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INTRODUCTION

Human brain arteriovenous malformations (bAVMs) 
are tangles of abnormal vessels between arteries and 
veins and lack of capillary bed. Brain AVM is the 
most common cause of hemorrhagic stroke in young 
adults and children.[1‑3] Commonly assumed to be 
congenital, postnatal formation may be more prevalent 
than previously thought,[4‑6] and the etiology of bAVMs 
still remains unclear. Genetic factors,[7,8] aberrant 
vasculogenesis,[9‑11] and inflammation may all play roles 

in the pathogenesis of bAVMs;[12] a confluence of these 
factors has been proposed in a “response‑to‑injury” 
paradigm.[5]

Evidence indicating the involvement of inflammation 
in bAVM pathogenesis includes neutrophil and 
macrophage infiltration, and increased expression 
of various inflammatory signals, such as matrix 
metalloproteinase‑9, interleukin‑6, myeloperoxidase 
and adhesion molecules.[13‑18] About half of bAVMs 
cases present with an intracranial hemorrhage (ICH), 
which itself can induce inflammation. However, 
even in unruptured and untreated AVMs, substantial 
infiltration of inflammatory cells has been detected 
in the vascular wall and intervening stroma.[13] 
Magnetic resonance imaging has detected hemosiderin 
deposition in unruptured bAVMs,[19,20] consistent 
with episodes of clinically silent intralesional 
micro‑hemorrhage.
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We recently described a strong association between 
imaging evidence of old silent hemorrhage and 
the risk of clinically symptomatic ICH.[21] Further, 
histological examination demonstrated that the degree 
of hemosiderin deposition is positively correlated 
with the number of macrophages in the lesion.[21] 
It is not clear, however, whether the macrophage 
response is specific or whether other inflammatory 
cells are also correlated with hemosiderin deposition 
and macrophage. Our previous studies demonstrated 
that both macrophage and neutrophil may play roles in 
bAVM pathogenesis.[13‑15] Shi et al. described evidence 
of adaptive immunological responses in cavernous 
malformation.[22] Although bAVM tissue was used 
as control in Shi’s study and while no oligoclonal 
response was observed, bAVM had a higher polyclonal 
response compared to normal brain tissue, suggesting 
that lymphocytes may also play a role in bAVM.

In this study, we analyzed lymphocytes in addition to 
macrophages, and tested the hypothesis that, unlike the 
innate immune cells (macrophages), adaptive immune 
cell (lymphocytes)‑infiltration is not associated with 
micro‑hemorrhage and iron deposition.

METHODS

All studies involving patients were approved by 
the Institutional Review Board of the University of 
California, San Francisco (UCSF), and patients gave 
informed consent.

Patients
Patients with AVMs evaluated at UCSF have been 
entered into an ongoing prospective registry since 
2000.[23] We identified 24 unruptured brain AVMs 
from patients who did not undergo preoperative 
embolization or radiosurgery with frozen tissue 
available in our database; 19 samples were located 
and used in this study [Table 1]. Three superficial 
temporal arteries (STA), obtained from autopsies of 
patients who died from nonbrain‑related diseases, were 
used as control.

Histology
Prussian blue staining was performed using Accustain 
Iron Stain kit (Sigma‑Aldrich, St. Louis, MO) according 
to the manufacturer’s protocol.

For immunohistochemistry, adjacent sections were 
used to stain different surface markers. CD68, CD3, 
CD20 and CD138‑specific antibodies were purchased 
from Abcam (Abcam, Cambridge, MA). Brain AVM 
specimens were embedded in optimum cutting 
temperature, sectioned into 8 μm sections, and fixed 
with 4% paraformaldehyde. Endogenous peroxidase 

activity was quenched by incubating slides in 0.3% 
H2O2 in phosphate‑buffered saline (PBS) for 15 min. 
After blocking with 10% normal donkey serum, 
sections were incubated at 4 °C overnight with primary 
antibodies diluted in PBS with 1% BSA in the following 
concentrations: mouse monoclonal antihuman CD68, 
1:1000; rabbit monoclonal antihuman CD3, 1:400; 
rabbit monoclonal antihuman CD20, 1:200; mouse 
monoclonal antihuman CD138, 1:800. After washing 
in PBS, the sections were incubated with horseradish 
peroxidase labeled antimouse or antirabbit IgG 
(vector labs) for 1 h at room temperature. The positive 
staining was visualized using 3, 3‑diaminobenzidene. 
Negative controls were performed by omitting 
the primary antibodies during immunostaining.

The criteria for identifying hemosiderin were 
birefringent or brownish particles seen in the vascular 
wall or interstitial tissue between vessels, and were 
confirmed by Prussian blue staining on adjacent 
sections. CD68+, CD3+, CD20+, CD138+ cells were 
quantified by counting the positively stained cells using 
stereological microscopy (Olympus, Japan).

Statistical analysis
All data are expressed as mean ± standard deviation 
the differences of means were analyzed using unpaired 
Student’s t‑test. Exact binomial 95% confidence 
intervals (CIs) for proportions are reported. P < 0.05 
was considered as statistically significant.

RESULTS

Hemosiderin deposition was present in unruptured brain 
arteriovenous malformations
Consistent with our published data,[21] hemosiderin 
deposition was found in 8 out of 19 specimens 

Table 1: Patient and lesion characteristics
Patients Age 

(years)
Sex Size 

(cm)
Presentation/
clinical details

1 38 Female 1
2 24 Female 3
3 37 Male 3
4 44 Male 1 Incidental
5 54 Female 2 Seizure
6 49 Female 1
7 63 Male 1 Seizure
8 54 Female 3
9 47 Female 2 Seizure
10 39 Female 4
11 53 Female 2
12 20 Male 3 Focal deficit
13 53 Male 4 Incidental
14 30 Male 3 Headache
15 49 Female 1 Incidental
16 41 Male 3 Incidental
17 30 Male 4
18 30 Female 3
19 45 Female 2 Seizure
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(42%; 95% CI: 20‑67%) [Figure 1]. Hemosiderin positive 
cells were scattered mainly around the abnormal 
vessels [Figure 1a]. Prussian blue positive staining 
was detected in the areas that had hemosiderin 
deposition [Figure 1d], suggesting the presence of 
previous micro‑hemorrhage.

T-lymphocytes and macrophages were detected in 
unruptured brain arteriovenous malformations
To analyze whether the lymphocytes were present in 
unruptured bAVM and whether their location was 
associated with macrophages and iron deposition, 
we analyzed T‑ and B‑lymphocytes, plasma cells and 
macrophages. We found that T‑lymphocyte was the 
predominant type of lymphocytes present in unruptured 
bAVM. Whereas the macrophages were scattered 
mostly in the vessel walls and intervening stromal 
regions [Figure 2], T‑lymphocytes were clustered on 
the luminal side of the endothelial surface, in the 
vascular wall, and in the tissue between abnormal 
vessels [Figure 3]. Few B‑lymphocytes were detected; 
they were mostly present in samples that had a large 
number of T‑lymphocytes, and were co‑localized 
with the T‑lymphocytes [Figure 2]. In addition, a 
few plasma cells were identified in 5 samples, of 
which 4 had hemosiderin deposition (data not shown). 
No lymphocytes and macrophages were detected in 
STA [Figure 2].

Compared to the specimens that had no hemosiderin 
deposition, hemosiderin‑positive specimens 
tended to have more macrophages (478 ± 174 vs. 
666 ± 313 cells/mm2; P = 0.11). The T‑cell 
numbers were similar in hemosiderin‑positive 
and hemosiderin‑negative samples (147 ± 108 vs. 
157 ± 139 cells/mm2; P = 0.88) [Figure 4].

DISCUSSION

We found in this study that T‑cells are the predominant 
lymphocytes in unruptured bAVMs. Few B‑lymphocytes 
and plasma cells were detected. Unlike macrophages, 
the number and location of T‑lymphocytes did not 
correlate with hemosiderin, suggesting an independent 
cell‑mediated immunological mechanism in bAVM 
pathogenesis.

Previously, immune cells were mostly analyzed in 
ruptured[24] and irradiated[25] bAVMs. Our previous 
study showed that adaptive immune cells were 
rarely observed in unruptured bAVM.[13] We found 
in this study that many T‑lymphocytes were present 
in unruptured, previously untreated bAVMs. The 
possible reason for the discrepancy is that we used a 
different immunohistochemical staining procedure in 
this study. Previously, we incubated sections in 0.3% 
H2O2 in methanol to quench the activity of endogenous 
peroxidase. However, lymphocyte surface markers have 
been shown to be sensitive to methanol/H2O2 treatment. 
Treating sections with 0.3% H2O2 in methanol can 
reduce our ability to detect membrane markers on 
frozen sections,[26] and thus, we used 0.3% H2O2 in 
PBS in this study. The case selection could also be 
responsible for the discrepancy.

Humoral immunity has been reported to play an 
important role in cerebral cavernous malformation, 
which might be due to chronic deposition of iron and 
blood degradation products.[22,27,28] Consistent with this 
view, we found that plasma cells were present mainly in 
specimens that had hemosiderin deposition. However, 
we cannot draw any conclusion regarding adaptive 
immune responses to the presence of iron from our 
small descriptive study.

Figure 1: Hemosiderin deposition in unruptured brain arteriovenous malformations. H and E (a‑c) and prussian blue staining (d‑f) on the adjacent sections. (b) and 
(c) are enlarged pictures of the regions in squares (b) and (c) in (a) showing hemosiderin‑positive areas. Insert in (b) shows two hemosiderin‑laden macrophages. 
(d) Prussian blue staining of an adjacent section of (a). (e) and (f) are enlarged images of the regions in squares (e) and (f) in (d). Scale bars for a and d: 500 μm; 
for b, c, e and f: 50 μm
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Our study was underpowered to detect a difference in 
macrophage loads between hemosiderin‑positive and 
negative specimens, although our data show a strong 
trend toward that hemosiderin‑positive specimens 

having more macrophages (P = 0.11). The most 
important finding, however, was that macrophages were 
present even in the hemosiderin‑negative specimens, 
suggesting that the presence of macrophages is not 
merely a response to hemorrhage and iron deposition. 
What remains to be determined is whether the baseline 
level of macrophage load is causally related to the 
formation of micro‑hemorrhage (e.g. will bAVM with 

Figure 4: Quantification of inflammatory cells in brain arteriovenous malformation 
(bAVM). (a) Bar graph shows a trend towards more CD68+ cells in hemosiderin‑
positive (HS+) bAVMs than in hemosiderin‑negative samples (HS‑). (b) Bar graph 
shows that the numbers of CD3+ T‑cells were similar in hemosiderin‑positive 
(HS+) and negative (HS‑) samples
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Figure 3: Location of CD3+ T‑lymphocytes. T‑lymphocytes were distributed 
in the perivascular region (a), in the vessel wall (b), and on the surface of the 
endothelial lining (c). Scale bar: 50 μm

c
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Figure 2: CD3+ T‑lymphocytes and CD68+ macrophages. (a‑c) Sections from 3 individual bAVM specimens. (c) Sections from an superficial temporal arteries 
(STA). Squares in H and E, images are enlarged to show CD68, CD3 and CD20 positive cells in the images next to them. T‑lymphocytes and macrophages were 
detected on the vessel wall (a2 and a3) and between vessels (b2, c2, b3 and c3). Only a few CD20+ B‑lymphocytes were detected in the lumen (b4) and between 
vessels (c4). No T‑ and B‑lymphocyte, and macrophage were detected on the wall of STA. Scale bar for a1‑d1: 500 μm; scale bar for a2‑a4: 100 μm; scale bar for 
b2‑b4, c2‑c4, d2‑d4: 20 μm
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high macrophage burden develop micro‑hemorrhage?). 
This will be difficult to test in human studies, and would 
probably be best addressed in an animal model. An 
animal study has shown that in bAVM, vessel integrity is 
impaired.[11] Therefore, the macrophages in bAVM could 
also be a response to the extravasation of blood content.

One limitation of the study is that we only used one 
marker for each cell‑type. Adding additional markers, 
including positive and negative controls, would make 
our data more convincing. However, the markers we 
used in this study are the most commonly used for 
macrophages, total lymphocytes, T‑ and B‑lymphocytes, 
and plasma cells. A future study will employ more 
markers to confirm the cell‑types we have identified 
here, and to define the subtypes of T‑ or B‑lymphocytes 
or other inflammatory cells.

In summary, we found that the load and location of 
T‑lymphocytes were not associated with hemosiderin 
and macrophages. Macrophages are present in 
unruptured and previously untreated bAVMs, and 
their load was greater when hemosiderin is present. 
However, the presence of macrophages is not uniquely 
driven by hemosiderin, because they were also found in 
hemosiderin‑negative specimens. Future studies need 
to be conducted to determine (1) how macrophages 
and lymphocytes contribute to the pathogenesis 
and progression of the disease, and (2) whether the 
burden of these cell loads is causally related to the 
development of micro‑hemorrhage, and ultimately, 
clinically symptomatic hemorrhage.
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