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Abstract
Artificial intelligence (AI) is poised to revolutionize surgical care by leveraging the vast and complex “data lake” of 
healthcare information. This perspective piece outlines how AI may harness structured and unstructured data to 
improve patient outcomes. Advances in deep learning and foundational models have enabled the development of 
predictive analytics, automated clinical documentation, personalized patient chatbots, remote monitoring, and 
enhanced medical imaging. Examples include the ACS NSQIP risk calculator, Sepsis ImmunoScore, startups in 
ambient transcription, and cutting-edge AI applications in intraoperative imaging and real-time diagnostics. 
However, the adoption of AI in healthcare requires overcoming challenges, including data privacy, bias, integration 
into clinical workflows, interoperability, cost, ethical concerns, and regulatory hurdles. As AI technologies evolve, 
collaboration between surgeons and scientists will be critical to ensure ethical, patient-centered designs. This 
manuscript calls for surgeons to lead AI applications role in surgery, bridging technology with meaningful use cases 
to positively align with clinical practice.
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INTRODUCTION
High-value healthcare, including surgical care, is increasingly informed by evidence, making patient-
centered approaches more effective and improving outcomes. Over the past two decades, big data has 
revolutionized decision making across industries. Yet, as healthcare data grow exponentially, we remain at 
the threshold of fully realizing its potential. Modern computing now enables us to harness the data, guiding 
the next generation of surgical care. This perspective aims to help surgeons understand how artificial 
intelligence (AI) can capture the promise of big data in healthcare.

THE HEALTHCARE DATA LAKE
Healthcare data availability and complexity have grown immensely. A single patient may generate up to 80 
megabytes of electronic health record (EHR) data annually[1]. The breadth of EHR information can be 
conceptualized as a “data lake” [Figure 1], an amalgamation of heterogeneous data[2]. The surface layer 
consists of traditional, coded metrics [e.g., demographics, body mass index (BMI), International 
Classification of Diseases (ICD) codes, Current Procedural Terminology (CPT) codes] that are “structured” 
and easily interpreted. Beyond the surface, the “semi-structured” or “unstructured” data - like imaging, 
digital pathology, clinical notes, and sensor data - cannot be fully utilized with conventional analytics. Each 
patient’s EHR is its own data lake. Modern computing can selectively extract data for analysis, creating 
human-designed, machine-powered decision-making tools[3].

AI IN DATA SCIENCE
The early 21st century saw a proliferation of machine learning (ML) using curated datasets to build 
statistical models. For example, the ACS NSQIP surgical risk calculator uses 20 patient factors and 
procedure codes to predict outcomes[4]. This era of data science gave us a thorough understanding of the 
structured, surface-level factors from the healthcare data lake. However, more advanced AI techniques are 
needed to unlock insights from the deeper layers of the data lake. Neural networks are advanced ML 
algorithms that are designed like the human brain, with layers of interconnected “neurons”. Introducing 
more layers of “neurons” to the network creates a deep learning (DL) network[5]. DL excels at processing 
complex data types such as imaging and unstructured notes, delivering predictions with remarkable 
accuracy[6].

The barriers to implementing DL have previously been the immense computational and data requirements. 
The emergence of foundation models and advancements in computing power [i.e., graphic processing units 
(GPUs)] have improved computational efficiency and cost. Further, the paradigm shift to generative AI 
models has allowed scientists to create new user-friendly multimedia. These combined advancements have 
propelled the recent revolution in AI.

THE AI REVOLUTION: FOUNDATION MODELS
Foundation models have democratized access to powerful DL. Foundation models are deep neural networks 
pre-trained on extremely large and diverse datasets[7]. Popular examples include GPT-4o, Llama 3, Mistral, 
segment anything model (SAM), and Gemini.

Foundation models can be thought of as general-purpose technology, which scientists can further adapt. 
Unlike the past generation of ML, in which models were built for each application de novo, foundation 
models can be repurposed for many applications. Further training of a foundation model is considered 
“transfer learning”, as scientists can transfer the network of a base model and build layers on top of them to 
create downstream models[7]. Saha et al. recently used transfer learning on SAM to help create a model, 
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Figure 1. An original representation of the healthcare data lake. The surface level is comprised of traditional, coded metrics such as 
patient demographics (e.g., age, sex, BMI) as well as diagnostic and procedural codes (e.g., ICD and CPT codes). These data are highly 
“structured”, stored in ways that are easily interpretable by computers and humans alike. Deeper regions of the data lake contain a vast 
amount of “semi-structured” or “unstructured” patient data. This includes radiology and imaging, digital pathology, clinical 
documentation, patient-reported outcomes, nutritional data, wearable biotechnology and sensors, genetics, environmental data, and 
population/epidemiological data. Modern computing and methods in AI can harness the wealth of information in the EHR data lake to 
enable human-designed, machine-powered decision making in surgery. BMI: Body mass index; ICD: International Classification of 
Diseases; CPT: Current Procedural Terminology; EHR: electronic health record.

which, in preliminary studies, identified lesions on mammograms as benign or malignant with > 99.9% 
accuracy[8]. “Few-shot learning” is a case of transfer learning, whereby the model can be adjusted for a 
specific task by training on minimal additional data [Figure 2][9]. This is compared to traditional ML 
models, which require training on many cases to perform a specific task.

Because of the sensitive nature of health information, the development of clinical AI applications has been 
piecemeal. Still, there is great potential. In this manuscript, we outline the broad areas of AI applications in 
surgery and highlight specific examples. AI has the potential to dip into each patient’s healthcare data lake, 
process information, and vastly improve the quality of surgical care.

APPLICATIONS OF AI IN SURGERY
Surgical data science
To date, the most common application of AI in surgery is for data science. This is best encapsulated by the 
ACS NSQIP calculator for surgical outcomes. The original set of models developed in 2013 were based on 
regressions[4]. Most recently, in 2023, Liu et al. published a new set of models using a more complex ML 
algorithm on the same dataset and found it was more accurate[10]. Future work should improve upon this 
performance with more advanced techniques. Another healthcare startup, Prenosis©, developed the Sepsis 
ImmunoScore, an AI software to predict patients at risk of sepsis. Their team recently published their model 
development and validation in NEJM AI, demonstrating the high accuracy of their tool (C-statistic of 
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Figure 2. Differences between traditional supervised ML, and “few-shot” learning using foundation models. The latter allows the 
development of AI applications in smaller teams, with fewer resources and less training data. In this way, foundation models will be 
essential in democratizing AI for healthcare applications. ML: Machine learning; AI: artificial intelligence.
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0.85)[11]. Surgeons should continue to harness the growing healthcare data lake for predictive analytics that 
can forecast surgical outcomes, anticipate complications, and guide surgical management.

Clinical documentation and coding
Several companies have made strides in automating clinical documentation. Ambience© is attempting to 
generate clinical documentation in real time during clinical encounters. Industry leader Nuance© also 
announced a new service that will incorporate GPT-4. These systems may also be trained to learn the ICD 
and CPT coding systems to automatically assign codes for specific patient-provider interactions[12]. 
Automating documentation will reduce administrative burden, allowing all healthcare providers to focus 
more on patient care.

Moreover, AI should also assist in translating clinical materials between languages. This could streamline 
care for non-native English speakers, or who have other non-native English providers. A recent 
international study found GPT-4, Llama 3, and Mistral models were all able to translate free text radiology 
reports with high overall accuracy and quality, but with room for improvement in the accuracy of medical 
terminology[13].

Personalized chatbots
Patient-facing chatbots may assist with answering basic questions, scheduling appointments, and 
medication reminders, providing personalized information for patients in real time. By delivering 
information in an accessible and user-friendly format, they can empower patients to take an active role in 
their care, improving patient engagement and adherence. The ideal chatbot will seamlessly navigate surgical 
patients through preoperative and postoperative care.

Indeed, several specialties have studied how untrained AI chatbots perform at answering patient questions, 
usually with ChatGPT. The consensus seems that answers to the untrained chatbot are generally accurate, 
unbiased, and deferential to formal surgical consultations[14-16]. Many other surgical specialties see the value 
as well[17-19]. Further development will require training models on specific surgical details and continuously 
updating them with the best evidence.

Remote patient monitoring
AI extends its impact to postoperative recovery by enabling remote patient monitoring (RPM) systems. 
RPM systems can use wearable devices to track important physiologic markers around the clock, including 
vital signs, activity levels, glucose levels, and wound healing progress. Some examples have been developed 
and tested in cardiac surgery and oncologic surgery[20,21]. Basic outpatient monitors have been shown to 
improve patient outcomes. Indeed, Nagappa et al. conducted a randomized control trial and found thoracic 
surgery patients using their digital home monitor had fewer ED visits, unplanned admissions, and 
postoperative complications[22]. AI models may unlock RPM by analyzing more complex physiologic 
markers alongside other patient inputs to predict complications, alert healthcare providers, recommend 
interventions, and personalize rehabilitation or nutrition regimens.

Medical image analysis
Medical imaging is a domain where AI’s impact is particularly pronounced. DL models excel at analyzing 
complex visual data, enabling them to detect subtle patterns that may be missed by human observers. 
Companies like Aidoc© and Viz© have pioneered stroke and PE diagnosis by using AI to identify acute 
hemorrhagic strokes on CT. Recent studies have shown the benefits of employing these systems in the 
clinical setting[23,24]. More generally, scientists are creating comprehensive vision models to read all types of 
radiology[25]. These advancements hold significant potential for early detection and intervention, ultimately 
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saving lives and reducing healthcare costs.

AI can also be applied to imaging from robotic surgery, endoscopy, pathology, and other use cases to 
improve diagnostic and predictive ability. For example, Activ Surgical© has developed a system to improve 
the accuracy of intra-operative ICG for assessment of tissue perfusion[26]. Authors from Stanford 
additionally published a vision model capable of analyzing intraoperative video from laparoscopic 
cholecystectomy to predict blood loss[27]. Their model’s binary predictive ability of low vs. moderate blood 
loss had a C-statistic of 0.81. Future AI systems may be able to process live video feeds from surgeries to 
identify key anatomical landmarks and detect potential errors in real time.

CHALLENGES AND LIMITATIONS
While the potential of AI in healthcare is immense, several challenges must be addressed. A significant 
challenge in clinical AI development has been ensuring patient data are protected and used ethically. Robust 
encryption and access controls are essential and represent major concerns for health systems. AI model 
development requires rigorous data quality checks to ensure dataset diversity to minimize bias. The model 
interface is also important and must be integrated into clinical workflows. Innovators will have to consider 
how to adapt their technology across several different EHRs. Creating patient- and provider-centered 
designs will facilitate adoption to achieve widespread surgeon support. Working with datasets across the 
data lake is currently challenging because data are often siloed into distinct programs or operations within 
or outside the EHR. Our discipline will need to invest significantly in interoperability and standardization to 
achieve the potential of AI.

Integrating AI into surgical care demands a commitment to scientific and ethical principles. While AI can 
process extensive datasets to assist decision making, the surgeon’s experience, judgment, and ethical 
discernment remain paramount. AI should function as a supportive adjunct rather than a replacement, 
ensuring that nuanced, patient-specific decisions incorporate human insight. For example, in developing 
the aforementioned vision model predicting blood loss in laparoscopic cholecystectomy, surgeons were 
fundamental in designing the research objectives and identifying 114 critical surgical actions to train the AI 
model[27].

A potential guide for the development of AI-based surgical decision support tools may be the algorithm-
based clinical decision support (ABCDS) model of oversight[28]. This framework consists of four stages for 
AI development: model development, silent evaluation/feasibility, prospective effectiveness evaluation, and 
general deployment. The framework emphasizes several checkpoints for an oversight committee to monitor 
the tool in production. It also calls for more scientific validation so that AI tools can be assessed on 
performance metrics. This type of AI governance ecosystem promotes ethical model development, impact, 
quality control, accountability, and collaboration. Other ethical guidelines share these concepts and should 
also be considered[29,30].

Innovators must also consider the shifting regulatory landscape. The European Union has several 
legislations to consider: the Medical Device Regulation (MDR), the European Artificial Intelligence Act 
(AIA), the Data Governance Act (DGA), and the Open Data Directive (ODD)[31]. Together, these 
regulations deem AI in healthcare to be high-risk due to its critical impact on human lives. They collectively 
outline guidelines for healthcare AI development that is human-centered, privacy-conscious, and 
innovation-friendly. In the U.S., the regulatory standards have been murkier as there is still no federal 
legislation. However, in April 2024, Prenosis’s Sepsis ImmunoScore became the first AI/ML model 
approved by the FDA through the De Novo regulatory pathway, paving the way for future AI/ML 
technologies[11].
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CONCLUSION: A CALL TO SURGEONS
AI’s potential to transform surgery lies in its ability to harness the full spectrum of data within the 
healthcare data lake. By leveraging advanced models and aligning their development with patient-centered 
goals, we can usher in a new era of evidence-informed, technology-driven surgical care. However, this goal 
requires collaboration between clinicians and scientists. Now more than ever, it is crucial for surgeons to 
have a basic proficiency in AI methods and current developments. By collaborating with AI researchers and 
developers, surgeons can identify meaningful use cases, address challenges, and guide the ethical and 
practical implementation of AI systems.
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