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ABSTRACT
Glioma associated microglia/macrophages (GAMs) constitute the largest proportion of glioma infiltrating cells, par-
ticularly in high grade tumors (i.e., glioblastoma). Once inside the tumors, GAMs usually acquire a specific pheno-
type of activation that favors tumor growth, angiogenesis and promotes the invasion of normal brain parenchyma. 
Therefore, treatments that limit or prevent GAMs’ recruitment at the tumor site or modulate their immune activa-
tion promoting antitumor activities are expected to exert beneficial effects in glioblastoma. In the present paper, we 
aim at the revision of pharmacological strategies that interfere with GAMs’ function and are currently proposed as 
an alternative/additional option to current approved cytotoxic regimens.
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INTRODUCTION
Glioma associated microglia/macrophages (GAMs) constitute the largest proportion of tumor infiltrating 
cells. They are less abundant in low grade gliomas, but constitute up to 30% of the entire tumor mass in 
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glioblastoma (IV grade glioma)[1]. On the basis of largescale genomic analyses, glioblastoma can be classified 
into at least four distinct molecular subtypes[2], among which the mesenchymal subtype tends to have the 
most relevant immune component[3]. Microglial cells, scattered in normal brain parenchyma, are recruited 
at the tumor site by glioblastoma-secreted chemoattractant factors[4,5] [Figure 1], while peripheral blood-
derived macrophages, normally found in the perivascular space, meninx and choroid plexus, accumulate 
in glioblastoma trough breakdown of the blood-brain-barrier (BBB)[1] particularly in high grade glioma[6]. 
Iba1+ cells were consistently detected in a group of 41 glioblastoma specimens, showing preferentially an 
amoeboid phenotype toward the tumor center and a ramified morphology in the periphery of the tumors[7]. 
In addition, markers suggesting both pro- and anti-tumoral properties of GAMs were detected. A significant 
proportion of cells expressing the cluster of differentiation (CD) 163 and the inducible nitric oxide synthase 
(iNOS) was found in the tumor parenchyma together with a wider distribution of arginase 1 positive cells[7]. 
GAMs are frequently detected in the perivascular niche of tumor blood vessels, and their number increases 
with tumor progression[8]. As shown in Figure 1, invading microglia/macrophages play a critical role in the 
regulation of glioma biology, including tumor growth, progression and invasion[8]. Consistently, depletion 
of microglia/macrophages in vivo experimental models significantly reduced tumor growth[8-12], holding the 
potential to ameliorate the outcome of current available therapies. 

In this regard, standard treatment for glioblastoma includes maximal surgical resection (whenever feasible), 
followed by radiotherapy and concurrent treatment with temozolomide plus additional 6 cycles of adjuvant 
temozolomide[13]. Despite such multimodal approach, the average survival of patients diagnosed with glioblas-
toma remains low (14-16 months), with better outcomes observed when tumors display O6-methylguanine 
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Figure 1. Cross-talk between glioblastoma cells and GAMs. A: Glioblastoma cells produce several chemoattractant factors which 
promote the recruitment of microglia and macrophages at the tumor site, GAMs; B: once inside the tumor, GAMs are exposed to 
immunosuppressive/antinflammatory factors and are reprogrammed towards phenotypes that sustain tumor growth, progression and 
invasion; C: the most relevant tumor promoting features of GAMs are presented. M-CSF: macrophage colony stimulating factor; CSF1: 
macrophage colony stimulating factor; GM-CSF: granulocyte/macrophage colony stimulating factor; CSF2: granulocyte/macrophage 
colony stimulating factor; HGF: hepatocyte growth factor; MCP-1/CCL2: monocyte chemotactic protein 1/chemokine (C-C motif) 
ligand 2; MIF: macrophage inhibitory factor; SDF-1: stromal-derived factor-1; TGFβ: transforming growth factor β; IL: interleukin; PGE2: 
prostaglandin E2; SPP1: osteopontin; GAMs: glioma associated microglia/macrophages; CNS: central nervous system



DNA-methyltransferase promoter methylation[13]. In fact, most glioblastoma tumors tend to recur after being 
surgically removed. This is partly due to the highly infiltrative nature of these cancer cells, so that radical 
surgery is difficult to achieve. On the other hand, tumors can regenerate from glioblastoma cancer stem cells 
(GSCs) that are usually resistant to radio- and chemotherapy. Treatment guidelines for recurrent disease are 
less defined and may include a second surgery, re-irradiation, or re-exposure to temozolomide at standard 
dose. Other options comprise systemic chemotherapy with one nitrosourea drug, i.e., carmustine, lomus-
tine, or fotemustine, and in the United States, the monoclonal antibody against vascular endothelial growth 
factor-A (VEGF-A) bevacizumab[13]. Finally, several targeted therapies have been tested in clinical trials with 
limited beneficial effects. Interestingly, we observed using primary cultures of rat microglial cells that temo-
zolomide did not reduce microglial cell viability after 24 h treatments in the µmol/L (clinically relevant) dose 
range, albeit it significantly increased intracellular protein content[14]. Notably, resistance to anti-angiogenic 
therapy, i.e., bevacizumab, appears to be mediated by changes in the glioblastoma’s microenvironment, in-
cluding the extent of myeloid cell infiltration as well as their biological activities[15-17]. In preclinical models of 
glioblastoma, it has been shown that ionizing radiations increase the recruitment of myeloid cells with a pro-
tumorigenic phenotype at the tumor site, contributing to disease recurrence[18]. Taken together, the evidence 
suggest a possible involvement of GAMs in the response to standard treatments. Therefore, glioma associ-
ated myeloid cells can be envisioned as an alternative or an ancillary pharmacological target to improve the 
clinical outcome of current available therapies. Noteworthy, the glioblastoma microenvironment includes 
also other immune cells, namely regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), 
that concur to the establishment of an immunosuppressive environment, impairing the effector function 
of infiltrating T cells and natural killer cells and facilitating tumor growth[19]. Therefore, a comprehensive 
understanding of these different components of the patients’ immune system endowed in the tumor micro-
environment is necessary to develop therapeutic strategies that increase anti-tumor immunity and clinical 
benefits. In the present paper, we aim at the revision of pharmacological strategies that interfere with GAMs’ 
function, i.e., cell recruitment at the tumor site, cell inflammatory activation and immune function, and the 
extracellular matrix remodeling promoted by GAM-secreted factors. For recent advances on the biology of 
MDSCs and Tregs in the glioblastoma microenvironment and their potential role as therapeutic targets, we 
refer the readers to other review articles[20,21]. 

DRUGS TARGETING GAMS’ FUNCTION FOR THE TREATMENT OF GLIOBLASTOMA
Drugs that interfere with GAMs’ recruitment at the tumor site
Microglial cells are recruited at the tumor site by several chemoattractant factors which are produced and 
released by tumoral cells[4,5]. One of the first identified GAMs’ chemoattractant factor is the hepatocyte 
growth factor[22], which binds to and activates the tyrosine kinase receptor, c-Met. The latter plays a role both 
on microglial motility and cell proliferation[22]. Other glioma-released chemoattractant factors are the my-
eloid colony stimulating factors (CSFs), i.e., the macrophage colony stimulating factor (M-CSF or CSF1)[23], 
the granulocyte/macrophage colony stimulating factor (GM-CSF or CSF2)[24]. These factors signal through 
activation of two different receptors[25]. The M-CSF receptor (CSF1R) is a homodimeric type III receptor, 
encoded by the FMS proto-oncogene, with intrinsic tyrosine kinase activity, whereas the GM-CSF receptor 
(CSF2R) is a heterodimer composed of a specific ligand-binding subunit (the α-chain) and a common β-chain. 
The latter is the signal transduction subunit and is shared with the receptors for interleukin (IL)-3 and IL-
5. Activation of the CSF2R is known to stimulate at least three pathways: the Janus kinase-signal transducer 
and activator of transcription (JAK-STAT) pathway, the mitogen-activated protein kinase (MAPK) pathway 
and the phosphoinositide 3-kinase pathway[25]. In addition, the monocyte chemotactic proteins (MCPs), par-
ticularly MCP-1/chemokine (C-C motif) ligand 2 (CCL2)[26,27], and the stromal-derived factor-1 (SDF-1)[28], have 
shown to play a role in the recruitment of microglial cells to the tumor site [Figure 1]. In addition a substan-
tial number of peripherally derived macrophages can be consistently detected in glioma GL261 implanted 
tumors, since the early phases of disease[29]. Once inside the tumors, GAMs usually acquire a specific pheno-
type of activation[30] that favors tumor growth, angiogenesis and promotes the invasion of normal brain pa-
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renchyma[5]. Therefore, pharmacological treatments that prevent or reduce GAMs’ recruitment at the tumor 
site are expected to exert beneficial effects in glioblastoma. In this regard, it has been shown that the immu-
nosuppressant agent cyclosporine A (CsA), a drug normally used in clinical practice, significantly reduces 
the number of infiltrating microglia/macrophages in implanted glioma tumors. This effect, together with a 
modulation of GAM’s inflammatory activation, results in a significant reduction of tumor growth[9]. Howev-
er, chronic immunosuppression associated with systemic use of CsA increases the risk of developing tumors, 
and may probably limit the use of this drug for the treatment of glioblastoma. In addition, several tumor 
favoring mechanisms are associated with CsA, including increased production of transforming growth fac-
tor β (TGFβ) and VEGF together with an inhibitory action on the DNA repairing ability of the cells[31]. In 
the human U-87 glioma cell line, CsA significantly reduced the expression level of the human microRNA 
(miRNA, miR-)195, together with the modulation of several other miRNAs[32]. Interestingly, miR-195 seems 
to play a tumor suppressor function in both glioma cell lines and human gliomas[33,34]. On the other hand, 
the nuclear factor of activated T cells (NFAT1), i.e., the main intracellular target of CsA, appears to be a cru-
cial regulator of glioma invasion-related genes. Thus, a direct inhibition of NFAT1 activity in glioma cells 
can limit their ability to infiltrate normal brain parenchyma, and may be considered as a potential adjuvant 
therapy for glioblastoma[35].

Interestingly, novel compounds, interfering with known chemoattractant factors, are in different stages 
of development for the treatment of glioblastoma. For example, it has been shown that the CSF-1R inhibi-
tor BLZ945, which blocks the signaling pathways activated by M-CSF, significantly increased survival in 
different preclinical models of glioblastoma[36]. This pharmacological treatment induced the regression of 
established tumors in engineered mice and abated tumor growth in human xenografts. The drug is a small 
molecular weight CSF-1R inhibitor, with optimal BBB penetration properties. However, despite the chemoat-
tractant properties of M-CSF and its established role in promoting macrophage survival, BLZ945 did not 
reduce the number of tumor infiltrating microglia/macrophages in these models. GAMs appeared indeed 
protected from BLZ-induced cell death by glioma-secreted cytokines such as GM-CSF, interferon γ (IFNγ) 
and the C-X-C motif chemokine 10 (CXCL10)[36]. On the other hand, BLZ945 modulated the inflammatory 
activation of GAMs, favoring their antitumor activities which explains the beneficial effects observed with 
the treatment (see next section). In a different preclinical model of glioblastoma, consisting of tumors de-
rived by implantation of GSCs lacking tumor suppressor phosphatase and tensin homolog, p53 and neurofi-
bromin 1 (NF1), BLZ945 efficiently blocked GAMs’ recruitment at tumor site together with reducing tumor 
growth[37]. Interestingly, a first-in-human study employing BLZ945 (NCT02829723) is currently ongoing. It 
is a phase I/II with BLZ945 given as a single agent or in combination with PDR001 [a novel monoclonal an-
tibody against the immune checkpoint programmed death-1 (PD-1) receptor, by Novartis Oncology], which 
aims at the characterization of the safety, tolerability, pharmacokinetics, pharmacodynamics, and anti-
tumor activity of BLZ945 in adult patients with advanced solid tumors. Moreover, another selective CSF-
1R inhibitor (PLX3397) has been recently tested in a phase II clinical trial in patients affected by recurrent 
glioblastoma (NCT01349036). The drug was well tolerated, showed good BBB penetration, and reduced the 
amount of Iba1+ cells within the tumors. However, no significant improvement in the progression free sur-
vival compared with historical controls was observed in PLX3397 treated patients[38]. Moreover, it has been 
recently shown that genetic reduction of MCP-1/CCL2 significantly reduces macrophage infiltration within 
the tumors extending the survival time of tumor bearing animals[39]. However, previous attempts to block 
MCP-1/CCL2 with monoclonal antibodies demonstrated modest clinical efficacy. The drugs were instead 
effective in combination with temozolomide, significantly increasing mice survival[27]. Interestingly, it has 
been shown that the production of MCP-1 by glioma cells can be efficiently reduced by non-cytotoxic drugs, 
including the antibiotic minocycline, the angiotensin II receptor inhibitor telmisartan and the bisphospho-
nate zolendronic acid[40]. These drugs have a good BBB penetration and will be tested in combination as an 
ancillary therapy to improve the outcome of currently approved cytotoxic regimens. 

Recently, a small molecular weight inhibitor of the AXL receptor tyrosine kinase  has been shown to exert 

Page 4 of 13      Dello Russo et al. Neuroimmunol Neuroinflammation 2018;5:36  I  http://dx.doi.org/10.20517/2347-8659.2018.42 



relevant antiproliferative effects on different preclinical models of glioblastoma. The drug, namely BGB324 
(also known as R428) significantly increased neurological free survival particularly in the group of mice 
bearing high-AXL expressing tumors[37]. In addition, BGB324 treatment reduced the amount of infiltrating 
CD45+ leukocytes and CD11b+ GAMs. Interestingly, the anti PD-1 inhibitor nivolumab increased the protec-
tive effects of BG324, and effectively prolonged the survival of tumor bearing mice[37]. Nivolumab per se dis-
played no survival benefits in these animals, while increasing both AXL kinase activity and GAMs’ tumor 
infiltration. In line with these observations, a phase III clinical trial (NCT02017717) set to compare the ef-
ficacy and safety of nivolumab administered alone versus bevacizumab in patients diagnosed with recurrent 
glioblastoma failed to demonstrate its efficacy[19]. Immune PD-1 check point inhibitors, including nivolumab, 
have proven efficacy in various malignancies and the number of clinical approved indications is constantly 
increasing[41]. The use of these drugs is associated with specific toxicities, often termed immune-related ad-
verse events. The most common side effects involve the skin, colon, endocrine organs and liver. Rarely, neu-
rological complications have been described[41], including recent case reports on nivolumab-induced autoim-
mune encephalitis[42] and progressive multifocal leukoencephalopathy[43]. 

Finally, microglial/macrophages’ infiltration of GSC-derived tumors was efficiently blocked by the integrin 
inhibitor arginine-glycine-aspartic acid (RGD) peptides albeit interfering with GSC-secreted periostin[44]. 
Consistently, genetic ablation of periostin reduced GAMs’ recruitment at tumor site and modulated their im-
mune functions, thus inhibiting tumor growth and increasing survival of glioma bearing animals. Similar 
beneficial effects were expected by pharmacological inhibition of integrin signaling pathways in human glio-
blastoma. However, despite promising phase I/II results, a recent phase III clinical trial failed to demonstrate 
clinical efficacy of cilengitide, a cyclic RGD pentapeptide that selectively inhibits the avβ3 and avβ5 integrins 
when added to standard temozolomide treatment in glioblastoma patients[45]. A possible explanation for 
these negative findings can be retrieved in part in the unfavorable pharmacokinetic profile of cilengitide[46]. 
In fact, the relevance of the signaling pathways downstream the integrin receptors, αvβ3 and αvβ5, is further 
supported by a recent proteomic analysis of the glioma secretome. These data suggest the involvement of os-
teopontin (SPP1) and lactadherin in the reprogramming of GAMs’ immune responses towards pro-tumoral 
functions via integrin signaling[47].

Drugs that interfere with GAMs’ inflammatory activation and immune function
Under the influence of glioma cells, the antitumor functions of GAMs appear mostly suppressed. As shown 
in Figure 1, tumor cells indeed produce several immunosuppressive molecules, such as TGFβ, IL-10, and 
various prostaglandins (i.e., prostaglandin E2, PGE2), thus favoring the acquisition of a pro-tumorigenic 
phenotype of activation by GAMs[30,48,49]. Pharmacological strategies that promote antitumor activities of 
GAMs, i.e., production of cytotoxic molecules and increased phagocytosis, or that reduce the release of pro-
tumorigenic (i.e., growth factors) may exert beneficial effects in glioblastoma. In this regard, amphotericin 
B (AmpB), an antifungal compound clinically used to treat life-threatening fungal infections[50], has been 
shown to promote macrophage activation via toll like receptor activation and increase pro-inflammatory 
cytokine release[51]. In view of these properties, AmpB was recently tested in preclinical models of gliomas. 
In an experimental model consisting of human-derived GSC tumors implanted in nonobese diabetic/severe 
combined immunodeficiency (NOD-SCID) mice, systemic administration of AmpB significantly reduced 
tumor growth and increased animal survival[52]. The drug did not exert direct anti-tumor activity on GSCs 
in vitro and its pharmacological benefits in vivo were abated by depletion of myeloid cells. This suggests that 
the beneficial effects of AmpB were mediated by modulation of GAMs’ functions. Increased tumor infiltra-
tion of Iba1+ microglial cells and macrophages was detected in AmpB treated animals. This effects has been 
recently confirmed using ultrasmall iron oxide nanoparticles as contrast agents for magnetic resonance im-
aging, in order to detect monocyte infiltration into brain tumors[53]. In addition, tumor infiltrating Iba1+ cells 
in response to AmpB showed a significant up-regulation of iNOS, that most likely results in increased pro-
duction of cytotoxic nitric oxide (NO)[52] Beneficial effects of AmpB were also observed in immunocompe-
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tent C57BL/6 mice, against highly aggressive tumors derived from enriched stem-like CD133+ GL261 glioma 
cells. Notably, the antitumor effects of AmpB in vivo are achieved with lower doses than those maximally 
tolerated in humans. 

Another promising class of therapeutics for the treatment of glioblastoma are the inhibitors of the mecha-
nistic target of rapamycin (mTOR) kinase and/or other related kinases. The mTOR kinase is a central regu-
lator of several intracellular processes related to cellular growth, metabolism, and proliferation[54]. Robust 
evidence have highlighted the crucial role of this pathway in glioblastoma biology, together with the dem-
onstration of significant antiproliferative effects obtained by its pharmacological inhibition[55]. Several drugs 
targeting this activity are currently in clinical development for the treatment of different types of cancer[56], 
including those with an optimal pharmacokinetic profile for the treatment of glioblastoma[56,57]. Notably, we 
have shown that inhibition of mTOR activity in rat microglial cells can promote their antitumor properties 
while restricting pro-tumorigenic features[58]. Therefore, mTOR inhibitors have the potential to target both 
glioblastoma and GAMs’ functions. Similarly, the chemokine receptor C-C chemokine receptor type 5 (CCR5) 
inhibitor maraviroc, in the same in vitro model, showed both direct antiproliferative activities on rat glioma 
C6 cells together with immune modulatory actions on glioma stimulated rat microglial cultures[59].

Interestingly, both glioma and infiltrating GAMs express the Ca2+-activated K+ channels (KCa3.1), whose 
inhibition using 1-(2-chlorophenyl) diphenylmethyl-1H-pyrazole (TRAM-34) induced a switch of GAMs 
toward a pro-inflammatory, antitumor phenotype[60]. In addition, in vivo treatments with TRAM-34 signifi-
cantly decreased the extent of tumor growth in glioma-bearing mice[60]. Moreover, stimulation of microglia 
with pro-inflammatory IL-12 is associated with increased phagocytic activity[61]. Consistently, intracranial 
injection of a recombinant adeno-associated viral vector (rAAV2) encoding for IL-12 augmented the brain 
levels of IL-12 and IFNγ in tumor-bearing animals, favoring microglial infiltration into the tumor and 
restoring their antitumor functions. Increased immune activation of GAMs significantly reduced tumor 
growth and prolonged animal survival time[62]. Similarly, systemic administration of miR-142-6p, whose 
expression level is consistently downregulated in GAMs, extended animal survival in different glioma mod-
els. These beneficial effects relied on reduced GAMs’ infiltration at the tumor site and increased antitumor 
activities[63]. Inhibition of the C-X-C chemokine receptor type 4 (CXCR4) by a newly synthetized receptor 
antagonist, peptide R, reduced tumor growth, glioma cell invasiveness, and intratumor vessel formation 
while directing GAMs’ immune activation toward a pro-inflammatory/antitumor phenotype[64]. Notably, 
SDF-1 suppression in a murine glioma resulted in delayed tumor growth and invasiveness, lower microvas-
cular density, and higher density of microglia/macrophages in non-hypoxic compared to hypoxic regions. 
These findings suggest that tumor-secreted SDF-1 stimulates glioma invasiveness and recruitment of GAMs 
towards hypoxic areas[65]. In addition, it has been recently shown that the antitumor activity of vosaroxin, a 
first in class cytotoxic agent that intercalates DNA and inhibits topoisomerase II, are also linked to increased 
recruitment of myeloid cells at the tumor site together with an augmented pro-inflammatory activation[66]. 
Likewise, the antitumor effects of chlorogenic acid (5-caffeoylquinic acid) (CHA) found in pre-clinical mod-
els of glioblastoma were associated with increased antitumor immune activations of GAMs. CHA is phe-
nolic compound found in the human diet, in coffee, apples, pears and in green tea[67]. Finally, a recent paper 
describes the beneficial effects of a single chain antibody (X7Ab) directed against the chemokine receptor 
ACKR3/CXCR7. Reduction of tumor growth and improved survival were observed in vivo in different pre-
clinical models of glioblastoma, particularly when X7Ab was used in combination with standard doses of te-
mozolomide. Interestingly, increased mean fluorescence intensity of classical activated (major histocompat-
ibility complex class II, MHCII+) tumor infiltrating macrophages was detected, suggesting augmented pro-
inflammatory (i.e., antitumor) activation of these cells within the tumor microenvironment[68]. 

Drugs that interfere with matrix remodeling promoted by GAM-secreted factors
Besides their immune functions which may either restrict or favor astrocyte malignant transformation, 
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GAMs are directly involved in the degradation of the extracellular matrix. Thus, these cells are key regula-
tors of a central process involved in the expansion of tumors as well as in the invasion of normal brain pa-
renchyma[69]. In fact, microglial cells significantly increase the invasive phenotype of GL261 glioma cells in 
vivo[70]. Consistently, the invasiveness of glioma cells is diminished in microglial-depleted organotypic brain 
slices inoculated with GL261 glioma cells[71]. Matrix metalloproteases (MMPs), i.e., the enzymes involved in 
the remodeling of the extracellular environment[72], are largely produced by tumor cells, infiltrating microg-
lia/macrophages, or other infiltrating leukocytes, particularly at the invasive tumor edge facilitating tumor 
growth and invasion[71,73,74]. As detailed in our recent review[4], a complex crosstalk exists between glioma 
cells and infiltrating GAMs which increases the activity of MMP enzymes, including MMP-2 and MMP-9. 
Notably, the latter is over-expressed in GAM cells sorted from human glioblastoma tissues[75]. 

Consistently, several pharmacological treatments displayed beneficial effects in glioblastoma by limiting 
the release of MMPs. For example, minocycline, a highly lipophilic tetracycline antibiotic with a good BBB 
penetration property, reduced the expression of MT1-MPP in invading microglia/macrophages by suppress-
ing p38 MAPK activation[76]. The drug also reduced secretion of MMP-9[75] and other pro-inflammatory 
cytokines from microglia and tumor cells resulting in an overall decrease of glioblastoma cell migration[76]. 
Notably, minocycline is also able to reduce MCP-1 secretion by glioblastoma cells, thus potentially limit-
ing GAMs’ recruitment at tumor site (as discussed above). The same inhibitory effects on MT1-MMP were 
displayed in vitro by the lipid lowering agent, atorvastatin[77]. In addition, propentofylline, an atypical meth-
ylxanthine with central nervous system (CNS) glial modulating and antinflammatory actions, significantly 
reduced tumor growth by targeting microglial production of MMP-9. The drug restricted also the migratory 
capacity of both glioma CNS-1 cells and microglia in vitro[78]. Invasion and infiltration of the normal brain 
parenchyma interfere with radical surgical resections of glioblastoma, that often recur after the first aggres-
sive treatment. Pharmacological reduction of glioma cell motility and invasiveness thus hold the potential to 
improve the outcome of current therapeutic approaches, by limiting the infiltration extent of normal brain 
parenchyma[69].

Other features of GAMs
In vitro, microglia co-cultured in the presence of glioma cells appear to be morphologically activated al-
though phagocytosis is largely impaired[10]. Nevertheless, another promising therapeutic approach for the 
treatment of glioblastoma consists in the use of nanoparticles which are internalized by GAMs increasing 
their antitumor immune activation[79,80]. Moreover, GAMs produce a vast array of growth and angiogenic 
factors which further sustain proliferation of tumor cells[8,48,52] as well as tumor vessel formation[81]. Interest-
ingly, genetic and pharmacological ablation in GAMs of neuropilin 1, a co-receptor that amplifies signaling 
through the VEGF-A and TGFβ pathways, is associated with reduced glioma growth and blood vessel for-
mation and increased survival time of glioma bearing mice[82]. 

CONCLUSION
GAMs represent the most relevant population of tumor infiltrating cells that significantly contribute to the 
pathogenesis of glioblastoma by favoring tumor growth and invasion of the normal brain parenchyma. Pre-
clinical evidence supports the notion that GAMs are a viable pharmacological target whose function can be 
modulated in order to prevent their pathological activation. Current available data, summarized in Table 1, 
suggest that the immune activation of GAMs can be genetically or pharmacologically modulated so that 
these cells can be efficiently instructed to perform anti-tumor activities. In addition, it is possible to control 
their recruitment at the tumor site, and the production of extracellular matrix remodeling enzymes, thus 
limiting tumor growth and the ability to infiltrate normal brain parenchyma. One of the main limitations to 
systemic chemotherapy for glioblastoma is represented by the inability of most drugs to effectively penetrate 
the BBB and achieve cytotoxic concentrations in the cerebrospinal fluid and brain parenchyma. In fact, sev-
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Table 1. Drugs targeting GAMs’ functions within the glioblastoma microenvironment

Drug name and approval 
status Drug properties Molecular 

target
Pharmacological 
actions on GAMs Other effects Clinical outcome Ref.

Preclinical evidence
Amphotericin B
Approved for clinical use 
by FDA and in EU mem-
ber states

Small MW compound Toll-like recep-
tors

↑ GAM’s tumor 
infiltration 
↑ GAMs’ antitumor 
immune activation 
↑ iNOS expression 
and NO production

No direct antipro-
liferative effects on 
GSCs in vitro

↓ Tumor growth

↑ Survival 

[52, 53]

Cyclosporine A
Approved for clinical use 
by FDA and in EU mem-
ber states

Small MW compound Calcineurin/ 
NFAT1

↓ GAMs’ tumor 
infiltration
↓ IL10, ARG1 and 
GM-CSF
↓ MMP2

↑ TGFβ and VEGF
↓ DNA repair
↓ miR195 and other 
miRNAs

↓ Tumor growth

Potential tumor 
promoting activities 

[9,31,32]

Minocycline
Approved for clinical use 
by FDA and in EU mem-
ber states

Small MW compound p38-MAPK ↓ MT1-MPP, ↓ MMP-
9 production by 
GAMs
↓ Tumor cells’ migra-
tion

↓ Pro-inflammary cy-
tokines by microglia 
↓ MCP-1 by glioma 
cells

↓ Tumor growth

↑ Survival

[40,75,76]

Nivolumab 
Approved for clinical use 
by FDA and EMA

Biologic 
(mAb)

PD-1 ↑ GAMs’ tumor 
infiltration
↑ AXL kinase activity

↑ Protective effects 
of BG324

No survival benefits 
per se

[37]

mTOR kinase
inhibitors
Approved/
investigational drugs 

Small MW compound mTOR kinase ↑ Pro-inflammatory 
activation of microg-
lia in vitro

Direct antiprolifera-
tive effects 

↓ Tumor growth [55,57,58]

BGB324 
(R428)
Investigational

Small MW compound Receptor tyro-
sine kinase AXL 

↓ CD11b+ GAMs’ 
tumor infiltration
↓ CD45+ leukocyte 
tumor infiltration

↑ Survival [37]

BLZ945
Investigational

Small MW compound CSF-1R ↑ survival of GAMs 
↑ GAMs’ phagocytic 
activity
↓ GAMs’ protumor 
immune activation

↑/↓ GAMs’ tumor 
infiltration

↓ Tumor growth 

↑ Survival

[36,37]

CHA
Investigational

Small MW compound STAT 
factors

↑ GAMs’ antitumor 
immune activation

↓ Tumor growth [67]

Propentofylline
Investigational

Small MW compound Phosphor-
diesterase

↓ MMP-9 by GAMs ↓ Migratory capac-
ity of microglia and 
glioma

↓ Tumor growth [78]

TRAM-34 
Investigational

Small MW compound KCa3.1 channels ↑ GAMs’ antitumor 
immune activation

↓ Tumor growth [60]

Vosaroxin
Investigational

Small MW compound DNA and
TOPO-II

↑ GAMs’ tumor 
infiltration
↑ GAMs’ antitumor 
immune activation

↓ Tumor growth [66]

Peptide R
Investigational

Synthetic peptide CXCR4 ↑ GAMs’ antitumor 
immune activation

↓ Glioma invasive-
ness, 
↓ Intratumor vessel 
formation

↓ Tumor growth [64]

RGD peptides
Investigational

Synthetic peptides Integrins ↓ GAMs’ tumor 
infiltration 
↑ GAMs’ antitumor 
immune activation

↓ GSC-secreted 
periostin

↓ Tumor growth [44]

IL-12 or 
rAAV2-mediated IL-12
Investigational

Biologic 
(protein or engineered 
viral vector)

IL-12 receptor ↑ GAMs’ tumor 
infiltration
↑ GAMs’ antitumor 
immune activation
↑ GAMs’ phagocytic 
activity 

↑ IFNγ and IL-12 
intratumoral levels 
induced by rAAV2.

↓ Tumor growth

↑ Survival

[61,62]

miR-142-6p
Investigational

Biologic
(Synthetic oligonucle-
otide)

mRNA ↑ GAMs’ tumor 
infiltration
↑ GAMs’ antitumor 
immune activation

↓ Tumor growth

↑ Survival

[63]

X7Ab
Investigational

Biologic
(single-chain anti-
body)

ACKR3 / CXCR7 ↑ GAMs’ antitumor 
immune activation

Increased therapeu-
tic effects of TMZ

↓ Tumor growth

↑ Survival

[68]
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eral strategies attempt to overcome this restriction such as improved drug formulation (i.e., nanoparticles or 
lipid based formulation), local drug delivery (including gene therapy[61,62]), or transient BBB permeabiliza-
tion[83,84], to name a few. Among the above mentioned drugs, minocycline and rapamycin for example, have 
increased BBB penetration properties; and novel mTOR inhibitors with improved pharmacokinetic proper-
ties are also under development. It is possible to envision the use of pharmacological compounds, targeting 
GAMs’ functions, as a complement to current available therapeutic approaches. 
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Clinical evidence

Nivolumab 
FDA and EMA approved

Biologic
(mAb)

PD-1 Phase III No superior survival 
vs.  bevacizumab

[19]

BLZ945/PDR001
Investigational

Small MW com-
pound/
Biologic (mAb)

CSF-1R/PD1 Phase I/II Clinicaltri-
als.
gov

PLX3397
Investigational

Small MW compound CSF-1R ↓ Iba1+ cells 
within the 
tumors

Phase II
(recurrent 
glioblastoma)

No significant 
effects on PFS com-
pared with histori-
cal controls

[38]

Cilengitide 
Investigational
(in combination with 
TMZ)

Synthetic cyclic RGD 
pentapeptide

avβ3 and avβ5 
integrins

Phase III No superior survival 
vs.  TMZ alone

[45,46]

In the table we reported the main features of drugs that interferes with biological functions of GAMs (name, characteristics and 
molecular target) together with the pharmacological actions on GAMs and the clinical outcomes on glioblastoma. Drugs are listed based 
on the level of evidence, i.e., preclinical (in vitro  and in vivo ) or clinical testing, according to the following criteria: (1) approved for clinical 
use (1st, small molecular weight compounds, 2nd biologics); and (2) investigational drugs (1st, small molecular weight compounds, 2nd 
biologics). ↑: increased; ↓: reduced. AmpB: amphotericin B; ARG1: arginase 1; BBB: blood-brain-barrier; CD: cluster of differentiation; CCL2: 
chemokine (C-C motif) ligand 2; CCR5: C-C chemokine receptor type 5; CHA: chlorogenic acid (5-caffeoylquinic acid); CsA: cyclosporine 
A; CSFs: colony stimulating factors; CSF1: macrophage colony stimulating factor; CSF1R: M-CSF receptor; CSF2R: GM-CSF receptor; 
CSF2: granulocyte/macrophage colony stimulating factor; GAMs: glioma associated microglia/macrophages; GM-CSF: granulocyte/
macrophage colony stimulating factor; GSCs: glioblastoma cancer stem cells; JAK: Janus kinase; HGF: hepatocyte growth factor; Iba1: 
ionized calcium-binding adapter molecule 1, i.e., a specific myeloid lineage marker; IFNγ: interferon γ; IL: interleukin; iNOS: inducible 
nitric oxide synthase; mAb: monoclonal antibody; MAPK: mitogen-activated protein kinase; MCP: monocyte chemotactic protein; M-CSF: 
macrophage colony stimulating factor; MDSCs: myeloid-derived suppressor cells; mTOR: mechanistic target of rapamycin kinase; MMP: 
matrix metalloprotease; miRNA, or miR: microRNA; NFAT1: nuclear factor of activated T cells; MW: molecular weight; PFS: progression 
free survival; PG: prostaglandin; PI3K: phosphoinositide 3-kinase; PD-1: programmed death-1; rAAV2: recombinant adeno-associated viral 
vector; SDF-1: stromal-derived factor-1; SPP1: osteopontin; STAT: signal transducer and activator of transcription; TGFβ: transforming 
growth factor β; TMZ: temozolomide; TOPO-II: topoisomerase-II; TRAM-34: 1-(2-chlorophenyl) diphenylmethyl-1H-pyrazole; Tregs: 
regulatory T cells; VEGF-A: vascular endothelial growth factor-A; X7Ab: single chain antibody
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