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Abstract
The emergence of drug resistance leading to cancer recurrence is one of the challenges in the treatment of cancer 
patients. Several mechanisms can lead to drug resistance, including epigenetic changes. Histone deacetylases 
(HDACs) play a key role in chromatin regulation through epigenetic mechanisms and are also involved in drug 
resistance. The control of histone acetylation and the accessibility of regulatory DNA sequences such as 
promoters, enhancers, and super-enhancers are known mechanisms by which HDACs influence gene expression. 
Other targets of HDACs that are not histones can also contribute to resistance. This review describes the 
contribution of HDACs to the mechanisms that, in some cases, may determine resistance to chemotherapy or 
other cancer treatments.
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INTRODUCTION
Much progress has been made in the detection and treatment of cancer. Unfortunately, there are still several 
key problems to be solved, including very aggressive specific cancers, metastasis, and resistance to 
therapy[1,2]. Cancer therapy involves multiple strategies and approaches, from surgery to immunotherapy. 
Chemotherapy is still part of several protocols in cancer treatment or adjuvant therapies[3]. Several 
chemotherapeutic agents work by damaging essential cell functions or triggering uncontrollable cell stress, 
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leading to cell death[4]. All these agents have certain limitations due to their toxicity to non-tumor cells and 
the emergence of resistance[5]. Drug resistance is one of the main causes of failure of cancer therapies and 
can also lead to multidrug resistance (MDR)[2]. The first findings on resistance go back to Luria and 
Delbruck, who described that genetic mutations in bacteria make them resistant to viral infection[6]. Goldie 
and Coldman later transferred this concept to the resistance of cancer to therapeutic drugs, which is due to 
random mutations in cells[7].

Depending on the mechanism, chemoresistance can be intrinsic, if it occurs before treatment due to genetic 
and epigenetic factors, or acquired, if it arises during treatment in previously susceptible tumor cells[8]. 
Various studies have described different molecular mechanisms that play a role in drug resistance: transport 
pumps, DNA damage and repair, oncogenes and tumor suppressor genes, epithelial-mesenchymal 
transition (EMT), etc. In this review, histone deacetylases (HDACs) are discussed with a focus on class I and 
IIa and their involvement in the development of mechanisms of drug resistance. Regulation of lysine 
acetylation turnover by HDACs can affect various cellular responses, including drug resistance phenotypes. 
Resistance can be influenced by changes in gene expression, which is determined by the control of 
chromatin accessibility (epigenetics) or, for example, by the activity of transcription factors (TFs) that are 
subject to acetylation. In addition, other biological functions not related to gene expression may also be 
under the control of lysine acetylation turnover. Importantly, a repertoire of different HDAC inhibitors 
(HDACi) is available that may counteract HDAC-induced drug resistance.

THE HDAC WORLD IN BRIEF
Acetylation is an ancient and very simple post-translational modification (PTM) of amino acids, but its 
effects on cell fate are impressive. Two enzyme families act antagonistically in the control of lysine 
acetylation: the lysine acetyltransferases (KATs) and the lysine deacetylases (KDACs). As histones are 
important and well-studied substrates for these enzymes, they are also referred to as histone 
acetyltransferases (HATs) and HDACs. In this chapter, we would like to give a brief introduction to the 
world of HDACs and highlight some important features.

HDACs represent a heterogeneous family of 18 enzymes that can be divided into five different 
classes/subclasses[9,10]. They are responsible for removing the acetyl group but also other small hydrophobic 
acyl groups, such as formyl, propionyl, butyryl, malonyl, succinyl, glutaryl, crotonyl, and 2-
hydroxyisobutyryl from ε-amino group of lysines[9,11,12]. The first distinction, based on the catalytic 
mechanism, the required cofactor, and the structure of the catalytic pocket, is between zinc- or metal-
dependent and NAD+-dependent enzymes[13].

Eleven are the metal-dependent HDACs, which are divided into three classes based on sequence and 
structural homologies. Class I includes HDAC1, 2, 3, and 8, which are largely nuclear enzymes. HDAC1 and 
HDAC2 are much closer to each other and often coassemble in different repressive complexes[14]. Like 
HDAC1 and 2, HDAC3 forms multiprotein complexes that are important for the maturation of full catalytic 
activity. HDAC8 is the more distant member and does not need to assemble into protein complexes to 
develop full catalytic activity. HDAC1, 2, or 3 often has a strong influence on cell proliferation[15,16].

HDAC4, HDAC5, HDAC7, and HDAC9 form class IIa, which is distinct from class IIb. Common features 
of class IIa are the intense regulation of nuclear-cytoplasmic shuttling by phosphorylation and the 
acquisition of the Tyr/His mutation in the catalytic pocket in vertebrates. This amino acid substitution 
minimizes/abrogates KDAC activity. In addition, class IIa HDACs show the presence of an extensive 
amino-terminal region dedicated to protein interaction, including the binding of co-repressors and TFs 
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[Figure 1], of which the members of the myocyte enhancer factor 2 (MEF2) family are best characterized[17]. 
In vertebrates, class IIa shows very low deacetylase activity toward acetyl-lysines, but their ability to bind 
with repressive class I complexes allows deacetylase activity in trans[18,19]. For this reason, it has been 
proposed that class IIa acts as an acetyl-lysine reader[20-22]. Class IIa, apart from HDAC7, also possesses a 
glutamine-rich domain that enables homo-/heterodimerization [Figure 1] and still unexplored influences 
on chromatin structure[23].

Class IIb essentially comprises the cytosolic enzymes HDAC6 and HDAC10. HDAC6 has several target 
proteins that are not histones, such as α-tubulin and Hsp90, and can regulate their stability by 
deacetylation[24,25]. In contrast, HDAC10 is a polyamine deacetylase with a very high substrate specificity. 
The structure of the active site is specific for the hydrolysis of N8-acetylspermidine and disfavors the 
hydrolysis of acetyl lysine[26,27].

The NAD+-dependent HDACs are known as sirtuins. They form class III and are not discussed in this 
overview. Finally, HDAC11 alone constitutes the class IV. HDAC11 is a potent lysine defatty-acylase rather 
than a deacetylase and makes important contributions to the regulation of the immune system.

For a discussion of the general and specific aspects of the various HDACs, we refer the reader to previously 
published reviews[9,10,15,22,28-31].

In summary, zinc-dependent HDACs 1, 2, 3, which are part of various multiprotein complexes and, in some 
cases, interact with class IIa HDACs, serve as master regulators of histone acetylation and strong candidates 
for modulating epigenetic resistance to anticancer therapies. Given that these HDACs are components of 
different multiprotein complexes whose composition - both in terms of stoichiometry and individual 
components - varies depending on the neoplastic context, HDACs can either promote drug resistance or act 
antagonistically. Each of these aspects requires detailed investigation.

RESISTANCE TO CHEMOTHERAPY: CISPLATIN
Cisplatin is a metal-based chemotherapeutic agent used to treat various types of cancer[32,33]. Cisplatin binds 
to DNA and leads to the formation of DNA-platinum adducts, which initiate the DNA damage response 
(DDR)[33,34]. The efficacy of this approach decreases over time due to the emergence of drug resistance[32,33]. 
Resistance to cisplatin can arise through many different mechanisms[35]. Recently, class I HDACs have also 
been found to be responsible for cisplatin resistance/sensitization. In MCF7 breast cancer cells, TRIM46-
dependent degradation of HDAC1 enhances the expression of genes involved in both DNA replication and 
DNA repair[36]. Proteasomal-dependent degradation of HDAC1 increases the expression of genes involved 
in DNA repair, such as breast cancer 1 gene (BRCA1)[36], which is involved in chemoresistance to various 
drugs[36-38]. The chemosensitivity of cisplatin is also regulated in laryngeal cancer cells by HDAC1 via the 
modulation of interleukin-8 expression[39]. Differently, in non-small cell lung cancer (NSCLC), an epigenetic 
mechanism under HDAC1 control regulates cisplatin resistance by suppressing the expression of ornithine 
decarboxylase antizyme 1 (OAZ1)[40]. OAZ1 triggers the degradation of ornithine decarboxylase and 
suppresses the synthesis of polyamines[41], but how this leads to resistance remains to be clarified. The role of 
HDAC2 in chromatin remodeling at the site of DNA lesions, which could contribute to the regulation of 
chemoresistance, is interesting but remains poorly understood[18,42,43].

Surprisingly, the role of HDAC3 in cisplatin resistance is not well understood[44], but its contribution when 
complexed with class IIa should be considered, and indeed, some reports have suggested a role for HDAC4 
in regulating cisplatin resistance. Stronach et al. have described that ovarian cancer cells resistant to 
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Figure 1. AlphaFold prediction of Class I and Class IIa structures discussed in this review (Q13547; Q92769; O15379; P56524; Q9UQL6. 
Q8WUI4; Q9UKV0). The different views were similarly oriented, taking as reference the eight-stranded parallel β-sheet of the common 
deacetylase domain. The colors indicate the different per-residue confidence scores (pLDDT). Some regions below 50 pLDDT may be 
unstructured in isolation. For details, see https://alphafold.ebi.ac.uk. pLDDT: Predicted Local Distance Difference Test.

cisplatin have upregulated expression of both HDAC4 and STAT1 and that downregulation of HDAC4 
leads to platinum sensitization, increased caspase activation and apoptosis. In addition, HDAC4 is 
overexpressed in clinical samples that exhibit platinum resistance. HDAC4 and STAT1 can interact through 
co-immunoprecipitation, and HDAC4 deacetylates STAT1, causing its phosphorylation at Y701. This 
regulation triggers the nuclear translocation of STAT1 and the activation of its transcriptional program, 
leading to platinum resistance[45]. Further confirmation using additional methods such as mass spectrometry 
should help to validate this interaction further. Since HDAC3 is the predominant HDAC4 partner 
conferring enzymatic activity to the complex, its silencing in the regulation of STAT1- and HDAC4-
dependent deacetylation should be investigated.

https://alphafold.ebi.ac.uk
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In gastric cancer cells, analysis of the cisplatin pangenome response identified HDAC4 as the major 
repressed epigenetic regulator. HDAC4 inhibits the cytotoxicity of cisplatin and favors chemoresistance. Its 
expression is high in gastric tumors compared to healthy tissue, while HDAC4 mutations correlate with a 
good prognosis[46]. This effect is thought to be partially dependent on TP53[46]. Furthermore, the 
involvement of HDAC4 in the regulation of H2K120ac status at the site of DNA lesions, as well as its 
influence on the efficiency of homology-directed repair via HDAC2, may also contribute to this 
resistance[18].

Mutations in TP53 that promote cell apoptosis, senescence, and cell cycle arrest and are associated with 
platinum chemoresistance are common in ovarian cancer[47,48]. Reintroduction of TP53 into the ovarian 
adenocarcinoma cell line SKOV-3, which is characterized by its deletion, leads to upregulation of pro-
apoptotic proteins and reduces cis-platinum resistance[49]. Importantly, in this context, TP53 induction 
decreased HDAC4 expression while also increasing HDAC4 phosphorylation and its accumulation in the 
cytoplasm - both of which diminish its repressive influence. As a result, an increase in total histone 3 
acetylation was observed[49]. Although the relationships between HDAC4 and HIF-1a have not been fully 
explored, Zhang et al. reported that they form a complex that regulates autophagy and apoptosis controlled 
by TP53[49,50]. In ovarian and lung cancer cells, this complex is crucial for cis-platinum resistance. 
Mechanistically, overexpression of HIF-1a inhibits ATG12 and BAX, but enhances BCL2 expression. 
Autophagy is directly mediated by HDAC4 through deacetylation of the TF CREBZF, which is responsible 
for the transcription of ATG2 and possibly ATG12. Under normoxic conditions, TP53 leads to a massive 
decrease in HIF-1a, while expression of HDAC4 and HIF-1a leads to cis-platinum resistance and worsened 
overall survival in ovarian cancer patients[49].

Another example of the involvement of class IIa HDACs in cisplatin resistance in ovarian cancer is the 
tumor suppressive role of intermediate filament family orphan 1 (IFFO1). IFFO1 plays an important role in 
the regulation of tumor progression and immune infiltration[51,52]. It is poorly expressed in ovarian cancer 
tissue, as well as other cancer tissues, and cisplatin-resistant cells are characterized by a low IFFO1 level. The 
regulatory mechanism of IFFO1 depends on the interaction between HDAC5 and the TF YY1. HDAC5 
binds to the IFFO1 promoter via YY1, leading to its deacetylation and a reduction in transcription[53]. Since 
the interaction between YY1 and HDAC5 was observed also in other studies[54-56] and HDAC5 expression is 
altered in ovarian cancer, this result is of particular relevance[57]. Figure 2 summarizes the effects and 
mechanisms of class I and IIa HDACs that may influence the response of cancer cells to treatment with 
cisplatin.

OTHER GENOTOXIC DRUGS
Resistance to other genotoxic drugs has also been reported to depend on class I and IIa HDACs. In multiple 
myeloma (MM), inhibition of HDAC1 leads to a re-sensitization of cells to the proteasome inhibitor 
bortezomib (BTZ) and to a reduction in DNA repair potential, thus potentially increasing the susceptibility 
to genotoxic stress. The heterochromatin protein 1 (HP1) family α, β, and γ are readers of H3K9me2/3[58]. 
HP1α and β are distributed along heterochromatic regions (centrosomes and telomeres), while HP1γ is 
associated with both euchromatin and heterochromatin, in regions with actively transcribed genes that play 
a role in transcriptional elongation[59]. HP1γ acts as a platform for histone modifiers in association with 
HDAC1[60]. In MM, HDAC1 interacts directly with the protein HP1γ and deacetylates it at Lys 5 to improve 
the stability of the protein and its nuclear condensation. This improves DNA repair by forming a complex 
with MDC1 and promotes chromosomal accessibility of genes that determine MM cell survival and BTZ 
resistance[61]. A mechanism that should also be evaluated for the response to other genotoxic treatments.
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Figure 2. Summary of reported roles and mechanisms of class I and class IIa HDACs in different cancer cell lines that respond to 
treatment with cisplatin. Mechanisms of resistance are shown in purple, while mechanisms of susceptibility are shown in light orange. 
The relationships between HDAC4 and TP53 are poorly defined (question marks). In addition, the existence of different multiprotein 
complexes with class I and IIa HDACs is also considered. BIK is a BH3-only pro-apoptotic BCL2 family member. For details, please refer 
to the text. HDACs: Histone deacetylases; BIK: BCL2 interacting killer; BCL2: B-cell CLL/lymphoma 2.

Doxorubicin is an anthracycline antibiotic that acts by inhibiting topoisomerase IIa (TOPO2A), thereby 
causing an accumulation of double-strand breaks (DSBs). It was first isolated from Streptomyces peucetius 
by Arcamone in 1969[62]. Resistance to doxorubicin is mainly related to the overexpression of ABC efflux 
pumps. Other mechanisms include increased expression of TOPO2A or anti-apoptotic BCL2 proteins[63]. 
Reduced oxygen species (ROS) and a change in redox activity/status may also promote resistance to 
doxorubicin as well as other chemotherapeutic agents[64].

A non-epigenetic role of HDAC3 in acute myeloid leukemia (AML) responsible for resistance to 
anthracyclines and cytarabine has been reported. Deletion or inhibition of HDAC3 impairs DNA repair, 
which occurs mainly via the AKT pathway[65]. This pathway is involved in cell survival and proliferation in 
leukemia, where it is often activated and associated with a poor prognosis[66]. Increased AKT signaling is 
associated with the onset of chemoresistance[67]. Treatment with Ara-C in combination with doxorubicin 
leads to increased expression of HDAC3, which interacts with AKT and deacetylates it at the level of Lys 20. 
This modification leads to its phosphorylation and increased activity[65]. Through this mechanism, AML 
cells activate the resolution of DNA damage. Finally, treatment with the HDAC3 inhibitor (RGFP966) 
reverses Ara-C and doxorubicin resistance[65].

In lung cancer-derived cells with exogenous overexpression of cancer-regulated gene 2 (CUG2), there is 
upregulation of EGFR and consequent resistance to doxorubicin treatment due to increased expression of 
antioxidant proteins such as MnSOD, Foxo1, and Foxo4 and the MDR genes MRP2 and BCRP. EGFR 
causes the activation of STAT1, a known factor of doxorubicin resistance, which was downregulated by the 
non-selective HDACs inhibitor TSA thanks to increased acetylation[68]. HDAC4 is highly expressed in 
CUG2 cells, and downregulation of HDAC4 leads to doxorubicin sensitization through a decrease in 
antioxidant proteins and increased apoptosis[69].
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ANTIMETABOLITES
Antimetabolites interfere with tumor growth by inhibiting pyrimidine and purine biosynthesis, which leads 
to a blockade of DNA synthesis and triggers DNA strand breaks and apoptosis in highly proliferating cancer 
cells[70]. Antimetabolites are divided into purine analogs (6-mercaptopurine), pyrimidine analogs [5-
fluorouracil (5-FU), gemcitabine, azacitidine], and antifolates (methotrexate). Azacitidine and its derivatives 
are epigenetic drugs that inhibit DNA methyltransferases (DNMT)[71]. In addition to the classical resistance 
mechanisms, antimetabolites can cause an overexpression of thymidylate synthase, an accumulation of 
deoxyuridine monophosphate, and a downregulation of 5,10-methylenetetrahydrofolate[72]. Gemcitabine 
resistance is associated with changes in proteins involved in its metabolism[73]. Methotrexate resistance is 
caused by changes in dihydrofolate reductase and retention of the drug in the intracellular space[74].

5-FU is the main therapy for colorectal cancer (CRC). Unfortunately, patients often became resistant to this 
treatment[75,76]. Dihydropyrimidine dehydrogenase (DPD) can rapidly degrade 5-FU and confer 
resistance[77]. The sphingosine kinase SphK2 produces sphingosine-1-phosphate (S1P) in the cell nucleus, 
which has been shown to inhibit the activities of Hdac1 and 2[78]. High SPHK2 expression in CRC cell lines 
promotes an overall increase in H3K56 acetylation as determined by whole genome analysis. The increase in 
H3K56ac also affects an exon of DPD and correlates with its increased expression. Therefore, HDAC1 and 2 
repress the transcription of DPD and the degradation of intracellular 5-FU. In this context, HDAC1 and 2 
are considered epigenetic regulators that counteract resistance to 5-FU[79]. However, contrary results have 
also been reported in various contexts. Resistance to 5-FU was observed in the CRC cell line RKO, which is 
negative for HDAC2. This benefit was associated with a higher efficiency of ATM signaling and possibly 
enhanced DNA repair activity, but with an undefined mechanism[80]. Studies on class IIa and 5-FU 
resistance date back to 2010, when it was reported that HDAC7 affects HIF-1a-induced resistance to 5-FU-
induced apoptosis in lung cancer cells[81]. In osteosarcoma, miR-140 has been reported to contribute to 
chemoresistance to methotrexate and 5-FU. The proposed mechanism involves suppression of HDAC4 
expression and consequent cell cycle arrest in G1 and G2 with a reduced proliferation rate[82]. Other studies 
have also indicated a contribution of HDAC4 to 5-FU resistance in CRC[83]. In summary, although there is 
some evidence for a possible contribution of class IIa to 5-FU resistance, the mechanisms involved still need 
to be clarified and further studies are required.

HDAC4, together with HDAC7, may also contribute to resistance to gemcitabine in pancreatic ductal 
adenocarcinoma (PDAC). Knockdown (KD) of these two HDACs enhances gemcitabine cytotoxicity and 
apoptosis both in vitro and in vivo in mouse models of PDAC. Interestingly, this activity is caused by 
MARK2-dependent phosphorylation and the cytosolic accumulation of deacetylases. As discussed below, 
this cytosolic accumulation of class IIa HDACs also influences resistance to taxanes[84].

TAXANES
Taxanes are a class of chemotherapeutic agents that influence microtubule dynamics. In highly proliferating 
cells, they primarily cause mitotic arrest and, ultimately, cell death by mitotic catastrophe[85]. The taxanes 
include paclitaxel (PTX), docetaxel (DTX), and cabazitaxel. They are often used to treat metastatic breast 
cancer, non-small lung cancer, prostate, ovarian and bladder cancer. PTX and DTX bind to a hydrophobic 
cleft in β-tubulin[86]. PTX is the most used drug for the treatment of triple-negative breast cancer 
(TNBC)[87,88]. Patients may develop resistance through changes in cell survival, changes in tubulin, such as 
mutations that reduce binding to PTX, PTMs, or increased expression of MDR efflux transporters[89,90].

In NSCLC, HDAC1 is critical for resistance to PTX[91]. HDAC1 can form a complex with SIN3A, a core 
component of the histone deacetylation activity-associated transcriptional repressor complex[92], and C3b, 
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the active fragment of complement component 3 (C3)[93,94]. This repressive complex controls the 
downregulation of the antiproliferative gene GADD45D[95] by histone deacetylation and thus leads to PTX 
resistance[96].

The involvement of HDAC1 in the maintenance of resistance to taxanes has been confirmed for DTX and 
again for NSCLC, but the proposed mechanism is different and involves miR-200b. Of interest is the 
definition of the epigenetic switches that control HDAC1 transcription. Here, HDAC1 is repressed after 
H3K27me3 modification of its promoter by SUZ12, the catalytic component of polycomb repressive 
complex 2 (PRC2)[97-99]. HDAC1 suppression leads to an increase in miR-200b levels, which are known to 
reverse DTX resistance[100]. SUZ12 has been reported to be recruited to the HDAC1 promoter by the 
lncRNA MARCKSL1-2[99]. Interestingly, a contribution of HDAC3 to taxane resistance has also been 
observed in some studies[101,102]. It will be important to study whether a complex among HDAC3 and class 
IIa HDACs is required to confer resistance.

Using a single-guide RNA screen to assess genes involved in PTX resistance, class IIa HDAC9 and its 
truncated amino-terminal isoform MEF-2 interacting transcription repressor (MITR) were identified 
among the top hits[103]. MITR is highly expressed in the PTX-resistant TNBC cells MDA-MB-231, and KD of 
MITR results in an impressive reduction in the IC50 of PTX compared to control cells or cells with HDAC9 
KD. This outcome likely reflects the relative abundance of the two isoforms in this cell line. Overexpression 
of MITR enriches the JAK/STAT3 pathway and leads to an increase in IL11 production. Interestingly, 
silencing IL11 abrogates PTX resistance in MITR-overexpressing cells. Mechanistically, MITR interacts with 
MEF2A and abolishes its repressive influence on the IL11 promoter[104]. The mechanisms underlying MITR’s 
influence on MEF2A and IL11 expression are unclear, as is the potential involvement of other HDACs. This 
hypothesis requires further studies.

Microtubule affinity-regulating kinases (MARK1-4) are important regulators of cell polarity and cell 
division. They are upregulated in various pathological conditions such as cancer[105,106]. High MARK2 
expression correlates with poor prognosis in patients with pancreatic cancer and with PTX resistance. In 
response to PTX treatment, MARK2 phosphorylates class IIa HDACs (mainly HDAC4 and HDAC7 in this 
study) and promotes their cytoplasmic localization. PTX resistance of MARKs depends on the 
phosphorylation of HDAC4/7, which in turn stimulates YAP activity by modulating the LATS2/YAP 
complex. KD of HDAC4 and HDAC7 abolishes PTX resistance in PANC-1 cells[84]. Additional mechanisms 
have been proposed for the regulation of DTX resistance by HDAC4 based on the suppression of H3 
acetylation of the miR-200b promoter[100].

HORMONE THERAPY
Hormone therapy uses the natural function of hormones as chemical messengers produced by endocrine 
organs to treat hormone-dependent cancers such as breast, prostate, and ovarian cancer. It includes 
hormone analogs, inhibitors of hormone receptors or hormone synthesis[107]. The first hormonal agent used 
in clinical trials was tamoxifen[108,109]. Endocrine therapy, especially the estrogen antagonist tamoxifen, has 
been shown to improve the survival of patients with estrogen receptor-alpha-positive breast cancer. 
However, the occurrence of tamoxifen resistance is an increasing obstacle to the effectiveness of the therapy. 
Endocrine resistance is mainly due to aberration of estrogen/progesterone receptor signaling pathways, 
PTMs, epigenetic alterations of estrogen receptor 1 (ESR1), increased signaling through the tyrosine kinase 
receptor, and alteration of cell cycle progression[110].
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Epigenetic remodeling may be responsible for resistance to endocrine therapies[111], and several studies have 
shown that HDACi can reverse such resistance[112-115]. However, in some clinical trials with different HDACi 
and exemestane (AI-aromatase inhibitor), contrasting results were obtained, with an improved survival rate 
not always observed[116]. In addition, repressive HDAC complexes can associate with estrogen receptors 
(ERs) and contribute to their transcriptional output[117-125].

To solve this problem, Zhou et al. developed an AI-resistant cell model and found that downregulation of 
serine protease inhibitor serpin family A member 3 (SERPINA3), a target gene of ESR1, induces endocrine 
resistance[126]. Its downregulation increases the expression levels of ankyrin repeat domain containing 11 
(ANKRD11), which interacts directly with HDAC3. Deacetylation of H3K9ac, which occurs through 
HDAC3 in complex with ANKRD11, promotes AI resistance. The use of RGFP966, an HDAC3-specific 
inhibitor, or HDAC3 silencing abolishes AI resistance[125]. However, the epigenomic elements regulated by 
HDAC3 in this tumor context are still unknown, and we should also consider the contributions of HDAC3 
as a partner of ERs[127,128]. HDAC2, HDAC5, and HDAC9 have also been associated with tamoxifen 
resistance[129,130].

Of particular interest is that impairment of HDAC1/2 can cause basal-like cells to adopt a luminal A-cell 
phenotype with increased ER expression and increased sensitivity to tamoxifen treatment[131].

The TF, stem cell-related SOX9, is responsible for tamoxifen resistance, tumor invasion, and 
metastasis[132,133]. One of the regulators of SOX9 is SIRT1. It causes SOX9 deacetylation, which is required for 
its increased localization in the nucleus. SOX9 is localized in the nucleus in ER+ breast cancer cells, and its 
level is increased in cells resistant to tamoxifen[130]. Similarly, the deacetylase domain of HDAC5 physically 
interacts with SOX9 via its HMGB domain and triggers its deacetylation and nuclear localization. This leads 
to tamoxifen resistance thanks to the SOX9 transcription program[130]. In addition, HDAC5 is regulated by 
C-MYC, which directly controls its expression in breast cancer cells. C-MYC is a known trigger of 
tamoxifen resistance in breast cancer[134]. Consequently, switching off HDAC5 significantly reduces 
tamoxifen resistance[129]. Similarly, HDAC9 has been associated with tamoxifen resistance. Its expression 
correlates with poor response to 4-hydroxy-tamoxifen (OHTam) and poorer prognosis in patients treated 
with OHTam. Its ectopic overexpression reduces ESR1 mRNA and protein levels and inhibits its 
transcriptional activity[135]. In contrast, one report observed a pro-tamoxifen effect of HDAC4 in ER-positive 
MCF-7 and T47D cell lines. However, the mechanism by which HDAC4 directs such activity remains 
unclear[136].

Androgen deprivation therapy (ADT) is the most important treatment for locally advanced and metastatic 
prostate cancer. Unfortunately, resistance very often occurs within a few years, leading to castration-
resistant prostate cancer (CRPC)[137]. Multiple different mechanisms of alteration are engaged to strongly 
sustain the AR signaling and CRPC[138].

The involvement of HDACs in ADT resistance has been described in several studies, and treatments with 
HDACi have been proposed to overcome drug resistance in CRPC[139]. One study demonstrated that the 
expression of androgen receptor (AR)-regulated genes is dependent on HDAC1 or HDAC3[140], a finding 
later confirmed by another study[141]. Furthermore, it has been proposed that the activities of class I HDACs 
are necessary for the assembly of the coactivator/RNA polymerase II complex after AR binds to the 
enhancers of target genes[140].
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The orphan nuclear receptor TLX (NR2E1) is upregulated in prostate cancer, especially in metastatic CRPC. 
TLX can also induce resistance to androgen deprivation by suppressing AR transcription. HDAC1 and 
HDAC3 are important to propel this suppression[142]. To make the androgen response even more complex, 
HDAC3 can also suppress AR expression through the involvement of FOXO1[143].

A functional screen identified eight candidate genes for AR-directed therapy resistance, which are mutated 
by APOBEC3B, including HDAC5[144]. Cytosine deaminase APOBEC is an important trigger of mutations in 
cancer. In prostate cancer, the synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP), 
which suppresses APOBEC-dependent mutagenesis, is frequently lost. Its absence leads to resistance to AR-
targeted therapies. Knockout (KO) of HDAC5 has revealed that this class IIa HDAC is involved in 
maintaining resistance to the AR antagonist enzalutamide in prostate cells lacking SYNCRIP[144]. However, 
the precise mechanism by which HDAC5 contributes to this resistance, and the impact of the associated 
mutations, remains unclear. Considering the previous observation that HDAC4 can antagonize AR activity 
through SUMOylation, a similar contribution could be evoked for HDAC5. However, HDAC5 was much 
less efficient in supporting AR SUMOylation[145]. Nevertheless, these results are of interest and warrant 
further investigation.

TARGET-DIRECTED THERAPY
Cancer cells are dependent on the dysregulation of certain signaling pathways for their vigorous growth and 
aggressiveness. In some cases, specific inhibitors have been developed, but resistance and relapse often 
occur after an initial positive response[146-148]. In the following, we discuss some examples of the involvement 
of HDACs in the resistance mechanism.

Among pathway inhibitors, MAPK kinase inhibitors and MEKi-based therapies have received FDA 
approval for some cancers[149,150]. The RAS/RAF/MEK/ERK signaling pathway [mitogen-activated protein 
kinase (MAPK)] is associated with tumor cell proliferation and survival, particularly in cancers that harbor 
BRAF and/or RAS mutations[151].

Trametinib is a selective inhibitor of MEK1/2, which prevents RAF- and RAS-dependent MEK 
phosphorylation and thus inhibits ERK phosphorylation[151]. HDAC3 is thought to be involved in MEKI 
resistance in PDAC[149]. The NCor1/HDAC3 complex interacts with G9a, a Lys methyltransferase, and 
SETD5, a chromatin-associated protein with a catalytic methyltransferase SET domain, which instructs the 
complex to deacetylate H3K9ac, resulting in this Lys residue methylation at genes involved in MEKI 
resistance, such as PDK4[152]. The authors combined the treatment of HDAC3i and G9ai in trametinib-
resistant cells, which restored MEKi sensitivity[149].

Trametinib resistance has also been identified in NSCLC, and HDAC3 inhibition provides therapeutic 
benefits in a Kras-mutated/Lkb1-depleted mouse model of NSCLC[153].

Other pathway inhibitors that have been studied in the context of HDACs-mediated resistance are tyrosine 
kinase inhibitors (TKIs), such as sunitinib, which acts as an anti-angiogenic agent and is used in particular 
for kidney cancer[154]. Resistance to these inhibitors could be due to proangiogenic signaling pathways, 
changes in the tumor microenvironment, increased tumor invasion and metastasis, microRNA-mediated 
drug resistance, or activation of other signaling pathways[155].
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ANXA1 is linked to sensitivity to TKIs[156], and in clear cell renal cancer (CCRC), YTHDC1, a reader of the 
m6A modification[157], interacts with ANXA1 mRNA via the m6A modification, reducing its stability, 
thereby inactivating the MAPK signaling pathway and rendering CCRC cells sensitive to TKIs[158]. HDAC2 
in complex with TF YY1 suppresses the expression of YTHDC1, indirectly stabilizes ANXA1 mRNA, 
activates the MAPK pathway, and induces TKI resistance[158].

Sorafenib is a multitarget TKI approved for the treatment of hepatocellular carcinoma (HCC). Sorafenib 
targets the RAF/MEK/ERK signaling pathway and receptor tyrosine kinases and inhibits tumor growth and 
progression[159]. A current problem of HCC patients is the development of sorafenib resistance, which 
occurs through different mechanisms, including epigenetics mechanisms, transport processes regulation, 
modulation of cell death, and alterations in the tumor microenvironment[160,161]. The TF MEF2D is one of 
the main partners of HDAC4[162,163]. It has been described that the influence of HDAC4 on sorafenib 
resistance depends on MEF2D. This TF is highly expressed in HCC patients with poor prognosis and is 
more abundant in sorafenib-resistant cells than in sensitive cells. HDAC4 forms a complex with MEF2D 
and directly regulates its activity on SPRY4, an inhibitor of the MAPK/ERK signaling pathway. The MAPK/
ERK signaling pathway is a known player in sorafenib resistance[164,165]. Treatment with the HDAC4 
inhibitor tasquinimod inhibits MEF2D-dependent suppression of SPRY4 and leads to re-sensitization to 
sorafenib in a liver cancer mouse model[166]. Of course, one must bear in mind that tasquinimod also has 
other targets and that specific activity against HDAC4 cannot be ruled out[167].

PALBOCICLIB
Palbociclib is a CDK4/6 inhibitor that is used in particular for the treatment of hormone-positive breast 
cancer. It inhibits the phosphorylation of the tumor suppressor gene RB and leads to cell cycle arrest. 
Resistance to palbociclib is an emerging problem caused both by a failure of the CDK4/6-RB axis and by 
changes in the upstream regulatory factors[168,169]. It is known that RB binds to HDAC1 via its pocket domain 
and an LXCXE motif in HDAC1[170]. Phosphorylation-dependent recruitment of HDAC1/2 is also utilized 
by RB to form a repressive complex[171]. Based on this historical evidence, one could argue that HDAC1/2 is 
necessary for the antiproliferative effect of palbociclib - a hypothesis that has not yet been investigated. 
Interestingly, enhancing the repressive activity of the RB1/TEAD4/HDAC1 axis leads to the suppression of 
DNA repair genes and sensitizes the cells to oxaliplatin treatment[172]. HDAC5 has also been reported to 
interact with the RB protein, and binding is reduced by CDK4/6-dependent phosphorylation and enhanced 
by palbociclib treatment. HDAC5 acts as a repressive arm of RB-dependent gene silencing by inhibiting 
H3K27ac at multiple oncogenic loci associated with the cell cycle[173]. In prostate and breast cancer cells, 
HDAC5 KD promotes resistance to palbociclib. Indeed, palbociclib is not sufficient to activate HDAC5-
dependent RB inhibitory activity in HDAC5 KD cells, but concurrent treatment with NEO3724, a dual 
BET-CBP/p300 inhibitor, restores sensitivity to palbociclib in cancer cells and xenografts[173]. Of note, all 
class IIa HDACs, but not class I HDACs, appear to be involved in palbociclib-dependent inhibition of 
H3K27ac at cell cycle loci in prostate cancer cells. Zhou et al. also reported that the expression of HDAC5 is 
frequently reduced in various solid tumors, including breast and prostate cancer[173]. This observation is 
inconsistent with several reports indicating a positive correlation between class IIa HDACs and cancer 
aggressiveness. However, we need to consider the contextual influence that could explain the differential 
contribution of these epigenetic regulators to tumorigenesis in specific contexts. The author also used the 
inhibitor LMK235 to specifically demonstrate the contribution of HDAC5. However, this compound shows 
some preference but no specificity toward HDAC5[174,175].
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PARP INHIBITORS
PARP inhibitors (PARPi) are effective in the treatment of ovarian and breast cancer, especially in cancers 
that are deficient in homologous recombination (HR) and DNA repair mechanisms due to BRCA1/2 
mutations[176]. Nevertheless, cancer cells often develop resistance to PARPi, which is why combination 
therapies need to be developed[177,178].

The influence of class I HDACs on DSB repair by HR suggests a possible contribution of these deacetylases 
to the efficacy of PARPi treatments[18,179,180]. In some cases, the contribution of specific class I inhibitors has 
been explored with positive results in preclinical models of ovarian cancer and one study suggested a new 
role for HDAC2 in the regulation of splicing of the HR genes BRCA1/FANC[181,182].

Class IIa HDACs can also affect DNA repair pathways and HR. Although the detailed mechanisms remain 
to be fully explored, an effect through the binding of members of the MEF2 family or through the regulation 
of chromatin accessibility in complex with class I HDACs has been proposed[18,183-185].

Class IIa HDACs interact with MEF2 at the level of the N-terminal domain within the nucleus when 
HDACs IIa members are not phosphorylated at 14-3-3 binding sites[8,22,186]. Salt-inducible kinase 2 (SIK2), an 
AMPK-related protein kinase that has a positive effect on ovarian cancer progression, phosphorylates 
HDACs IIa, causing its cytoplasmic localization and inhibiting its binding to MEF2[187,188]. The SIK2 
inhibitors ARN3236 and ARN3261 prevent HDAC4/HDAC5 phosphorylation, resulting in their nuclear 
localization and inhibition of the MEF2D transcriptional program. ARN3236 and ARN3261 were found to 
repress transcription of DNA repair genes such as EXO1, FANCD1, and XRCC4 due to inhibition of 
MEF2D by class IIa HDACs and restore PARPi sensitivity in ovarian cancer and TNBC cells[178].

REVERSAL OF RESISTANCE: NEW PERSPECTIVES FOR HDAC INHIBITORS
A logical perspective in defining the contribution of HDACs to drug resistance is their targeting by specific 
inhibitors. The first frontier stems from biology. Our current knowledge of the contribution of HDACs to 
resistance is not clear and adverse effects cannot be excluded. We must assume that under certain 
circumstances, these enzymes play a role in determining the effect of drug treatment. The second limit 
concerns inhibitors. We have had experience with HDACi for more than two decades, but the clinical 
applications are few and limited to a pair of hematologic cancers[9]. The first generation of non-selective 
HDACi has failed in several clinical trials alone or in combination. The major problems are lack of 
selectivity, various off-targets, and toxicity. These non-selective HDACi include clinically approved drugs 
such as vorinostat/SAHA, romidepsin/FK228, belinostat PXD101, and panobinostat/LBH589. They act as 
zinc chelators by penetrating the catalytic pocket of HDACs[189]. The efficacy of these HDACi in the 
treatment of solid tumors as single agents was disappointing[190,191]. Some results have been reported when 
used in combination therapy and particularly with immunotherapy, with some clinical trials still 
ongoing[192].

Subsequently discovered family- or member-specific inhibitors may offer more effective options as they 
might reduce toxicity and side effects observed with the first generation of non-selective HDACi. These 
include entinostat/MS-275 and NKL54, which favor class I enzymes other than HDAC8, and chidamide/
CS055, which has been approved by the China Food and Drug Administration for peripheral T-cell 
lymphoma and advanced breast cancer[189]. The future perspective for HDACi lies in the identification of 
new isoform-selective and more effective inhibitors. These new agents could intervene more specifically to 
overcome cancer-related drug resistance, where the specific HDAC isoform determines the resistance 
phenotype. Innovative approaches such as proteolysis targeting chimera (PROTAC) also need to be utilized, 
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Table 1. Summary of the contribution of class I HDACs (HDAC1/2/3) to drug resistance or (required) for drug action in the specified 
cancer type

HDAC Drug Cancer type Contribution Ref.

Cisplatin Breast cancer Required [36]

Cisplatin Laryngeal cancer Resistance [39]

Cisplatin NSCLC Resistance [40]

BTZ MM Resistance [58]

5-FU CRC Required [79]

PTX NSCLC Resistance [91]

DTX LAD Resistance [99,100]

ADT Prostate cancer Resistance [142]

Oxaliplatin Rectal cancer Required [172]

HDAC1

Olaparib Ovarian cancer Required [181]

Cisplatin Ovarian cancer Required [43]

5-FU CRC Required [79]

Tamoxifen Breast cancer Resistance [129]

Sunitinib CCRC Resistance [158]

HDAC2

Olaparib Ovarian cancer Required [181]

Cisplatin Lung cancer Required [44]

Doxorubicin AML Resistance [65]

DTX Maxillary cancer Resistance [101]

DTX Prostate cancer Required [102]

Exemestane Breast cancer Resistance [126]

ADT Prostate cancer Resistance [142]

Trametinib PDAC Resistance [149]

HDAC3

Trametinib NSCLC Resistance [153]

HDACs: Histone deacetylases; NSCLC: non-small cell lung cancer; BTZ: bortezomib; MM: multiple myeloma; 5-FU: 5-fluorouracil; CRC: colorectal 
cancer; PTX: paclitaxel; DTX: docetaxel; LAD: lung adenocarcinoma; ADT: androgen deprivation therapy; CCRC: clear cell renal cancer; AML: 
acute myeloid leukemia; PDAC: pancreatic ductal adenocarcinoma.

although delivery of PROTAC-derived molecules to cancer tissue (due to large molecular mass and polarity) 
is an important limitation[193]. Less explored approaches such as miRNA-based therapies that mimic the 
various natural mRNAs that target these HDACs[22,194-198] or the development of small compounds that act as 
allosteric drugs to modify the assembly of the multiprotein complexes containing HDACs deserve special 
investigation.

Gene silencing occurs through the coordinated activities of various epigenetic regulators acting on different 
histone PTMs and DNA methylation. Therefore, concomitant treatment with inhibitors targeting other 
epigenetic regulators that may act synergistically with HDACs to suppress gene expression should be 
considered, especially if the resistant phenotype is due to epigenetic dysregulation. For example, DNMT 
inhibitors may synergize strongly with HDACi and activate gene expression differently than single-agent 
treatments[199-202]. Of particular interest is the recent development of dual DNMT1/HDAC inhibitors, which 
may have a similar synergistic effect to combined treatment with the two inhibitors, but with less toxicity[203].

CONCLUSION
The contribution of HDACs to drug resistance, particularly the zinc-dependent HDACs forming 
multiprotein complexes discussed in this review, has been investigated in different tumors and under 
different treatments. Over the last decade, evidence has accumulated for the contribution of HDACs to drug 
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Table 2. Summary of the contribution of class IIa HDACs to drug resistance or drug action (required) in the specified cancer(s)

HDAC Drug Cancer type Contribution Ref.

Cisplatin Ovarian cancer Resistance [45]

Cisplatin Gastric cancer Resistance [46]

Doxorubicin Lung cancer Resistance [69]

Methotrexate Osteosarcoma and CRC Required [82]

5-FU Osteosarcoma Required [82]

5-FU CRC Resistance [83]

Gemcitabine PDAC Resistance [84]

PTX PDAC Resistance [84]

DTX Lung cancer Resistance [100]

Tamoxifen Breast cancer Required [136]

Sorafenib HCC Resistance [166]

HDAC4

PARPi Breast and ovarian cancer Required [178]

Cisplatin Ovarian cancer Resistance [53]

Tamoxifen Breast cancer Resistance [129]

ADT Prostate cancer Resistance [144]

Palbociclib Prostate cancer Required [173]

HDAC5

PARPi Breast and ovarian cancer Required [178]

5-FU Lung cancer Resistance [81]

Gemcitabine PDAC Resistance [84]

HDAC7

PTX PDAC Resistance [84]

HDAC9 Tamoxifen Breast cancer Resistance [135]

MITR PTX Breast cancer Resistance [104]

HDACs: Histone deacetylases; CRC: colorectal cancer; 5-FU: 5-fluorouracil; PDAC: pancreatic ductal adenocarcinoma; PTX: paclitaxel; DTX:
docetaxel; HCC: hepatocellular carcinoma; PARPi: poly ADP-ribose polymerase inhibitors; ADT: androgen deprivation therapy; MITR: MEF-2 
interacting transcription repressor.

resistance in cancer. In general, their role in promoting resistance is predominant [Tables 1 and 2]. This has 
opened up the possibility of reversing the resistant phenotype with HDACi. In some studies, non-selective 
HDACi such as vorinostat/SAHA have been used and their effect could not be focused on the specific 
alteration. More recently, family-specific inhibitors have entered the market, potentially offering a more 
efficient means of intervention.

Frequently, alterations in HDACs associated with drug resistance occur (and have been studied) in the 
context of highly mutated cancer cell lines. These cells have also accumulated alterations in other key genes 
associated with drug resistance, including elements of the apoptotic machinery, the DDR, or elements 
controlling drug metabolism and availability. For these reasons, a combination therapy targeting some of 
these altered cellular responses should be used.

There are many examples of the contribution of these HDACs to the failure of specific cancer therapies with 
genetically validated results, which are summarized in Figure 3. However, we have very little information 
about the specific complexes involved in the specific context. This is particularly critical for HDAC1/2, 
where different multiprotein complexes have been mapped and defined. The contribution of the different 
complexes characterized by the deacetylase activities of class I HDACs could explain the large heterogeneity 
of mechanisms described in the literature under the supervision of these HDACs (class I and IIa). We have 
more differences than confirmations. Although the contribution of HDACs to resistance predominates, 
there are also cases where they are essential for treatment efficacy [Tables 1 and 2]. These contrasting results 
should not be a surprise. The context of specific cancer-associated changes and (again) the assembly of 
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Figure 3. Summary of the different cellular processes regulated by HDACs (1/2/3/4/5/7/9) that may determine anticancer drug 
resistance. Dysregulation of transcription can also affect the other biological processes mentioned. The different treatment options are 
outlined. HDACs: Histone deacetylases.

HDACs in different multiprotein complexes, whose composition may depend on cancer, are logical 
hypotheses to explain such differences.

Although HDACs are important epigenetic regulators and important examples of changes in histone 
acetylation status associated with therapy resistance have been documented, there are other cases involving 
the regulation of non-histone proteins[45,49,50,53,65,81,84,130]. Certainly, their contribution as epigenetic regulators is 
underestimated. In particular, their role in shaping H3K27ac at enhancers and super-enhancers and how 
this contributes to drug resistance is poorly studied[204-211]. An obvious aspect that we should also consider is 
the relationship with the antagonizing enzymes, the KATs, both in terms of contribution to drug resistance 
and possible targets to improve therapy depending on the specific environment.

The ultimate goal of these studies should be to gain insight into the contribution of HDAC-dependent 
changes in a patient-specific manner and thus stratify patients to optimize therapeutic strategy. This would 
optimize benefits for patients and costs for healthcare systems. Of course, the question is not easy to answer, 
as the nature (point mutations, changes in expression, different PTMs, assembly into different multiprotein 
complexes, etc.) and the number of alterations can vary greatly. However, since these HDACs are primarily 
epigenetic regulators, a defined signature of changes in gene expression could be a possible indirect method 
for unmasking their alterations.
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