
Zhou et al. Ageing Neur Dis 2023;3:2
DOI: 10.20517/and.2022.28

Ageing and 
Neurodegenerative 

Diseases

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.ageneudisjournal.com

Open AccessLetter to Editor

The role of domain alterations in F1Fo-ATPase 
dysfunction associated to neurodegenerative 
diseases
Miaomiao Zhou1,2, Yuwan Lin1, Zhiling Zhang1, Yuting Tang1, Wenlong Zhang1, Hanqun Liu1, Guoyou 
Peng1, Jiewen Qiu1, Wenyuan Guo1, Xiang Chen1,*, Pingyi Xu1,*

1Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, 
China.
2Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, 
China.

*Correspondence to: Prof. Pingyi Xu, Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, 

151 Yanjiang Road, Guangzhou 510120, Guangdong, China. E-mail: pingyixu@sina.com; Dr. Xiang Chen, Department of 
Neurology, the First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, Guangdong, 
China. E-mail: wuliancx@163.com

How to cite this article: Zhou M, Lin Y, Zhang Z, Tang Y, Zhang W, Liu H, Peng G, Qiu J, Guo W, Chen X, Xu P. The role of 
domain alterations in F1Fo-ATPase dysfunction associated to neurodegenerative diseases. Ageing Neur Dis 2023;3:2. 
https://dx.doi.org/10.20517/and.2022.28

Received: 20 Oct 2022  First Decision: 30 Jan 2023  Revised: 6 Feb 2023  Accepted: 14 Feb 2023  Published: 21 Feb 2023

Academic Editor: Weidong Le  Copy Editor: Ke-Cui Yang  Production Editor: Ke-Cui Yang

Abstract
Mitochondrial dysfunction can lead to degeneration in the central nervous system. F1Fo-ATPase catalyzes most of 
the intracellular ATP synthesis which plays an essential role in cellular energy supply. The dimerized assembly of 
F1Fo-ATPase underlies the rotational catalytic function and regulates the mechanisms of oxidative 
phosphorylation. F1Fo-ATPase dysfunction is involved in a variety of neurological diseases, including epilepsy, 
Alzheimer's disease, and Parkinson’s disease. Dysregulated expression, activity, and localization of F1Fo-ATPase 
subunits and the interactions with pathogenic proteins result in decreased F1Fo-ATPase activity and ATP 
production, and aggravated oxidative stress.
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INTRODUCTION
Oxidative stress characterized by mitochondrial damage is an important factor affecting the occurrence and 
development of neurodegenerative diseases[1,2]. Studies suggested that multiple factors leading to disruption 
of electron transport chain (ETC) play an important role in the pathogenic mechanisms of 
neurodegeneration. Decreased ATP production is one of the important manifestations of mitochondrial 
respiratory dysfunction[3].

F1Fo-ATPase, also known as the ETC complex V, participates in the synthesis of cellular ATP[4]. It exists in 
the cristae and inner membrane of mitochondria. Functional defects or subunit mutations can lead to the 
occurrence of lactic acidosis, cardiomyopathy, Alzheimer’s disease(AD), Leigh syndrome and other human 
diseases[5,6]. The dimerization structure of F1Fo-ATPase is the basis for maintaining the original power of 
ATP synthesis[7], so as to regulate the transmembrane potential and participate in the formation of 
mitochondrial cristae[8]. This article reviews the research progress in the structure and function of F1Fo-
ATPase in the nervous system, especially for neurodegenerative diseases.

BIOLOGICAL CHARACTERISTICS OF F1FO-ATPASE
The structure of F1Fo-ATPase
F1Fo-ATPase is located at the inner mitochondrial membrane (IMM). F1Fo-ATPase is a multi-protein
complex consisting of 29 subunits[9]. Twenty-seven subunits of F1Fo-ATPase are encoded by nuclear genes
and synthesized by cytosolic ribosomes. Another two proteins (subunits 6 and 8) are encoded by
mitochondrial DNA (mt-DNA) and synthesized by ribosomes within mitochondria[6,9,10]. F1Fo-ATPase
consists of two main domains, called F1 and Fo [Figure 1]. The F1 domain is exposed in the matrix as α3β3γ
δε, with alternating α and β subunits forming a barrel protein called the F1 catalytic head, and a centrally
asymmetric γ subunit protrudes from the center of the barrel. The δ and ε subunits of the basal surface
attached to the Fo c-ring, called the F1 central stalk. Studies suggest that the α and β subunits hexamer
interface is the catalytic site for ATP[5,11]. The α and β subunits share about 20% sequence homology with
structural similarity[12], though only the β-subunits contribute to catalytic activity[4,5].

F1Fo-ATP synthase includes two domains, called F1 and Fo. The Fo peripheral stalk is on the right. The
membrane domain of subunit-b is associated with ATP6 and ATP8, the N-terminal region has a single
transmembrane α-helix, and the C-terminal region extends into the peripheral stalk. ATP8 and subunit-b
keep ATP6 in contact with the c8 ring. Translocation of a proton between the c8 ring and ATP6 drives the
rotation of the ring and the central stalk (γδε). Rotation of the central stalk brings energy into three catalytic
sites in the F1 domain (α3β3γδε). The black horizontal line represents the inner mitochondrial membrane.

The Fo domain is subdivided into three parts: the Fo rotor ring, the Fo peripheral stalk, and the Fo other
subunits. The Fo rotor ring consists of ATP6 (subunit 6), ATP8 (subunit 8) and a c-ring consisting of 8
identical c-subunits(c8-ring), the size of which varies among species. Other Fo proteins include subunit a
and subunit b and other subunits of unknown function, including subunits d, e, f, g, F6, and 8 (A6L).
DAPIT (diabetes-associated protein in insulin-sensitive tissue) and 6.8PL are present in vertebrates and
assist in the assembly of the Fo component[9,13]. The Fo peripheral stalk includes subunits OSCP, F6, b and d
[Figure 1]. Subunit b, which contains two N-terminal transmembrane α-helices, interacts with subunits e, f,
g, DAPIT and 6.8PL directly or indirectly. The oligomycin sensitivity conferring protein (OSCP) is encoded
by ATP5O and contains an N-terminal domain that contains six α-helices and a C-terminal domain
consisting of a β-hairpin and two α-helix[14,15]. OSCP is a key part of the peripheral stalk and functions by
coupling the F1 and Fo domains together[11]. The intermembrane space (IMS) protons pass through the
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Figure 1. The structure of the F1Fo-ATP synthase subunits[9]. IMS: Intermembrane space; OSCP: oligomycin sensitivity conferring 
protein.

aqueous hemichannel in subunit-a to the c-ring of Fo domain, where they interact with the c-ring aspartate 
or glutamate residues[16]. These charged proton-binding sites are hidden by the α-helix rotation in the 
subunit-c, causing the c-ring to rotate with the central rotation handle subunit-γ[7]. The rotating Fo 
component transports protons into the matrix through the second aqueous hemichannel on the membrane 
matrix side, and the asymmetric rotor handle causes a conformational change in F1 that drives the catalytic 
activity of the β-subunit[17].

The function of F1Fo-ATPase
ATP -hydrolysis and synthesis
F1Fo-ATPase is a membrane multi-protein complex primarily located within the IMM. By utilizing the 
proton (H+) gradient produced by ETC activity, F1Fo-ATPase catalyzes ATP synthesis from ADP and 
inorganic phosphate[4,5]. Proton from the IMS binds to the influx channel between the c-ring and subunit 6, 
resulting in the protonation of hydrophilic residues and the c-ring counterclockwise rotation. When the 
protonated subunit-c reaches the outflow channel, the proton is released into the matrix[16]. The c-ring (c8 
ring) is an important part of the Fo rotor. Rotation of the c-ring exerts a torque on the F1 central stalk and 
its rotation within the F1 catalytic head is facilitated by the δ and ε subunits, resulting in a conformational 
change [Figure 1][7,18]. The F1 catalytic head is held in place by the Fo peripheral stalk and maintains in a 
specific position relative to the rotating F1 central stalk. The study reports that the catalytic site of the β 
subunit exists in three unique binding states: βE (opening), βDP (loose or ADP-bound) and βTP (compact or 
ATP-bound)[19]. The catalytic site can be occupied by ADP and phosphate (Pi) when it is in the opening 
state. The Fo domain is not directly involved in ATP synthesis, but supports the functions of F1Fo-ATPase, 
including structural support[13,20]. On the other hand, F1Fo-ATPase reversely catalyzes the hydrolysis of ATP 
when the mitochondrial membrane potential (MMP) reduces, that is, the hydrolysis of ATP to ADP and 
Pi[21].
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F1Fo-ATPase is involved in the formation of mitochondrial cristae
Cristae are structures formed by the folding of the IMM towards the matrix, which greatly increase the total 
surface area of respiratory chain[22,23]. The morphology of cristae varies among species. Oligomerization and 
dimerization of F1Fo-ATPase is responsible for the cristae organization[24]. Studies suggest that abnormal 
dimerization causes a block in F1 synthesis and leads to altered cristae morphology with extended onion-
like structures and even the disappearance of the cristae in yeast[25]. Human F1Fo-ATPase dimers are linked 
together back-to-face by DAPIT, forming long oligomers along the edges of the cristae[9]. Mutations in the 
DAPIT result in defective F1Fo-ATPase dimerization and abnormal cristae structures, resulting in mild 
Leigh syndrome[13,26]. Knockdown of the subunit-e in HeLa cells manifests as slightly disordered lamellar 
cristae in the IMM.  Another study on yeast mitochondria described that lack of Atp6p resulted in abnormal 
F1Fo-ATPase structure that affected cristae morphology and altered the overall mitochondrial structure[27]. 
Several mitochondrial function-related genes, such as CHCHD2 (Coiled-coil-helix-coiled-coil-helix domain 
containing protein 2), have been previously reported to be critical in maintaining mitochondrial cristae and 
stabilizing mitochondrial inner-membrane fusion. CHCHD2 stabilizes the mitochondrial contact site and 
cristae organizing system (MICOS), holding the formation and stability of cristae[28]. Mic60, a MICOS 
component involved in cristae membrane curvature, antagonizes with subunit-e or subunit-g, thus 
inhibiting the oligomerization of the F1Fo-ATPase[29].

The formation and opening of mitochondrial permeability transition pore
F1Fo-ATPase catalyzes ATP synthesis or hydrolysis based on the membrane potential difference. The 
protons cross the IMM into the matrix following the membrane potential difference and rotate the central 
stalk counterclockwise (viewed from F1 domain), resulting in the generation of ATP. Conversely, if the 
membrane potential decreases, ATP is hydrolyzed to ADP and Pi[30]. It can be seen that F1Fo-ATPase is 
involved in mitochondrial permeability transition (mPT)[31].

The mitochondrial permeability transition pore (mPTP) is composed of mitochondrial outer and inner 
membrane proteins, regulating the transportation of molecules in or out of the matrix[32,33]. Recent studies 
suggested that changes in mitochondrial outer and inner membrane structure and function regulate the 
open state of mPTP and cell death[32,34]. The role of F1Fo-ATPase in the formation of mPTP has been 
confirmed in mammals, yeast, drosophila melanogaster and other eukaryotes in recent years[35-37]. Giorgio et 
al. reported that the binding of Ca2+ to the subunit-β can trigger the opening of mPTP[38]. The c-ring acts as 
an uncoupling channel for mPTP and participates in mPTP formation[39,40]. Karch et al. reported that Bcl-2 
protein family members Bax and Bak promote changes in outer membrane permeability involved in 
mPTP[41]. The features of Ca2+-dependent currents generated by dimers of ATP synthase are 
indistinguishable from those of the mPTP[14], which suggests that F1Fo-ATPase is directly involved in mPTP 
formation[38,42]. Walker’s study shows that the phenomenon of mPT persists despite the absence of Fo 
subunits[8,43]. Therefore, the characteristic composition is the basis for stable functional coordination among 
components, so as to ensure the dynamic balance of proton electrochemical gradient and the normal ATP 
supply in eukaryotic mitochondria[5-7].

F1FO-ATPASE AND NERVOUSE SYSTEM DISEASES
F1Fo-ATPase dysfunction is involved in a variety of neurological diseases[44]. It has been reported that α and 
β subunits are present in isolated fractions of plasma membrane and biotin-labelled surface protein from 
primary cultured neurons of rat brain.  It suggests the involvement of this enzyme in the mechanism of 
extracellular ATP generation and pH(i) homoeostasis[45]. There is substantial evidence that ETC complex 
and energy metabolism-related proteins responsible for oxidative phosphorylation are particularly affected 
during aging[46]. As a target of lipoxidation-derived damage in human brain aging[47], F1Fo-ATPase affects 
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the α and β subunits first accompanied by loss of enzymatic activity rather than a decrease in the protein 
expression[48,49]. The loss of the activity of F1Fo-ATPase induces ETC dysfunction and reactive oxygen 
species (ROS) production, leading to oxidative stress based neuronal damage.

In status epilepticus, calcium accumulation leads to mitochondrial membrane depolarization, resulting in 
ATP reduction and cellular energy exhaustion[44,50]. Excessive calcium and ROS production lead to the 
opening of mPTP, which is permeable to pro-apoptotic proteins and leads to further depolarization of the 
MMP, exacerbating reduced ATP production, disturbance of ion homeostasis and matrix swelling[37]. ROS 
can further promote mPTP opening and initiate mitochondria-mediated programmed cell death by 
activating ryanodine receptors and inhibiting sarcoplasmic reticulum calcium-ATPase from releasing 
calcium from internal stores[32].

Studies have established a link between F1Fo-ATPase dysfunction and the loss of dendritic spines, which 
have been reported in neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP), Alzheimer’s 
Disease (AD) and many other neurological diseases as well[51-54]. Alterations in oxidative phosphorylation 
mechanisms are associated with myelin and axonal degeneration[55]. F1Fo-ATPase protein expression level is 
decreased, and subcellular localization exhibits alterations in C-fiber and A-δ fiber neurons of L4-L5 dorsal 
root ganglia following sciatic nerve injury. Thermal and mechanical hypersensitivity was significantly 
improved by intrathecal injection of ATP, suggesting a potential role in the treatment of neuropathic 
pain[56].

F1Fo-ATPase and Alzheimer’s disease
AD is characterized by accumulation of extracellular amyloid-β (Aβ) plaques and intracellular aggregation 
of tau protein in neurofibrillary tangles (NFTs). ETC dysfunction contributes to the development of the AD 
mitochondrial cascade hypothesis. Blue native polyacrylamide gel electrophoresis (BN-PAGE) analysis 
shows that the expression of F1Fo-ATPase complex subunits is reduced in the hippocampus of AD 
patients[25,57,58]. A study by the usage of iPSC-derived neuronal stem cells (NSCs) found a decreased 
expression of the F1Fo-ATPase in familial AD associated mutation PS1(M146L), even though PS1 
expression was maintained[59]. In a study of sporadic AD, N2a neuroblastoma cells expressing the ApoE4 
allele were found to have reduced levels of all F1Fo-ATPase subunits when compared with ApoE3 
controls[60].

Another earlier study on AD and F1Fo-ATPase found that the catalytic activity was not significantly 
reduced in mitochondria isolated from AD patients’ hippocampus and motor cortex[61]. Localization of 
F1Fo-ATPase on neuronal membranes and its extracellular activity is inhibited by amyloid precursor 
protein (APP) and Aβ[25,62,63]. The α subunit of F1Fo-ATPase is modified by 4-hydroxynonenal(HNE) in the 
hippocampus of mild cognitive impairment (MCI) individuals, which has 35% lower enzyme activity than 
controls[64]. NFT formation depends on stages of AD progression, which appears to be associated with the 
lip-oxidation of the α subunit[49]. In primary cultures of hippocampal neurons, inhibition of F1Fo-ATPase 
function via oligomycin A induces mitochondrial deficits[65]. The Bcl-x(L) protein directly interacts with the 
subunit-β, increasing H+ pumped by F1Fo-ATPase complex ducring activation and improving the efficiency 
of energy metabolism. Recombined Bcl-x(L) directly increases the activity of the purified synthase complex, 
and inhibition of endogenous Bcl-x(L) reduces the activity[66].

The expression levels of various subunits encoding genes and proteins in brain regions were significantly 
reduced in entorhinal cortex, medial frontal gyrus, and temporal lobe of AD patients[67]. Meanwhile, the 
expression of ATP5H in hippocampal tissue in 3xTg AD mice has been found significantly decreased[68]. 
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Figure 2. Effects of α-syn oligomers on mitochondria[74].  IMM: Inner mitochondrial membrane; PTP: permeability transition pore.

The expression of the OSCP was also significantly reduced in synaptic mitochondria from young and old 
5xFAD mice compared to controls as well as in non-synaptic mitochondria from aged 5xFAD mice. 
Similarly, downregulation of MMP and ATP production have been found in the primary neurons of the 
OSCP knock-down mice[15]. Interestingly, Beck et al. found that the interaction between Aβ and OSCP 
reduces the ATP synthase activity[51]. Restoration of OSCP ameliorates Aβ-mediated mitochondrial 
damage[69]. Therefore, F1Fo-ATPase dysfunction may prevent AD progression by modulating the functions 
of OSCP[51].

F1Fo-ATPase and Parkinson’s disease
The role of mitochondria dysfunction in Parkinson’s disease (PD) is supported by a growing body of 
evidence[3,23,70]. Another study observed a significant reduction of F1Fo-ATPase in the substantia nigra of PD 
patients[71,72]. In addition, the F1Fo-ATPase levels in the frontal cortex are decreased in PD patients[73]. 
Superoxide dismutase 2 (SOD2) is also increased in the frontal cortex of PD. These findings indicate the 
disease-specific alterations in mitochondrial-associated protein expression in the frontal cortex[3] and 
demonstrate that the presence of mitochondrial modifications is prior to the appearance of the histological 
features[2].

Monomeric α-syn binds to the IMM and can improve F1Fo-ATPase efficiency and mitochondrial metabolic 
function in physiological conditions[74,75]. Studies by Ludtmann et al. revealed that monomeric α-syn directly 
interacts with the subunit-α of F1Fo-ATPase and positively regulates the activity of F1Fo-ATPase[76]. Brain 
mitochondria from α-syn, β-syn, and γ-syn knockout mice are characterized by decreased MMP, F1Fo-
ATPase activity and ATP levels[76].

Another study showed co-localization of aggregated α-syn with F1Fo-ATPase in rodent and human 
neurons[77]. However, studies suggest an antagonistic relationship between α-syn oligomers and F1Fo-
ATPase. β-sheet α-syn oligomers interact with F1Fo-ATPase and induce mitochondrial dysfunction in 
PD[75]. Oligomeric α-synuclein induces selective oxidation of the F1Fo-ATPase subunit-β and mitochondrial 
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lipid peroxidation, increasing the probability of mPTP opening, triggering mitochondrial swelling, and
ultimately cell death [Figure 2][74]. Studies in isolated mitochondria also suggest a direct effect of F1Fo-
ATPase on α-syn oligomers preventing the pathological opening of mPTP. When α-syn undergoes
misfolding and aggregation in PD, the ability of monomeric α-syn to enhance ATP synthase efficiency may
be important for the development of PD[76]. Whether α-syn aggregates damage the structure directly or
through any target to affect the function of F1Fo-ATPase still needs to be determined.

Monomeric α-syn interacts with F1Fo-ATPase, which is helpful for increasing the efficiency of ATP
synthesis. α-syn oligomers lead to respiration injury and mitochondrial depolarization. In addition,
oligomers-induced ROS leads to essential protein oxidation, lipid peroxidation and mPTP opening in
mitochondria.

Recently, two missense mutations (T61I and R145Q) and one splice site mutation (c.300 + 5G > A) in
CHCHD2 have been identified in autosomal dominant familial PD[78]. The mechanism of function in
MICOS complex includes the regulation of mitochondrial apoptosis and mitophagy[79]. Based on the
structural characteristics of cristae, the functional regulation of F1Fo-ATPase may become an important
direction to explore the pathological mechanism of PD pathogenic genes.

CONCLUSION
Previously, the mitochondrial hypothesis for neurodegenerative diseases has poorly focused on F1Fo-
ATPase. This work presents evidence for the role of F1Fo-ATPase structure and dysfunction in neurological 
disorders, which strengthens the argument that F1Fo-ATPase dysfunction plays a role in neuro-energy 
metabolism disorders. Further study of F1Fo-ATPase related mitochondrial metabolic function and 
mechanism in neurodegenerative diseases is crucial to better understanding the pathological characteristics.
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