibit drug efflux transporter expression [203]

4T1 cells anti-miR-21 DOX Block the function of endogenous carcinogenic miR-21 [204]

293T cells PGM5-AS1 Oxaliplatin Prevent proliferation, migration, and acquired oxaliplatin tolerance [205]

FHCs circ-FBXW7 Oxaliplatin Exosome mediated circ-FBXW7 transfer enhances oxaliplatin sensitivity 
by binding to miR-18b-5p

[206]

BM-MSCs PTX, GEMP Paclitaxel, 
Gemcitabine

Overcome the restrictions of pathological ECM and enhance the 
accumulation of therapeutics in tumor

[207]

Mononuclear M1 and 
M2 macrophages

Cisplatin Cisplatin Chemotherapy drugs preferentially accumulate in cancer cells and M1 
macrophages have the effect of killing tumor

[208]

SKOV3-CDDP cells miR497�TP Cisplatin Inhibit the PI3K/AKT/mTOR signaling pathway, deplete GSH, elevate 
intracellular ROS, and regulate macrophage polarization

[209]

HEK293T cells DOX DOX Reduce P-gp expression in drug-resistant MCF7/ADR cells [210]

Fibroblasts CD47  
GM-CSF 
DTX

DTX Improve drug delivery efficiency and enhance the immune response in the 
tumor microenvironment

[211]

THLG-293T, LG-293T 
cells

5-FU, miR-21i 5-FU Induce cell cycle arrest, reduce tumor proliferation, increase apoptosis, 
inhibit the tumor cell migration, and suppress PTEN and hMSH2 
expressions

[212]

RAW 264.7 
macrophages

PTX PTX Increase PTX solubility and overcome P-gp-mediated drug efflux [213]

EVs: Extracellular vesicles; P-gp: P-glycoprotein; MSCs: mesenchymal stem cells.

(HIPEC) is a standard clinical treatment for metastatic peritoneal cancer. However, its efficacy is limited by 
low drug penetration efficiency and the rapid development of resistance. Lv et al. prepared genetically 
engineered exosome-thermosensitive liposome hybrid NPs (gETL NPs) to enhance drug delivery efficiency 
and overcome drug resistance[211]. gETL NPs effectively penetrated tumor tissue after intravenous injection 
and released DTX under the low-temperature conditions of HIPEC, increasing drug concentration and 
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efficacy in tumors. In addition, CD47 molecules on the surface of gETL NPs bound to the signal regulatory 
protein alpha receptor (SIRP�) on macrophages, preventing tumor cells from escaping the immune system, 
thus enhancing macrophage phagocytosis of tumor cells. Furthermore, gETL NPs delivered GM-CSF 
(granulocyte-macrophage colony-stimulating factor), promoting the polarization of macrophages from the 
M2 type to the M1 type, further enhancing antitumor capability. By improving drug delivery efficiency and 
enhancing the immune response in the TME, gETL NPs effectively inhibited tumor growth and reduced 
resistance.

Overcoming drug inactivation-induced resistance
The primary reasons for gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC) are decreased 
activity of gemcitabine metabolism-limiting enzymes and insufficient conversion of gemcitabine phosphate 
products. Studies have shown that loading PTX, gemcitabine monophosphate (GEMP), and the 
intermediate products of gemcitabine metabolism onto EVs can overcome chemotherapy resistance[207].

Overcoming signal pathway alteration-induced resistance
Studies have shown that EVs can deliver miR-199a to target the mTOR pathway, inhibiting mTOR 
activation and subsequent phosphorylation of 4EBP1 and 70S6K in hepatocellular carcinoma (HCC) cells, 
thus restoring doxorubicin sensitivity in HCC cells[189]. Li et al. fused EVs from SKOV3-CDDP cells with 
liposomes modified with the tumor-targeting peptide cRGD and loaded them with triptolide (TP) and miR-
497 to create miR-497/TP-HENPs[209]. These miR-497/TP-HENPs can overcome cisplatin resistance in 
tumor cells by inhibiting the PI3K/AKT/mTOR signaling pathway, increasing reactive oxygen species 
(ROS) production, and regulating macrophage polarization.

Overcoming apoptosis defect-induced resistance
GBM is a common primary malignant brain tumor in adults, and TMZ is the only chemotherapeutic drug 
with clear efficacy against GBM. However, TMZ resistance severely affects treatment outcomes. GBM 
resistance to TMZ is associated with the loss of miR-151a. Engineered EVs carrying miR-151a inhibited 
XRCC4-mediated DNA damage repair and restored TMZ sensitivity in GBM[199]. Defects in apoptosis in 
NSCLC lead to cisplatin resistance, which is an important cause of clinical treatment failure. Studies have 
shown that miR-193a promotes apoptosis in cisplatin-resistant NSCLC cells by downregulating LRRC1 and 
can also inhibit colony formation, invasion, proliferation, and migration. Wu et al. have developed EVs 
derived from human BM-MSCs loaded with miR-193a to reduce NSCLC resistance to cisplatin 
treatment[193]. In addition, the sensitivity of gastric cancer cells to cisplatin is closely linked to c-Met siRNA, 
with resistant cells exhibiting lower c-Met siRNA levels compared to sensitive cells. Researchers have used 
EVs derived from HEK293T cells to deliver c-Met siRNA, thereby enhancing the sensitivity of cisplatin-
resistant gastric cancer cells by promoting apoptosis[20]. The apoptosis inhibitor protein survivin is 
considered an important factor in resistance to various cancer treatments. Using melanoma-derived EVs to 
deliver Survivin-T34A significantly induces caspase activation, enhances the cytotoxic effect of gemcitabine, 
and promotes pancreatic cancer cell apoptosis[188].

Overcoming targeted therapy resistance
Targeted antitumor drugs act specifically on tumor cells, minimizing effects on normal cells. This precision 
improves efficacy and reduces adverse reactions. However, long-term use of these drugs may lead to 
resistance. These mechanisms include genetically related resistance due to target mutations and non-genetic 
resistance due to the phenotypic remodeling of tumor cells under the influence of epigenetic factors or 
transcriptional regulation. EVs may be a new method and strategy for overcoming resistance to targeted 
therapy [Table 7].
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Table 7. EVs in overcoming resistance to other therapies

Treatment EVs 
source

Cargo
carried Drug Mechanisms Ref.

HEK293T 
cells 

BCR-ABL 
siRNA

IM Inhibits BCR-ABL and improves the combination of the imatinib [214]

hUC-MSCs - IM Promotes cell viability inhibition and apoptosis and increases Bax expression 
and decreases Bcl-2 expression

[215]

AMSCs miR-122 Sorafenib Downregulates the expression of CCNG1, IGF1R, and ADAM10 genes, and 
upregulates the expression of Caspase 3 and Bax

[19]

BM-MSCs siGRP78 Sorafenib Inhibits the expression of GRP78 in sorafenib-resistant cancer cells [216]

Targeted therapy

HCC cells siRNA-1 Sorafenib Prevents PRP19-mediated YBX1 ubiquitination and degradation in the 
nucleus

[217]

B16F10 cells POM1, 
Metformin 

PD-1 Increases the level of pro-inflammatory extracellular ATP to prevent the 
accumulation of immunosuppressive adenosine and alleviates hypoxia

[218]Immunotherapy

BM-MSCs Galectin-9 
siRNA

- Blocks galectin-9/dectin-1 axis to reverse immunosuppression [219]

Endocrinotherapy HUCMSCs miR-let-7c - Antagonizes androgen receptor expression and activity by downregulating 
HMGA2, RAS, and Myc

[220]

EVs: Extracellular vesicles; MSCs: mesenchymal stem cells; HCC: hepatocellular carcinoma.

Overcoming target mutation-induced resistance
Imatinib (IM) is a selective Bcr-Abl inhibitor, and mutations in the BCR-ABL gene reduce its binding 
affinity for IM, resulting in acquired resistance. Bellavia et al. prepared EVs that can deliver BCR-ABL 
siRNA to CML cells and overcome targeted drug resistance by inhibiting Bcr-Abl[214].

Overcoming pathway alteration-induced resistance
circRNA-SORE is upregulated in sorafenib-resistant HCC cells. This prevents PRP19-mediated YBX1 
degradation, affects the expression of downstream YBX1 target genes, and ultimately leads to sorafenib 
resistance. Tumor-derived exosomes delivering si-circRNA-SORE significantly increased the sensitivity of 
tumor cells to sorafenib treatment[217]. Sorafenib-resistant cancer cells overexpress GRP78 to a greater extent 
than sorafenib-sensitive cancer cells, making GRP78 a therapeutic target for HCC[221]. Li et al. prepared 
exosomes loaded with siGRP78 and observed that they inhibited GRP78 expression in sorafenib-resistant 
cancer cells. Therefore, the combination of these exosomes with sorafenib enhanced the inhibition of HCC 
cell growth and metastasis in vivo[216]. Studies have shown that EVs transfected with miR-122 reduce the 
resistance of HCC cells to sorafenib. This may be because miR-122-loaded EVs reduce the expression of 
CCNG1, IGF1R, and ADAM10 genes, upregulate the expression of the apoptosis-related genes Caspase 3 
and Bcl-2-associated X protein (Bax), and increase HCC cell sensitivity to sorafenib[19].

Overcoming immunotherapy resistance
The advent of immunotherapy has brought cancer treatment into a new era[222]. However, the resulting 
resistance has also led to most patients with cancer not benefiting clinically. Researchers have used 
exosomes to overcome resistance to immunotherapy [Table 7].

Wu et al. used EVs derived from B16F10 cells to deliver POM1 (a CD39 antagonist) and metformin (an 
AMPK agonist) for cancer treatment. They demonstrated that this platform elevated extracellular ATP 
(eATP) levels, which triggered the activation of the P2X7-NLRP3-inflammasome to drive macrophage 
pyroptosis and potentiated the maturation and antigen capacity of DCs. This, in turn, enhances the 
cytotoxic function of T cells and NK cells, leading to a synergistic antitumor immune response that 
suppresses cancer progression, metastasis, and recurrence while overcoming anti-PD1 resistance[218]. A 
previous study showed that CD38 is highly expressed in HCC, and EVs/siCD38 inhibit CD38 enzyme 
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activity, decrease adenosine production, and promote macrophage repolarization to the M1 type, thereby 
inhibiting HCC cell growth and metastasis in vitro and tumor growth in mice and overcoming PD-1/PD-L1 
inhibitor resistance[223].

Overcoming endocrine therapy resistance
Endocrine therapy, also known as hormone therapy, is a method for treating cancer by slowing or stopping 
the growth of certain hormone-dependent cancer tissues. The most commonly targeted pathways are the 
estrogen and androgen signaling pathways, which play key roles in breast and prostate cancers, 
respectively[224]. The growth of PCa cells depends on androgens. Therefore, removing or inhibiting androgen 
activity, known as androgen deprivation therapy (ADT), is the primary approach to treating PCa. However, 
patients undergoing ADT eventually transition from castration-sensitive to castration-resistant PCa, leading 
to ADT resistance. Kurniawati et al. used MSCs loaded with lethal 7c (let-7c), which antagonizes androgen 
receptor (AR) expression and activity by downregulating HMGA2, RAS, and Myc, thereby overcoming 
ADT resistance[220].

CONCLUSION
EV-based drug delivery systems are promising and multifaceted for overcoming cancer drug resistance. As 
advancements in EV engineering and functionalization continue, these systems have the potential to 
enhance the precision and efficacy of cancer therapies by specifically targeting resistant cancer cells, thereby 
minimizing off-target effects and systemic toxicities. Integrating EV-based delivery with existing therapies 
can create synergistic effects and simultaneously overcome multiple resistance mechanisms. The unique 
ability of EVs to cross biological barriers such as the blood-brain barrier further expands their therapeutic 
potential, particularly for metastatic and hard-to-reach tumors. Continued improvements in EV isolation, 
characterization, and functionalization will enhance their therapeutic capabilities.

Despite the considerable potential of EV therapy in cancer treatment, its practical application faces 
significant obstacles. The high heterogeneity of EVs complicates standardization, as EVs from different 
sources vary widely in size, composition, and function, impairing efficacy assessment and reproducibility. 
Additionally, the lack of industrial standards for purification and stabilization remains a major barrier, with 
existing isolation methods being inefficient, costly, and unable to guarantee high purity or consistency. 
Moreover, verifying the therapeutic efficacy of EVs is still a big challenge due to the complex in vivo 
environment, which involves biological barriers, making precise control over drug delivery and efficacy 
evaluation difficult.

Nevertheless, ongoing technological advancements and research efforts present viable opportunities to 
overcome these challenges in EV therapy. Establishing standardized processes for EV preparation and 
purification, refining engineering modifications, and gaining deeper insights into in vivo delivery 
mechanisms are essential steps to improve the efficacy and reproducibility of EV-based treatments. In 
addition, harnessing the synergistic potential of EVs in combination with established therapies, such as 
immunotherapy and chemotherapy, may offer promising solutions to overcome cancer resistance. Although 
EV therapy holds substantial promise as a safe, effective, and personalized cancer treatment, its successful 
clinical application still needs significant research support and the establishment of appropriate regulatory 
standards.
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