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Abstract
Radical trifunctionalization of unactivated alkenes remains rare and challenging, although they can provide a robust
tool for the construction of molecules with high added value from simple materials. This work presents the relay
dual N-heterocyclic carbene organocatalytic and visible-light photocatalytic multi-component trifunctionalization
of alkyl alkenes via the merger of remote 1,4-cyano migration and alkylacylation. The method features a broad
substrate scope and good compatibility of diverse functional groups. Density functional theory calculations were
also carried out to rationalize the origin of this reaction. The cooperative N-heterocyclic carbene and photoredox
catalysis enabled reductive single-electron transfer reaction of acyl azolium species and subsequent radical-radical
cross-coupling, allowing for the facile construction of three new C  C bonds in one-pot reactions with high
regioselectivity.
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INTRODUCTION
The assembly of molecular frameworks by multi-step relay carbon-carbon bond cleavage and formation in a 
controlled and efficient manner has been at the heart of organic synthesis. Alkenes are readily available and 
inexpensive feedstocks that have been widely used for that purpose. Difunctionalization of alkenes presents 
numerous mature methods for accessing diverse-ranging molecules with high added value and structural 
complexity[1-6]. In comparison, the trifunctionalization of alkenes, particularly unactivated alkenes, is less 
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Scheme 1. Radical-mediated trifunctionalization of unactivated alkenes. FGM: Functional group migration; NHC: N-Heterocyclic 
carbene.

explored and still poses a challenge. Recently, the appearance of radical functionalization of unactivated
alkenes through the strategy of remote functional group migration (FGM)[7-10] provides an exceptional
chance for the construction of trifunctionalized derivatives that are not accessible by other reactions
[Scheme 1A]. Therefore, the discovery of new protocols for FGM reactions remains an important target and
continues to be highly desirable for molecular assembly.

N-Heterocyclic carbene (NHC) catalysis[11-17] has emerged as one of the most powerful catalytic strategies in
the field of organocatalysis, usually by means of a polarity-reversal mechanism. With the rapid development
of photocatalysis [18-21], recent advances in single-electron transfer (SET)-based radical reactions have further
broadened its reaction modes[22-28], offering otherwise inaccessible strategies compared to traditional
NHC-catalyzed ionic pathways. Radical chemistry by NHC catalysis normally follows two pathways: single-
electron oxidation of Breslow intermediates and reduction of NHC-bound acyl azolium intermediates. The
oxidative strategy usually involves the employment of single-electron oxidants or some radical precursors
with oxidizing ability, which have been well documented by Guin et al.[29,30], Zhang et al.[31-33], Ishii et 
al.[34-37], Maki et al.[38,39], White et al.[40,41], Chen et al.[42-44], Zhang et al.[45], and others[46-53], also including our
group[54,55]. The reductive strategy usually requires a well-matched photoredox and NHC catalytic
system[55-68]. The substrate scope enlarges to in-stock carboxylic acids and radical precursors with reducing
ability, such as sodium trifluoromethanesulfinate, which brings an important supplement for fluorine
chemistry. The pioneering reports on reductive radical NHC-catalysis have enabled the molecular assembly
of activated alkenes, giving birth to an array of high value-added aliphatic ketones bearing different
functional groups. However, as far as we know, the radical trifunctionalization of alkenes through reductive
NHC catalysis has not been documented yet and would be a complementary protocol of our previous work
through an oxidative strategy[69] [Scheme 1B].

As a continuation of our studies on radical NHC-catalysis, our purpose herein is to realize the first reductive
radical organocatalytic FGM reactions to fulfill trifunctionalization of hexenenitriles 3[70,71] via remote cyano
migration[72-75]. Compared to the previous work using the NHC oxidative radical strategy, the substrate
scope can enlarge to in-stock carboxylic acids and much more radical precursors. Thus, this protocol
features a compatible dual catalytic system, mild reaction conditions, readily available substrates, excellent
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Figure 1. Optimization of the reaction condition a. aUnless otherwise noted, 2a (0.4 mmol, 2.0 equiv.) and CDI (0.4 mmol, 2.0 equiv.) in 
DCE (1 mL) were typically stirred for 2 h. Then, the above solution was added to the mixture of 1a (0.4 mmol, 2.0 equiv.), 3a (0.2 mmol, 
1.0 equiv.), NHC catalyst (0.03 mmol, 15 mol%), photocatalyst (0.01 mol, 5 mol%), and Cs2CO3 (0.4 mmol, 2.0 equiv.) in DCE (2 mL) 
which was irradiated under Blue LED typically for 24 h; bIsolated yields based on 2a, the dr was around 1/1 for all cases, and the dr was 
determined by 1H NMR; cThe reaction was conducted without N2 protection; d1 mmol scale; eK2CO3 as a base; ftriethylamine as a base; g

DBU as a base. CDI: 1,1’-carbonyldiimidazole DBU; NHC: N-Heterocyclic carbene.

regioselectivity, and capability of late-stage functionalization, which will be favorable for molecular
assembly [Scheme 1C].

RESULTS AND DISCUSSION
To start this work, commercially available sodium trifluoromethanesulfinate 1a was used as the 
trifluoromethyl radical precursor to investigate the feasibility of the reaction with 4-chlorobenzoic acid 2a 
and hexenenitrile 3a using DCE as the solvent, Cs2CO3 as a base, and Blue LEDs as light sources [Figure 1]. 
It is worth noting that the acid can be activated to produce benzoylimidazole 2a’ in situ with 
1,1’-carbonyldiimidazole (CDI). The combination of NHC catalyst and photocatalyst was crucial for this 
transformation with otherwise trace formation of product 4a (entries 1 and 2).
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After screening different photosensitizers, it was found that the desired product 4a was produced in 72% 
yield with [Ir(dtbbpy)(ppy)2]PF6 as the photocatalyst (entry 3). Other photocatalysts, such as fac-Ir(ppy)3, 
4CzIPN, and Br-4CzIPN, were inferior to the [Ir(dtbbpy)(ppy)2]PF6 (entries 4-7). Subsequently, we screened 
different NHC precursors, and NHC A was selected as the optimal organocatalyst to promote the reaction. 
Other NHCs B-D did not improve the reaction yields (entries 8-10). The nitrogen atmosphere protection 
was also essential for this reaction. The yield dropped to 45% when the reaction was conducted in the air 
(entry 11). Moreover, a scale-up (1 mmol) reaction was taken to afford product 4a in maintained yield 
(entry 12). Remarkably, only a trace of byproduct 4a’ was observed along the optimization process. At last, 
bases were screened, and a slightly decreased yield was observed with K2CO3. Organic bases were not 
suitable for this transformation.

With the optimal condition in hand, the generality of substrates was explored. We initially tested different 
acids 2 [Scheme 2]. Substituted benzoic acids bearing either halide or electron-donating groups at para 
positions of the benzoic acid were well compatible with the optimal condition, giving the products 4a-e in 
comparable yields. Slightly decreased yields were tracked when benzoic acids bearing electron-withdrawing 
groups 4f-h. Benzoic acids bearing meta substitution were also well tolerated under the standard conditions 
4i-j. However, the more sterically hindered 2-methylbenzoic acid was not suitable for this reaction. Either 
1-naphthoic acid or 2-naphthoic acid was applicable for the optimal condition 4k-l. A decreased yield of 
1-naphthoic acid was probably due to the steric effect. This protocol could also accommodate a variety of 
heterocyclic aromatic acids (4m-q). The reaction of picolinic acid almost did not work, perhaps due to the 
electronic effect of this substrate. To demonstrate the synthetic potential of this protocol, the late-stage 
functionalization of benzoic acid derived from menthol was tested, which worked smoothly to afford the 
corresponding product 4af in 52% yields. After that, the scope of hexenenitriles was screened. In terms of 
substituents (Y) at the phenyl ring, the CN migration products 4r-4z were exclusively produced in satisfying 
yields and excellent selectivity. The substituents on the phenyl ring have little impact on the yield. Even the 
more sterically hindered hexenenitriles were found to be suitable substrates for cyano migration, furnishing 
the expected products 4y and 4z, both in a 67% yield.

The feasibility of installation of other radical precursors to the hexenenitrile 3d was also studied 
[Scheme 2, bottom]. Several sulfinate salts bearing a fluorinated alkyl group displayed good compatibility 
with the present system 4aa-ad. Sulfinate salts bearing a phenylsulfonyl substituted methyl group were also 
used as effective substrates, enabling the trifunctionalization of 3d to give product 4ae in an acceptable yield. 
However, sulfinate salts, such as sodium methanesulfinate, sodium ethanesulfinate, and other listed 
aliphatic sulfinates, did not deliver the desired products. Density functional theory (DFT) calculations were 
then taken into account for the possible reasons [Scheme 3]. To our interests, the activating energy of the 
corresponding radical added to the hexenenitrile significantly contributes to the success of the reaction. The 
reactions failed to yield the desired product when the activating energy was above 14.1 Kcal/mol. These 
findings might be helpful for prediction of the reactivity of other sulfinate salts.

To highlight the utility of this transformation, we undertook the derivatization of the ketone 4a [Scheme 4]. 
The alcohol 5 was synthesized using LiAlH4 as redundant in the yield of 83%. The cyano group within 4a 
can transform to amide to yield compound 6 with a mixed acid system (HOAc and H2SO4). In addition, the 
reaction of 4a with hydrazine could form hydrazone 6 in 80% yield.

Next, DFT calculations have been conducted to further prove the potential reaction mechanism and origin 
of the regioselectivity for 1,4-cyano migration [Figure 2].
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Scheme 2. Substrate scope for trifunctionalization of unactivated alkenes. CDI: 1,1’-carbonyldiimidazole.

The combination of NHC-A (C1) generated from precatalyst A under basic conditions with
benzoylimidazole 2a’ leads to NHC-bound acyl azolium C2. The SET process between C2 and CF3SO2Na
proceeds smoothly to give transient trifluoromethyl radical and persistent NHC-bound ketyl radical C3.
Subsequent addition of trifluoromethyl radical to hexenenitrile 3a produces intermediate S2 through the
transition state TS1 (ΔG‡ = 9.8 kcal/mol). Whether the incident of 1,4-CN migration of TS1 occurs would
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Scheme 3. Activating energy calculation with different alkyl precursors.

Scheme 4. Application of the representative product.
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Figure 2. Relative Gibbs free energy profiles of the reaction.

decide the two possible pathways (path A, purple line vs. path B, blue line) for the radical-radical coupling. 
As described in the blue line, the direct radical-radical coupling of C3 with S2 yields intermediate S5 
through transition state TS4 (ΔG‡ = 17.0 kcal/mol). The collapse of S5 gives birth to product 4a’ and NHC-A 
for the next catalytic cycle. In path A (purple line), the intramolecular radical addition of S2 to the cyano 
group forms a five-member imine radical intermediate S3 through transition state TS2 (ΔG‡ = 
11.8 kcal/mol). The following ring-opening of S3 occurs to generate the cyano migrated benzylic radical 
intermediate S4 through transition state TS3 (ΔG‡ = 11.6 kcal/mol). The subsequent radical-radical coupling 
of SA-R with intermediate S4 gives intermediate S7 through transition state TS5 (ΔG‡ = 12.9 kcal/mol). At 
the final step, the C−C bond cleavage leads to the dissociation of the final product 4a along with NHC-A. 
The calculation showed that benzylic radical S4 generated by cyano migration is more stable than radical S2 
without cyano migration. Moreover, the radical-radical coupling of S2 with C3 in path A requires a much 
higher energy barrier than that in path B, thus disfavouring the direct radical-radical coupling and 
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Scheme 5. Plausible reaction pathway.

facilitating the cyano migration process. Therefore, high regioselectivity of this protocol can be rationalized 
by these calculation results.

Based on these results, it can be concluded that the dual photocatalytic and NHC-promoted SET between 
sodium trifluoromethanesulfinate 1a and acyl azolium intermediate SA could simultaneously produce the 
NHC-derived radicals C3 and CF3 radicals. CF3 radicals were subsequently triggered by hexenenitriles 3 to 
obtain S2. The generated radical intermediate S2 may undergo remote 1,4-cyano migration via a cyclic 
intermediate S3 to yield radicals S4. The radical-radical cross-coupling with the persistent ketyl radical C3 
and S2 or S4 would produce intermediate S5 and S7, respectively, which finally afford adducts 4a and 
byproduct 4a’ with the loss of NHC for the next catalytic cycle [Scheme 5].

CONCLUSIONS
To sum up, we have described a novel protocol for trifunctionalization of unactivated hexenenitriles via
merged NHC organocatalytic and photocatalytic radical relay alkylacylation. This reaction offers a
generalizable and efficient strategy for molecular framework assembly, which involves multi-step C−C bond
cleavage and formation by remote 1,4-cyano migration and alkylacylation. Theoretical calculations were
used to both support the possible mechanism and figure out the origin of the regioselectivity for 1,4-CN
migration.
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