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Abstract
Advanceddriver assistance systemsprimarily rely on visible images for information. However, in low-visibilityweather
conditions, such as heavy rain or fog, visible images struggle to capture road conditions accurately. In contrast, in-
frared (IR) images can overcome this limitation, providing reliable information regardless of external lighting. Ad-
dressing this problem, we propose an in-vehicle IR object detection system. We optimize the you only look once
(YOLO) v4 object detection algorithm by replacing its original backbone with MobileNetV3, a lightweight feature ex-
traction network, resulting in the MobileNetV3-YOLOv4 model. Furthermore, we replace traditional pre-processing
methods with an Image Enhancement Conditional Generative Adversarial Network inversion algorithm to enhance
the pre-processing of the input IR images. Finally, we deploy the model on the Jetson Nano, an edge device with con-
strained hardware resources. Our proposed method achieves an 82.7% mean Average Precision and a frame rate of
55.9 frames per second on the FLIR dataset, surpassing state-of-the-art methods. The experimental results confirm
that our approach provides outstanding real-time detection performance while maintaining high precision.
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1. INTRODUCTION
With the speedy development of transportation systems, the increasing number of vehicles is leading to more
traffic problems, and the risk of traffic accidents continues to rise [1]. According to research, around 1.35 mil-
lion people die globally because of traffic accidents each year [2]. Financial costs due to traffic accidents add
up to 1%-3% of the world’s gross domestic product [3]. A large proportion of traffic accidents occurs under
reduced visibility conditions when the view of drivers is greatly limited [4]. How to minimize the occurrence
of traffic accidents has been a hot issue, and advanced driver assistance systems (ADAS) are considered a fea-
sible way to achieve this goal [5]. As an important way to obtain information from the external environment,
machine vision is considered to be the core technology of ADAS. In recent years, infrared (IR) imaging tech-
nology has been adopted to obtain information, which makes it possible to implement in-vehicle IR target
detection systems [6]. IR images are not easily affected by changes in external light, which is an outstanding
advantage compared with visible images. These images can provide more valuable information for intelligent
automotive systems [7], especially in low-visibility weather such as heavy rain and fog. Therefore, the applica-
tion of IR imaging technology is a considerable choice to make the safe driving system more reliable. With the
development of technology, the research of computer vision is iterated year by year. In 2005, Dalal and Triggs
proposed the Histogram of Gradient (HOG) detector [8] which became an important improvement in Scale In-
variant Feature Transform and Shape Contexts at that time. Related technologies are widely used in computer
vision applications and lay an important foundation for many later detection methods. In 2014, Girshick et al.
proposed the Region with CNN features (R-CNN) [9], which selects possible object boxes from a set of object
candidate boxes through the selective search algorithm and then resizes the images in these selected object
boxes to a fixed-size image. Later the algorithm feeds them to the trained CNN model to extract features and
finally sends the extracted features to the classifier to predict whether the image in the object box has a target
to be detected. And further, predict which category the detection target belongs to. In 2016, Redmon et al.
proposed you only look once (YOLO) v1 [10], which is the first stage of the deep learning detection algorithm.
Its detection speed is very fast; the idea of the algorithm is to divide the image into multiple grids, and then
predict the bounding box for each grid at the same time and give the corresponding probability. Based on this
idea, YOLOv1 has been continuously developed into v2, v3, v4, v5 and other versions. In 2018, Law and Deng
proposed the CornerNet algorithm [11]. As the pioneer of the Anchor technology route, the network uses a
new target detection method, which transforms the detection of the target bounding box by the network into
a pair of key points (the upper left corner and the lower right corner).

This work proposes a method to develop an in-vehicle IR target detection system. The key contributions of
this paper are:

• Building on the Image Enhancement Conditional Generative Adversarial Network (IE-CGAN) proposed by
Kuang et al., we introduced an innovative improvement, resulting in the IE-CGAN inversion algorithm [12].
This algorithm enhances input images, replacing traditional pre-processing methods.

• The YOLOv4 model is optimized by replacing its backbone network, CSPDarknet53, with MobileNetV3.
This replacement has been shown to effectively enhance the system’s real-time detection capabilities while
maintaining high detection accuracy.

• The model is deployed on a Jetson Nano, an edge device with limited hardware resources, culminating in a
fully integrated system that combines both hardware and software.

2. RELATED WORKS
In ADAS, detecting vehicles and pedestrians is a core task. Currently, many effective methods have been pro-
posed, including two aspects: the YOLO series algorithm and the IR target recognition part. Among them,
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YOLO series algorithms provide efficient and accurate solutions for real-time target detection; IR target recog-
nition is usually based on IR images for target recognition, which can prove useful in night vision and adverse
weather conditions.

2.1. Deep learning networks
Currently, deep learning methods for target detection are primarily categorized into two types: two-stage and
one-stage detection algorithms. One-stage detection algorithms such as YOLO and Single Shot Multi-Box
Detector (SSD) typically use a Fully Convolutional Network (FCN) to directly predict from the original image.
While they offer fast processing speed, their accuracy in detecting small objects is relatively low. Two-stage
detection algorithms, such as R-CNN, Fast R-CNN, Faster R-CNN, and Mask R-CNN, capture target details
more effectively but operate at slower detection speeds.

YOLO is a fast and efficient target detection algorithm introduced by Redmon et al. in 2016 [10]. Compared
to traditional two-stage object detection algorithms such as R-CNN, YOLO is a single-stage detection algo-
rithm capable of achieving real-time detection without compromising accuracy. In a pedestrian detection
experiment [13], a Scale-Aware Fast (SAF) R-CNN model was introduced, using multiple subnetworks to de-
tect pedestrians at different scales, then adaptively combining the outputs to generate the final result. Fan et al.
proposed a data fusion CNN architecture called RoadSeg, which can extract and fuse features from RGB im-
ages and infer surface normal information for accurate free space detection [14]. In another study, a DS-Net was
suggested to solve the problem that current neural networks primarily focus on single-task single-task vision
scenarios [15]. The DS-Net was a multitask convolutional neural network designed for AR-HUD environment
perception. Li et al. proposed a vision-based framework for target detection and recognition in autonomous
driving, utilizing an improved YOLOv4 model that reduced the total model parameters by 74% [16]. A U-type
generative adversarial network (GAN) was first developed to fuse visible and IR images. YOLOv3 combined
with transfer learning is adopted using the fused images to train the model on an aerial dataset [17].

2.2. IR target detection
The studies mentioned above concentrate on obtaining information from visible images. In recent years, the
research on IR technology has been more advanced. Vehicle and pedestrian target detection based on IR
images is gradually becoming an attractive method.

A novel detection method for IR point targets based on eigentargets has been proposed [18]. Han et al. intro-
duced the subblock-level ratio-difference joint local contrast measure (SRDLCM), which enhances real small
targets while suppressing complex backgrounds [19]. A pixel-level classifier was presented for fine-grained de-
tection of pedestrians in night-time CCTV IR images [20]. Eventually, the method maintained more than a
90% F1 score on the test. Nevertheless, the dataset used in this study lacked generality because it was ac-
quired at a specific time and location. Cao et al. proposed a one-stage detector named ThermalDet based on
the deep neural network [21]. A channel-wise enhancement module was used to assign weights to different
channels. Besides, a dual-pass fusion block was added, which combined features from all other levels. This
method reached a mean Average Precision (mAP) of 74.60% on the FLIR dataset. This article [22] proposes
an anchor-free infrared pedestrian detection algorithm, which introduced a cross-scale feature fusion module
and a hierarchical attention mapping module to enhance pedestrian features and suppress background noise.
This algorithm integrates the anchor-free concept, which simplifies the network and improves model gener-
alization. A CFRM_3 method [23] was provided in another work to improve the mono-spectral features with
the fused multispectral features repeatedly in the network. The experimental results showed that the CFRM_3
led to substantial accuracy improvements. Du et al. proposed a weak and occluded vehicle detection method
in complex IR environments [24]. A hard negative example mining block was added to the YOLOv4 model
to depress the interference caused by complex backgrounds, and the accuracy was increased. Narayanan et
al. presented a method for IR pedestrian detection using the HOG and the YOLOv3 [25]. This work was com-
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pared with the technique of using the Support Vector Machine (SVM) classifier. The results showed that the
YOLOv3 reached an accuracy of 73%, which was better than that of the SVM algorithm. In the article [26], two
multi-scale feature extraction and features fusion mechanisms were designed and added to a target detection
model named CMF Net. One of the outstanding advantages of the CMF Net was that the final output back-
bone feature map contained both low-level visual features and high-level semantic features, facilitating the
adaptation of this network to the multi-scale features target.

Although the above works can achieve excellent detection accuracy, there is still much room for improvement
in detecting speed. The ability to process the collected road condition information in real time is paramount
for the intelligent traffic system (ITS). Zhang et al. proposed the CDNet, which implemented real-time cross-
walk detection on the Jetson nano device [27]. In another paper [28], a high inference speed framework was
introduced to effectively tackle challenges inherent to traffic sign and traffic light detection. Similarly, a deli-
cate balance of accuracy and the real-time performance requirements is considered to implement a pedestrian
and vehicle detection task on resource-constrained edge devices, which is also the main focus of our study.

3. METHODS
Our study can be elaborated in two aspects. On the one hand, we find a new way of image processing that
is more suitable for IR images than the traditional approaches. On the other hand, we fuse the advantages of
the YOLOv4 algorithm and the MobileNetV3 network to build the MobileNetV3-YOLOv4 model. An army
of experiments shows that this method performs well in both accuracy and speed.

3.1. IE-CGAN inversion algorithm
IR thermal imaging is a passive IR night vision technology based on the principle that all objects with tem-
peratures above absolute zero (-273.15 °C) radiate IR light noise in an IR image. These can be considered
non-periodic random variables that lead to low contrast and resolution of IR images. Therefore, it is indis-
pensable to pre-process the IR images before they are input for training.

The histogram equalization algorithm is a standard method in image pre-processing. The distribution of IR
image pixels is extreme, which is different from the RGB images. Consequently, the IR images are usually
darker or brighter, making their contrast relatively low. The histogram equalization algorithm can extend the
dynamic range of the grayscale fetch, enhance the contrast, and make the image transparent. However, this
method also improves the noise in the image, which we want to avoid. The filtering algorithm is also a classical
approach widely used to eliminate image noise, but it simultaneously removes some details.

The traditional methods mentioned above have obvious shortcomings, so they are not fully applicable to pre-
processing IR images. Currently, deep learning is widely applied in image processing. An attractive network
for image enhancement tasks should be equipped with the capabilities to enhance contrast and details while
suppressing the background noise. However, existing network architectures for IR image processing, such
as residual and encoder-decoder architectures, fail to produce optimal results in network performance and
the range of applications. In response to this challenge, Kuang et al. devised a novel conditional Generative
Adversarial Network (GAN)-based architecture [12]. Their innovation yielded visually captivating results char-
acterized by enhanced contrast and sharper details, addressing the shortcomings of previous approaches. We
have further improved their work to obtain a pre-processing method named IE-CGAN inversion algorithm,
which is more suitable for IR images.

IE-CGAN contains a generative sub-network for contrast Enhancement and a discriminative sub-network for
assistance [Figure 1], where D is a deconvolution layer, the concatenated features are restored to the original
resolution using a deconvolution layer followed by a Tanh activation. The generative module first extracts input
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Figure 1. The structure of IE-CGAN algorithm. IE-CGAN: Image Enhancement Conditional Generative Adversarial Network.

image features and then performs a linear combination. Crucially, it integrates a skip connection between the
first and third feature maps to preserve fine image details throughout the mapping process. Meanwhile, the
discriminative network distinguishes improved results from labeled images, assisting the generative process
in creating visually striking outputs. Image transformation into compact feature maps precedes applying a
stacked sigmoid function, resulting in normalized probability scores within the range of [0,1]. In addition to
producing high-quality pictures, IE-CGAN can be used to any resolution, achieving excellent results in both
network performance and the range of applications.

Although the images are enhanced, they must be further processed before being fed into the training network.
Generally, RGB images are taken during the daytime, when the image’s background is bright and the target
color is dark. Nevertheless, since IR images are radiometric, the target radiation is generally more substantial,
and the background radiation is weaker, which means that the distribution of light and dark in IR images is
the opposite of that in RGB images. The mainstream target detection algorithms are more suitable for RGB
images than IR images. Thus, the detection accuracy can be improved if the IR images become closer to the
RGB images after pre-processing. In general, images have 256 grayscales. Supposing there is an IR image
whose original grayscale is denoted by 𝑥1. After the grayscale inversion process, the grayscale is represented
by 𝑥2. Then the relationship between 𝑥1 and 𝑥2 is expressed as follows.

𝑥2 = 255 − 𝑥1 (1)

Where 𝑥1 and 𝑥2 are integers, taking values in [0, 255]. After the above processing, the input images are visually
closer to the RGB images. We name it the IE-CGAN inversion algorithm.

The comparison in Figure 2 can demonstrate the superiority of our method. The IR image gives higher contrast
after the histogram equalization, and the edges of the objects in the picture are more distinct. However, the
consequent problem is more noise points in other positions. The filtering algorithms are not practical for
processing IR images. They do not make the picture clearer and even blur some image details. The IE-CGAN
can significantly improve the contrast of the IR images. Furthermore, the image details and edges are both
enhanced. Our method has the advantages of the IE-CGAN and makes the image closer to RGB grayscale
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Figure 2. (A) Original IR image; (B) Histogram equalization; (C) Mean filtering; (D) Median filtering; (E) IE-CGAN; (F) IE-CGAN inversion
algorithm. IE-CGAN: Image Enhancement Conditional Generative Adversarial Network.

image, which achieves satisfactory results.

3.2. MobileNetV3-YOLOv4 target detection model
The research in target detection can be broadly split into two leading schools: Two-Stage and One-Stage target
detection. The Two-Stage target detection algorithm represented by Faster R-CNN [29] has an early origin but
generally suffers from large models and slow operation. Redmon et al. proposed the pioneering One-Stage
algorithm called YOLO [10] to address these drawbacks. Our approach is to improve the YOLOv4 to attain a
perfect balance between detection speed and detection accuracy.

The YOLOv4 [30] model proposed by Bochkovskiy et al. has been upgraded in many aspects compared to the
previous version. Figure 3 draws its structure, which can be divided into three components: backbone, neck,
and head. YOLOv4 references Cross Stage Partial Networks (CSPNet) and updates the original backbone
network Darknet53 into CSPDarknet53. CSPDarknet53 can copy the feature map and send it to the next stage
through the dense block, thus separating the feature map of the base layer. This allows the gradient changes
to be integrated into the feature map, effectively solving the problem of gradient disappearance. In Yolov4,
the Spatial Pyramid Pooling (SPP) structure is a new component added to the neck. It first divides the input
feature map into segments. Then, it applies pooling operations with different sizes of pooling kernels in each
segment to obtain pooled results for various sizes and receptive fields. Figure 4 demonstrates the pooling
of three dimensions as an example. The maximum pooling is performed on the feature map to obtain 1 ×
d, 4 × d, and 16 × d features, respectively, representing the feature map’s dimension. These pooled results
are concatenated into a fixed-length vector as the input of the next layer. As SPP processes the input feature
map at multiple scales, it can capture more comprehensive scene information and enhance the adaptability of
the object detection network to objects of different scales. Regarding feature fusion, YOLOv4 adopts a Path
Aggregation Network (PAN), which complements Feature Pyramid Networks (FPN). The deep layer network
responds efficiently to semantic features in convolutional neural networks. Still, it possesses little geometric
information, which is unsuitable for target detection. In contrast, the shallow layer network responds quickly
to image features but possesses few semantic features, unfit for image classification. FPN is a top-down feature
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Figure 3. (A) Partial module structure in YOLOv4; (B) The structure of the YOLOv4. YOLOv4: You only look once v4.

pyramid that passes down robust semantic features at the top level through upsampling and then fuses them
with lower-level features to obtain a feature map for prediction. Although FPN effectively enhances semantic
information, it does not satisfactorily deliver location information. Therefore, YOLOv4 adds a bottom-up
feature pyramid to the back of the FPN structure, passing location features from the lower layers to the upper
layers through down-sampling and lateral linking. Such an improved feature pyramid has both semantic and
location information, which solves the problem as mentioned above.

In addition, YOLOv4 uses Mosaic and Self-Adversarial Training (SAT) for data enhancement. The principle
of Mosaic is to combine four training images into one for training, which can enrich the background and
enhance target detection in complex backgrounds. SAT is a novel data enhancement technique that is divided
into two phases. In the first stage, the neural network performs adversarial training by changing the original
image without changing the network weights. In the second stage, the neural network is trained to perform
standard target detection on the modified image. After the above data enhancement process, the robustness
of the model is improved.

Although YOLOv4 has a potent capability, we still want to improve its performance of detection speed and
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Figure 4. The principle of SPP. SPP: Spatial Pyramid Pooling.

Figure 5. The structure of the MobileNetV3-YOLOv4 model.

lighten its model size to enable deployment on resource-constrained edge devices. Seeking a lightweight net-
work to substitute ddCSPDarknet53 as the feature extraction network of the YOLOv4 will be a viable option.

The MobileNetV3 is a lightweight convolutional neural network presented by the Google team [31], widely de-
ployed on cell phones and smart bracelets. MobileNetV3 dramatically reduces parameters and increases speed
by sacrificing only a small amount of accuracy compared with traditional large-scale convolutional neural net-
works such as AlexNet [32] and ResNet. In the tail structure of the MobileNetV3, the average pooling is applied
to cut the feature map of size 7 × 7 to 1 × 1. After that, the dimensionality of the feature map is increased by a 1
× 1 convolution. The whole process reduces the computational by a factor of forty-nine. Because some convo-
lutions in the head structure with the size of 3 × 3 and 1 × 1 have little impact on the accuracy, MobileNetV3
removes them directly to improve the speed further. Additionally, MobileNetV3 cuts the convolutional core
channels from 32 to 16, which is also an effective solution to make the network faster. To avoid a substantial
decrease in accuracy, the Squeeze-and-Excitation Block (SE Block) is added to the core architecture of Mo-
bileNetV3. The SE Block can determine the importance of each feature channel based on their dependency
relationship. The network can selectively enhance the useful features while suppressing the less useful ones
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through this mechanism.

Since the MobileNetV3 meets our practical performance requirements, we choose to replace the CSPDark-
net53 as the backbone to obtain the MobileNetV3-YOLOv4 model. The model structure is shown in Fig-
ure 5. MobileNetV3 reduces model size and computational requirements while maintaining high performance.
MobileNetV3’s transformer-based architecture provides superior feature extraction capabilities to traditional
CNNs, making it particularly effective for IR imaging where challenges such as low contrast and noise interfer-
ence are prevalent. Moreover, MobileNetV3’s efficient integration of local, global, and input features enhances
its ability to identify objects across different scales accurately. This results in improved performance for com-
plex IR imaging tasks. Empirical results have confirmed that incorporating MobileNetV3 into YOLOv4 main-
tains high accuracy and reduces computational load and model size. Although MobileNetV3 may not perform
as well as expected in YOLOv3, its lightweight and efficient feature learning capabilities have significantly im-
proved IR target detection tasks in YOLOv4. This improvement is not only theoretically reasonable but its
effectiveness in practical applications has also been verified through experiments. The MobileNetV3 network
first extracts the features of the input image. Afterward, the SPP module performs maximum pooling on the
front layer features. It connects the processed results to form a new feature layer, which increases the depth
of the network and preserves the front layer features, and obtains more local feature information. The PAN
block upsamples and downsamples the features extracted by the MobileNetV3 to improve the information
extraction capability of the FPN block. The feature network and feature layers are fused by adaptive pooling
of different layers, and the fused results are passed into YOLO Head for regression and classification. YOLO
Head divides the input images into networks of corresponding sizes, and finally, the classification results and
confidence levels of the objects are obtained by the predefined prior frame determination.

4. EXPERIMENTS
The experiments were conducted using a computer that had Ubuntu 18.04 pre-installed. The CPU was Intel
(R) Core (TM) i59300H, 2.40GHz. The GPU was NVIDIA GeForce GTX 1650, with 64 GB of memory. To
test the performance of the IR image object detection model proposed in this article, we utilized the common
FLIR IR dataset and the KAIST IR pedestrian dataset. Firstly, we compared the latest detection algorithms
and models proposed on various datasets regarding detection accuracy, speed, and model size. Secondly, ab-
lation experiments were conducted on the enhanced model to assess the effectiveness of various improvement
methods.

4.1. Datasets
4.1.1 The FLIR IR datasets
The dataset was an IR dataset open-sourced by FLIR in July 2018, applied for many IR image target detection
training tasks. This FLIR IR dataset provided two types of images: thermal imaging images with annotations
and corresponding RGB images without annotations. The FLIR dataset contained 14,452 IR images, of which
10,228 were from multiple short videos, and 4,224 were from a long video of 144 s. All of the images were
taken from actual streets and highways. Figure 6 shows the FLIR dataset.

4.1.2 The KAIST datasets
The KAIST IR pedestrian dataset is a widely used benchmark for evaluating algorithms for detecting objects in
IR images. The dataset comprises 95,328 pairs of images, each with a resolution of 640 × 512. The dataset offers
meticulous manual annotations and well-matched visible and IR image pairs. It provides comprehensive cov-
erage, spanning diverse traffic scenarios such as campuses, streets, and rural areas. Annotations differentiate
between “person” for individual pedestrians and “people” for groups where individuals are more challeng-
ing to discern. We extracted 15,684 consecutive images from the raw data to streamline model training and
performance evaluation. Experimental outcomes validate the dataset’s efficacy in achieving high detection
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Figure 6. The FLIR dataset.

accuracy.

4.2. Parameter configuration and evaluation indicator
The experimental process drew on the idea of transfer learning. The network’s initial weights at the beginning
of the training were not randomly set but obtained from the YOLOv4 model after training on the ImageNet
and MSCOCO datasets, reducing the time spent on training.

The most common Stochastic Gradient Descent (SGD) algorithm was used for the network optimizer’s opti-
mization algorithm, together with the Momentum algorithm that could be ported to oscillate, with the mo-
mentum taking the value of 0.9. At the start of the training, the learning rate was set to 1e-3, and the training
process was set to run for 120 epochs. As the epoch number increased, the learning rate gradually decreased
to 1e-5. The size of the input image was set to 416 × 416.

In previous research, mAP was often used to measure the target detection capability, reflecting a certain
method’s accuracy. Before calculating mAP, we need to get the formulas of Precision and Recall:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑅
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

TP refers to cases where the prediction and label are both positive, while FP refers to cases where the prediction
is optimistic but negative. FN refers to cases where the prediction is pessimistic while the label is positive. By
utilizing a Precision-Recall (PR) curve, AP and mAP can be calculated based on the corresponding precision
and recall values for each point of recall.

𝐴𝑃 = 𝛴𝑛−1
𝑖=1 (𝑅𝑖+1 − 𝑅𝑖) 𝑃𝑖𝑛𝑡𝑒𝑟 (𝑅𝑖 + 1) (4)

𝑚𝐴𝑃 =
1
𝑘
𝛴 𝑘
𝑖=1𝐴𝑃𝑖 (5)
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Figure 7. Detection results of different pre-processing methods.

where 𝑅1 to 𝑅𝑛 are the Recall values corresponding to the first interpolation of precision interpolation seg-
ment. In simple terms, AP is the area under the curve in the PR plot, and mAP is the average of all categories
of AP. The experiment’s Intersection over Union (IoU) threshold was set to 0.5. Besides, we used the frame
per second (FPS) to evaluate the real-time detection ability of the system. However, though the state-of-the-
art vehicle and pedestrian detection methods performed well in mAP or FPS, their huge model sizes made
them unsuitable for deployment on edge devices. Considering that our ultimate goal is to deploy the model on
resource-constrained edge devices, we also need to focus on the model size as a part of the evaluation. There-
fore, we conducted a comprehensive comparison of mAP, FPS, and model sizes to highlight the advantages of
our study.

4.3. Experimental results and analysis
We applied the centralized IR image pre-processing method mentioned in the third section to our improved
model [Figure 7]. Compared with the original image experimental results, our improved IE-CGAN pre-
processing method, mAP, has increased by 2.5%, the best detection effect among the experimental tech-
niques. By incorporating this pre-processing method, our improved model enhances the detection accuracy
and demonstrates a more robust performance across different IR target scenarios.

We selected a more lightweight model for improvement due to the necessity of hardware deployment. While
other advanced models offer higher accuracy, they often feature larger architectures less compatible with our
hardware constraints. Consequently, we chose a YOLO series model, which balances moderate accuracy and
manageable model size, making it one of our optimal solutions. We opted for YOLOv4 as the baseline to evalu-
ate the effectiveness of our proposed model, given its superior accuracy and enhanced detection performance,
as indicated in Table 1. Furthermore, we comprehensively compared baseline models and other leading mod-
els on the FLIR IR vehicle detection dataset to ensure a diverse range of experimental evaluations. Detailed
comparative experimental data can be found in Table 1. In contrast to the baseline detector YOLOv4, we intro-
duced a new object detector in the experiment and evaluated several advanced two-stage detectors, including
the classical Faster R-CNN detection model. The experimental findings reveal that, in practical scenarios,
these secondary detectors perform suboptimally compared to our model. Our model has fewer parameters,
lower computational costs, and superior performance. It can be deployed on hardware devices to achieve
real-time object detection. Our model significantly improved by nearly 25% over YOLOv3 compared to other
primary detectors. Moreover, we achieved a 2% improvement on the widely-used YOLOv4 model. The detec-
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Figure 8. Some examples of the detection result on the FLIR dataset. The first column is the original image, and the second column is the
result of MobileNetV3-YOLOv4.

tor proposed in this experiment outperforms the previously mentioned detection models regarding detection
accuracy and computational resource efficiency. We also compared our model with YOLOv5, YOLOv8s, and
YOLOv3 MobileNetv3. In the IR target detection task, our model significantly outperforms previous models
and aligns more closely with the requirements of our real-time monitoring task. YOLO-IR has demonstrated
outstanding performance on the FILR dataset. Our model achieved higher accuracy in this task with fewer
parameters, improving by 5%, despite some performance degradation. Additionally, we compared Source
Model Guidance based on YOLOv3 (SMG-Y) and PMBW (a Paced MultiStage BlockWise approach to Object
Detection in Thermal Images), both based on visual converters. It can be seen that our method has an absolute
advantage in detection speed and high accuracy. Meanwhile, our model size is only 110MB, which performed
better than many methods. This balanced improvement in the three evaluations makes the proposed method
suitable for deployment on resource-constrained edge devices. Examples of the detection results are displayed
in Figure 8.

To demonstrate the excellent performance of this model, it was compared not only with many other models
on the FLIR dataset but also on the KAIST dataset, and competitive results were achieved. Table 2 presents
the comparison results of our model with other models on the KAIST dataset. We compared our model with
recent excellent single-stage detectors and some lightweight detectors. The results indicate that our model
is the smallest and superior to other detection models. Regarding accuracy, our mAP outperforms other
detection models. Our model demonstrates significant performance advantages compared to other models.
Compared to YOLOv3, YOLOv4, and other benchmark models, our model outperforms them in mAP. Com-
pared to YOLOv4, our model shows a slight improvement in mAP, ranging from 81.0% to 86.8%, along with
enhanced processing speed, increasing from 42 to 64.2 frames per second. Compared with pixel-wise con-
textual attention network (PiCA-Net), Multimodal Feature Embedding (MuFEm) + Spatio-Contextual Fea-
ture Aggregation (ScoFA), and multispectral fusion and double-stream detectors with Yolo-based information
(MFDs-YOLO), our model demonstrates notable enhancements in detection accuracy. Additionally, although
our model experiences a slight decrease in mAP compared to YOLO-ACN, there are significant improvements
in processing speed and model size. Overall, our model achieves substantial accuracy, speed, and size advance-
ments, making it more practical and competitive.
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Table 1. Performance comparison (%) with the state-of-the-art methods on the FLIR dataset

Methods mAP (%) FPS (frame/s) Model size (MB)

Faster R-CNN 84.6 6.1 577.0
VGG16 84.2 5.5 526.7

ResNet50 83.8 7.6 446.2
YOLOv3 58.2 38.5 246.4
YOLOv4 81.2 27.0 256.3
YOLOv5 73.6 39.6 191.2
TOLOv8s 74.2 158.3 /

RefineDet [33] 72.9 / /
ThermalDet [34] 74.6 / /
SMG-C [35] 75.6 107.0 /
SMG-Y [35] 77.0 40.0 /
YOLO-IR [36] 78.6 151.1 /
PMBW [37] 77.3 / 36.0

YOLOv3-MobileNetV3 [38] 60.59 14.40 139.60
DS-Net [15] 71.9 32.8 25.6

ours 82.7 55.9 110.0

mAP:MeanAverage Precision; FPS: frame per second; R-CNN: the RegionwithCNN features;
YOLO: you only look once; SMG-Y: SourceModel Guidance based on YOLOv3; PMBW: Paced
MultiStage BlockWise.

Table 2. Performance comparison (%) with the state-of-the-art methods on the KAIST dataset

Methods mAP (%) FPS (frame/s) Model size (MB)

YOLOv3 79.6 36 246.4
YOLOv4 81.0 42 256.3

PiCA-Net [39] 65.8 / /
MuFEm + ScoFA [40] 78.0 / /
MFDs-YOLO [41] 80.3 / /
YOLO-ACN [42] 82.3 / 177.6

ours 86.8 64.2 110.0

mAP: Mean Average Precision; FPS: frame per second; YOLO: you only look once.

Table 3. Ablation study of detection precision on the FLIR dataset

Methods IE-CGAN CSPDarknet53 MobileNetV3 mAP (%)

1 ✓ 80.2
2 ✓ 80.7
3 ✓ ✓ 81.2
4 ✓ ✓ 82.7

IE-CGAN: Image Enhancement Conditional Generative Adversarial Net-
work; mAP: Mean Average Precision.

To intuitively demonstrate the influence of different methods on network performance, we conducted abla-
tion experiments on the FLIR dataset using the YOLOv4 network. Specifically, we maintained the structure
of YOLOv4 unchanged. Initially, we replaced the original backbone with MobileNetv3 and made further en-
hancements. Then, we implemented new data processing methods. We trained and tested the network on
various datasets to assess the influence of these methods on network performance. As shown in Table 3, ap-
plying our data processing method IE-CGAN to the baseline model can increase the detection results mAP by
1.0%. We replaced the backbone network CSPDarknet53 of YOLOv4 with MobileNetV3, which can increase
the detection results mAP by 1.5% and significantly reduce the model size. We have selected several commonly
used algorithms as references to test the performance of our method, and the experimental results are shown
in the Table. Our model excels in terms of detection speed and model size, achieving a frame rate of 55.9
per second and a compact model size of only 110.0 MB. The detection accuracy is good and can meet the
recognition requirements. These results indicate that the model can detect onboard equipment in real time
and perform lightweight tasks.
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Figure 9. System operation interface.

Figure 10. The workflow of the system.

5. DEPLOYMENT
The development of a deep learning application includes four steps: task modeling, data acquisition, model
training, and model deployment. As the last step of implementing an application, model deployment is essen-
tial. With the development of artificial intelligence (AI), a series of embedded development boards for the AI
field has been launched. Compared with Jetson Nano, Raspberry Pi 4 B’s hardware condition is insufficient to
support it in achieving the desired detection effect, while Jetson-TX2 and Jetson-AGXXavier are too expensive.
Considering the balance between actual demand and the cost, we finally deployed the model on Jetson Nano.

The Jetson Nano is pre-installed with the Ubuntu 18.04 LTS system and has a 128-core Maxwell GPU. It can
provide 472 GFLOP computing performance and 4GB of LPDDR4 memory. The outstanding hardware con-
ditions give it a significant advantage in AI technology implementation. As an edge device, the Jetson Nano
has the benefits of compact size, GPU-accelerated inference, and relatively low price, making it market com-
petitive. In addition, the TensorRT toolkit was applied in the model inference phase, which provided high
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throughput data for the model. Thus, underutilized GPU resources were solved, and the inference of the net-
work framework was optimized to improve the inference efficiency. We build a visual system interface using
the PyQT5 library [Figure 9].

Figure 10 demonstrates the workflow of the whole system. Firstly, the model is trained on the computer. Af-
terward, the trained model is solidified and deployed on Jetson Nano. The camera converts the acquired road
conditions into images and inputs them into Jetson Nano. After the vehicle and pedestrian detection, Jetson
Nano gives instructions such as braking and turning to the car.

6.CONCLUSION
This paper introduces an in-vehicle IR target detection method built on an improved YOLOv4 model, which
integrates the IE-CGAN inversion algorithm to pre-process IR images. This integration enhances both image
quality and detection performance. An IE-CGAN inversion algorithm is used instead of conventional meth-
ods to pre-process the IR images. Additionally, considering that the algorithm requires being deployed on the
edge device, this study concentrates on improving the system’s processing speed for IR images, so the back-
bone network of the YOLOv4 model is replaced from CSPDarknet53 to MobileNetV3, improving processing
speed and efficiency.  However, the dataset we used has limited diversity in image types and needs more gen-
eralizability in background models.   Moreover, the model’s ability to generalize requires further improvement.
  Our future work will focus on expanding the dataset to include a broader range of IR images, enhancing the
system’s robustness and generalizability across different scenarios.   Moving forward, we remain committed to
addressing the current limitations and enhancing the system’s performance and generalizability in future work.
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