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A B S T R A C T
Epithelial-mesenchymal transition (EMT) was fi rst reported as an essential process in embryonic cells and later showed that 
cancer cells, regardless of the context, exhibited a similar phenomenon that was crucial for tumor progression. Epithelial cells 
lose their adhesive characteristic capacity which is necessary for their functions but gain a mesenchymal phenotype. This change 
from epithelial to the mesenchymal phenotype of cancer cells makes it diffi cult to understand the mechanism underlying cancer 
biology and tumor progression. A number of transcription factors involved in tumor cell EMT and microRNA-regulated EMT 
have been reported. This review discussed recent fi ndings and new players in EMT in gastrointestinal cancers. Since the molecular 
mechanisms of tumor progression are sometimes context-dependent, the recent fi ndings of EMT have been reviewed in a 
context-dependent manner.

Key words: Epithelial-mesenchymal transition, gastrointestinal cancer, microRNA, transcription factor

Epithelial-mesenchymal transition in gastroenterological cancer
Hirohisa Okabe1, Kosuke Mima1, Seiya Saito1, Hiromitsu Hayashi1, Katsunori Imai1, Hidetoshi Nitta1, 
Daisuke Hashimoto1, Akira Chikamoto1, Takatoshi Ishiko1, Toru Beppu2, Hideo Baba1

1Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
2Department of Multidisciplinary Treatment for Gastroenterological Cancer, Kumamoto University Hospital, Kumamoto 860-8556, Japan.

Correspondence to: Prof. Hideo Baba, Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, 
Kumamoto City, Kumamoto 860-8556, Japan. Email: hdobaba@kumamoto-u.ac.jp

Introduction
Epithielial-mesenchymal transition (EMT) is a well-known 
phenotype and essential for tumor invasion and 
metastasis.[1-3] The phenotype change in EMT is drastic, so 
the theory has fascinated many investigators, and several 
mechanisms have been reported to date. However, the 
number of factors essential for EMT is increasing; thus, 
it is challenging to integrate those factors to understand 
their networking. In this review, we briefl y updated the 
recent EMT fi ndings in a context-dependent manner, 
because the mechanisms underlying a disease substantially 
depend on the original function of the affected organ. 
Theoretically, the concept of EMT explains various cancer 
characteristics including tumor cell invasion, metastasis, 
chemo resistance and stem cell phenotype; therefore, it 
has considerable clinical signifi cance. Thus, this review 
explores both the molecular mechanism of EMT and its 
clinical signifi cance.

Although many EMT players, such as transcription factors 
and microRNAs (miRNAs) have been introduced so far 
such as transcription factors and miRNAs, their roles are 
to some extent-dependent on the context. Therefore, we 
discussed the role of each molecule in a context-dependent 
manner to clarify the specifi c role of each player.

Esophageal Cancer
Esophageal cancer (    EC) has two distinct histological 
subtypes, that is, esophageal squamous cell carcinoma 
(ESCC) and esophageal adenocarcinoma (EAC).[4] The 
former commonly occurs in Asia, whereas the latter is 
common in the United States and Western countries. 
Transforming growth factor-β1 (TGF-β1) was reported 
to induce EMT in EAC via the mothers against 
  decapentaplegic homolog (SMAD) 4 pathway and 
this signaling was inhibited by bone morphogenetic 
protein 7, another member of the TGF-β1 superfamily.[5] 
Using immortalized esophageal keratinocyte, TGF-β1 
was shown to regulate mitochondrial superoxide 
dismutase 2 (SOD2) which possesses antioxidant 
activity, to convert CD44low to CD44high cells. Expression 
of SOD2 was transcriptionally regulated by NF-κB and 
zinc fi nger E-box binding homeobox 2 (ZEB2), but 
not ZEB1.[6] In the same cells, it was also reported 
that TGF-β1-mediated EMT required p53 mutation 
accompanied by up-regulation of ZEB1 and the loss 
of epithelial growth factor receptor (EGFR)-dependent 
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senescence program.[7] Epithelial cell adhesion 
molecule (EpCAM), a well-known marker for 
circulating tumor cells in many solid tumors, is 
down-regulated in TGF-β1-mediated EMT. However, 
EpCAM expression in disseminated tumor cells (DTCs) 
was associated with lymph node metastasis and 
decreased overall survival of patients with EC. The 
confl icting evidence that DTCs need the process of 
EMT but express epithelial cell marker EpCAM is 
supported by the result that high expression of EpCAM 
promoted tumor outgrowth after xenotransplantation of 
esophageal carcinoma cells, suggesting that EpCAM 
expression changes dynamically over the course during 
cancer progression.[8]

A notable EMT inducer that has recently been 
reported is interleukin-23 (IL-23). IL-23 is mainly 
produced by Th17 cells that infi ltrate in the tumor 
microenvironment and contributes to EMT via activation 
of the Wnt/β-catenin pathway in esophageal squamous 
carcinoma.[9] Eukaryotic initiation factor 5A2 (eIF5A2) 
was fi rst isolated as an oncoprotein and was later 
found to be involved in EMT. Increased expression of 
eIF5A2 induced ESCC metastasis and angiogenesis 
via the hypoxia inducible factor-1 signaling pathway 
in esophageal squamous cell lines.[10] The clinical 
investigation revealed Snail overexpression in 40% of 
patients with SCC tissue samples, which was associated 
with vascular invasion, advanced clinical stage and the 
EMT phenotype.[11]

Gastric Cancer
Distinct carcinogenetic pathways have been reported 
for intestinal and diffuse type gastric carcinoma, 
but EMT has been mainly discussed for the latter 
phenotype.[12] The link between EMT and gastric 
adenocarcinoma could be partly because of the H. pylori 
cytotoxin-associated gene A (CagA) oncoprotein, 
which is responsible for the “hummingbird” phenotype 
in vitro, which mimics EMT.[13] CagA overexpression 
in gastric cancer (GC) cells up-regulated the expression 
of mesenchymal markers and CD44, which is a cancer 
stem cell marker in GC.[14] CagA overexpressing 
cancer cells also showed high tumorigenic ability 
in vivo. Immunohistochemical analysis of samples 
from individuals with H. pylori infection confi rmed 
high CD44 expression and expression of different 
mesenchymal markers.[15] Tissue microarray analysis 
of samples from 385 GC patients revealed three 
miRNAs (miR-200c, miR-200b and miR-125b) to 
be signifi cantly associated with survival. Functional 
experiments in a mouse model demonstrated that 
miR-200b suppressed ZEB1 and E-cadherin and 
inhibited cell migration and tumor growth.[16] In vitro 
analysis revealed that overexpression of miR-200b 
also down-regulated ZEB2 expression, which in 
turn signifi cantly reduced cellular proliferation, 

migration and invasion in GC cells.[17] miR-7, which 
is down-regulated in highly metastatic GC cell lines, 
was found to be involved in metastasis by regulating 
its direct target, insulin-like growth factor-1 receptor. 
Overexpression of miR-7 was able to suppress 
Snail expression, increase E-cadherin expression 
and partially reverse EMT.[18] Several other EMT 
inducers have been reported recently. For example, 
erythropoietin-producing hepatocellular (Eph) A2 
overexpression resulted in up-regulation of the EMT 
markers N-cadherin and Snail, and the Wnt/β-catenin 
targets TCF4, Cyclin-D1 and c-Myc. In contrast, Eph 
A2 silence by short hairpin RNA had the opposite 
effect.[19] SALL4, a zinc-fi nger transcriptional factor for 
embryonic stem cell's self-renewal and pluripotency, 
has been suggested to be involved in tumorigenesis. 
SALL4 overexpression induced EMT with increased 
expression of Twist1 and N-cadherin, and decreased 
expression of E-cadherin.[20] Telomerase activation 
through induction of human telomerase reverse 
transcriptase (hTERT) induced malignant transformation 
by stabilizing telomeres. hTERT overexpression could 
promote EMT and stemness of GC cells. TGF-β1 and 
β-catenin-mediated EMT was abolished by depletion 
of hTERT.[21] In the gastric epithelium, the runt 
domain transcription factor RUNX3 functions as a key 
mediator of the  TGF-β pathway. Loss of RUNX3 in 
gastric epithelial cells results in EMT and production 
of tumorigenic stem cell-like subpopulation expressing 
gastric stem cell marker Lgr5. Loss of both RUNX3 
and p53 caused gastric epithelial cells to be sensitized 
to TGF-β-induced EMT, during which the resultant 
induction of Lgr5 is enhanced by aberrantly activated 
Wnt pathway.[22]

Colorectal Cancer
EMT is critical in transdifferentiation of polarized 
epithelial cells to an invasive mesenchymal phenotype. 
The function of EMT transcription factors in colorectal 
cancer (CRC) has been reported. Snail, an activator 
of EMT, was expressed at high levels in CRC 
colonospheres. Overexpression of Snail in CRC cells 
induced colonosphere-forming property and cell 
dedifferentiation. Blocking IL-8 expression or activity 
disrupted the Snail-induced stem cell-like features of 
colonospheres.[23] Snail directly induced zinc fi nger 
protein 281 (ZNF281) transcription and repressed 
miR-34a/b/c, thereby protection of   ZNF281 mRNA from 
direct down-regulation by miR-34. Furthermore, p53 
activation resulted in miR-34a-dependent repression of 
ZNF81.[24] Syngeneic Twist1-positive colon carcinoma 
cells (CT26) that invaded tissues surrounding tumors 
demonstrated the mesenchymal phenotype.[25] Genotype 
also affected the mechanism of EMT. TGF-β1 induced 
changes in cell morphology, gene expression, motility 
and invasion consistent with EMT in microsatellite 
stable colon cancer cells, whereas cells exhibited 
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IL-6-dependent activation of signal transducer and 
activator of transcription 3 (STAT3), a conserved and 
direct target of miR-34a.[26] Stimulation of EMT results in 
the nuclear translocation of pyruvate kinase M2 (PKM2) 
in colon cancer cells. EMT stimulation causes direct 
interaction of PKM2 in the nucleus with TGF-β-induced 
factor homeobox 2, a transcriptional cofactor repressor 
of TGF-β signaling.[27] The roles of miRNA in EMT in 
CRC have been reported. For example, liver metastatic 
tissues showed higher expression of miR-200c than that 
of the primary tumor, and miR-200c overexpression 
was signifi cantly associated with hypomethylation of 
the miR-200c promoter.[28] Overexpression of miR-212 
inhibited CRC cell migration and invasion in vitro and 
intrahepatic and pulmonary metastasis in vivo. Manganese 
SOD (MnSOD) was identifi ed as a direct target of 
miR-212, and an inverse correlation has been observed 
between the level of miR-212 and MnSOD protein in 
colorectal tumor samples. MnSOD was required for 
down-regulation of epithelial markers and up-regulation 
of mesenchymal markers in CRC cells.[29]

Hepatocellular Carcinoma
TGF-β is a major microenvironmental factor to affect 
hepatocellular carcinoma (HCC) dedifferentiation, 
inducing EMT and acquisition of metastatic phenotypes. 
Transcriptomic analysis on human HCC tissue samples 
revealed that TGF-β signaling was activated in a 
subpopulation of HCC, called Wnt-TGF-β subclass.[30,31] 
Sequential transcriptome analysis suggested that TGF-β 
signaling was a late event accompanied with extensive 
gene alterations.[32] TGF-β has been shown to induce 
hepatocyte nuclear factor-4α (HNF-4α) post-translational 
modifi cations that correlate with the early loss of the 
ability of   HNF-4α to bind to target gene promoters 
via glycogen synthase kinase-3β (GSK-3β) kinase 
during EMT.[33] The receptor tyrosine kinase Axl 
binds to 14-3-3ζ as a result of phosphorylation of the 
linker region of SMAD3 at Ser213, which causes the 
up-regulation of TGF-β target genes such as PAI1, 
MMP9 and Snail.[34] The function of EMT transcription 
factors have been updated recently. Accumulative 
data on non-coding RNA have revealed a novel 
mechanism of EMT in HCC. For example, miR-200c 
was down-regulated in HCC with bile duct tumor 
thrombus, which occurred in 30 out of 1,240 patients, 
and regulated ZEB1 expression as well as an invasive 
phenotype.[35] The miR216a/217 cluster induced EMT 
and its direct targets, phosphatase and tensin homolog 
and SMAD7 were identifi ed.[36] miR-331-3p-mediated 
inhibition of PH domain and leucine-rich repeat protein 
phosphatase resulted in stimulation of protein kinase 
B (AKT) and subsequent EMT.[37] miR-424-5p reversed 
resistance to anoikis, blocked EMT progression and 
inhibited its direct target ICAT/CTNNBIP1, a novel 
β-catenin-interacting protein.[38] A non-coding antisense 
transcript, ZEB1-antisense1 (ZEB1-AS1), promoted 

EMT and metastasis in HCC. The zeb1-as1 promoter 
was hypomethylated in human HCC samples and 
resulted in tumor specifi c up-regulation of ZEB1-AS1.[39] 
lncRNA-AL589182.3 (ENST00000493038), which can 
be activated by TGF-β, up-regulated ZEB1 and ZEB2 
through competitively binding to the miR-200 family and 
induced tumor cell EMT and invasion.[40] Interestingly, 
hepatitis C virus (HCV) has also been found to contribute 
to EMT. HCV core protein down-regulated secreted 
frizzled-related protein 1 (SFRP1) expression by inducing 
hypermethylation of the SFRP1 promoter.[41] A previous 
transgenic mouse study demonstrated that overexpression 
of HCV core protein in HCC cells increased active 
TGF-β levels in culture supernatants and induced 
SMAD2/3 phosphorylation. HCC cells expressing HCV 
core protein could activate stellate cells in co-culture and 
this activation was TGF-β-dependent.[42] CD44s, a known 
cancer stem cell marker in many malignancies, mediated 
TGF-β-induced EMT, and regulated mesenchymal 
phenotype in HCC.[43,44]

Cholangiocarcinoma
Since this disease is not common, clinical and basic  
research on human cholangiocarcinoma (CCA) samples 
is limited. CCA is one of the solid cancers that have no 
effective molecular targeted therapy to date. Gemcitabine 
plus platinum is the only chemotherapeutic drug that 
to some extent inhibits CCA progression.[45] Several 
EMT-related molecules are also known to play pivotal 
roles in CCA. Inactivation of miR-200c is reported 
to induce the expression of mesenchymal markers 
and NCAM1, a known hepatic stem/progenitor cell 
marker.[46] STAT3-driven expression of small proline-rich 
protein 2a suppressed the interaction of miR-200c/141 
with ZEB1.[47] Although the effi cacy of the EGFR 
tyrosine kinase inhibitors, erlotinib and cetuximab, has 
not been confi rmed in CCA treatment,[48] activation of the 
EGF-EGFR axis is known to abolish gefi tinib-mediated 
EMT progression.[49] ANXA8 was found to be involved 
in EGF-forkhead box protein O signaling-mediated 
EMT progression.[50] The sonic hedgehog ligand is 
highly expressed in human CCA, and treatment with the 
hedgehog inhibitors, cyclopamine and 5E1, suppressed cell 
proliferation, migration and invasion by down-regulating 
the target genes hepatoblastoma 1 and 2. Furthermore, 
these inhibitors have been shown to attenuate EMT.[51] In 
addition to the above-mentioned molecules, some unique 
molecules have also been linked to EMT recently in 
CCA, which include 4 histamines (H1-H4) and their 
receptor (HR). Loss of H3HR expression or overexpression 
of H4HR has been shown to signifi cantly decrease CCA 
proliferation and disrupt EMT progression.[52]

Pancreatic Cancer
Pancreatic cancer is one of the worst solid cancers in 
terms of prognosis and treatment outcome, because 
there is no promising molecular target identifi ed to 
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date. EMT was fi rst reported in this malignancy two 
decades ago, and the major functional interactions of 
the EMT-transcription factors have also been reported. 
The genomic landscape of pancreatic cancer has been 
partially unveiled.[53] However, the role of each key 
molecule involved in EMT remains to be elucidated, 
an effective therapeutic molecular target is yet to be 
identifi ed for pancreatic cancer. The epigenetic analysis 
revealed that the Class I histone deacetylase inhibitor 
mocetinostat suppresses ZEB1 and induces miR-203 
re-expression, thus, leading to the repression of stemness 
properties and drug resistance.[54] TGF-β1 was highly 
up-regulated in pancreatic cancer.[55] TGF-β1 has been 
shown to induce EMT, SMAD2/3 phosphorylation, 
restoration of retinoblastoma 1 expression and 
SMAD-dependent up-regulation of Wnt7b in KRC 
cell line. In in vivo orthotopic models, inhibition of 
TGF-β1 signaling suppressed those effects, resulting 
in tumor regression and decrease in metastasis.[56] 
The calcium-/calcineurin-responsive nuclear factor 
of activated T cells, a transcription factor expressed 
during infl ammation, drives EMT in a sex determining 
region-box 2-dependent manner and loss of p53 induced 
EMT, and acquisition of cancer stem cell-like properties 
by down-regulating miR-200c.[57] Ataxia telangiectasia 
Group D complementing gene, which is highly expressed 
in pancreatic cancer,[58] up-regulated CD44 in mouse 
and human PanIN lesions via activation of β-catenin 
signaling. This in turn results in the induction of EMT 
phenotype and expression of ZEB1 and Snail1.[59]

Perspectives
Increasing evidence supports the role of EMT in cancer 
progression, metastasis and drug resistance. Recent 
studies of EMT transcription factors and microRNAs are 
shown in Tables 1 and 2 respectively. In a tumorigenic 
mouse model, it was shown that EMT precedes 
pancreatic tumor formation.[60] However, whether EMT 
occurs in the early stage or late stage of tumor formation 
remains to be confi rmed. The mesenchymal phenotype 
is essential for tumor cell migration and invasion. The 
epithelial phenotype might be required for cancer cells to 
spread to other organs. Cancer cells tend to acquire both 
phenotypes under specifi c conditions, and the functional 
aspect of each phenotype regarding chemoresistance 
remains elusive.[61] EMT has been categorized into 
three types: developmental (Type I), fi brosis and wound 
healing (Type II), and cancer (Type III). Of these, 
Type III EMT is the least well understood.[62] If Type III 
EMT can be classifi ed further into subgroups based 
on the molecular mechanisms, it would be possible to 
develop personalized cancer therapeutic approaches 
based on the specifi c EMT stage.
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